36,082 research outputs found

    Graph Sparsification by Edge-Connectivity and Random Spanning Trees

    Full text link
    We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of (1±ϵ)(1 \pm \epsilon). Our first approach independently samples each edge uvuv with probability inversely proportional to the edge-connectivity between uu and vv. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with O(nlog2(n)/ϵ2)O(n \log^2(n)/\epsilon^2) edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids

    Load-Balancing for Parallel Delaunay Triangulations

    Get PDF
    Computing the Delaunay triangulation (DT) of a given point set in RD\mathbb{R}^D is one of the fundamental operations in computational geometry. Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm that merges two partial triangulations by re-triangulating a small subset of their vertices - the border vertices - and combining the three triangulations efficiently via parallel hash table lookups. The input point division should therefore yield roughly equal-sized partitions for good load-balancing and also result in a small number of border vertices for fast merging. In this paper, we present a novel divide-step based on partitioning the triangulation of a small sample of the input points. In experiments on synthetic and real-world data sets, we achieve nearly perfectly balanced partitions and small border triangulations. This almost cuts running time in half compared to non-data-sensitive division schemes on inputs exhibiting an exploitable underlying structure.Comment: Short version submitted to EuroPar 201

    Faster Worst Case Deterministic Dynamic Connectivity

    Get PDF
    We present a deterministic dynamic connectivity data structure for undirected graphs with worst case update time O(n(loglogn)2logn)O\left(\sqrt{\frac{n(\log\log n)^2}{\log n}}\right) and constant query time. This improves on the previous best deterministic worst case algorithm of Frederickson (STOC 1983) and Eppstein Galil, Italiano, and Nissenzweig (J. ACM 1997), which had update time O(n)O(\sqrt{n}). All other algorithms for dynamic connectivity are either randomized (Monte Carlo) or have only amortized performance guarantees
    corecore