1,402 research outputs found

    An elegant operational matrix based on harmonic numbers: Effective solutions for linear and nonlinear fourth-order two point boundary value problems

    Get PDF
    This paper analyzes the solution of fourth-order linear and nonlinear two point boundary value problems. The suggested method is quite innovative and it is completely different from all previous methods used for solving such kind of boundary value problems. The method is based on employing an elegant operational matrix of derivatives expressed in terms of the well-known harmonic numbers. Two algorithms are presented and implemented for obtaining new approximate solutions of linear and nonlinear fourth-order boundary value problems. The two algorithms rely on employing the new introduced operational matrix for reducing the differential equations with their boundary conditions to systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. For this purpose, the two spectral methods namely, Petrov-Galerkin and collocation methods are applied. Some illustrative examples are considered aiming to ascertain the wide applicability, validity, and efficiency of the two proposed algorithms. The obtained numerical results are satisfactory and the approximate solutions are very close to the analytical solutions and they are more accurate than those obtained by some other existing techniques in literature

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    Spectral methods in fluid dynamics

    Get PDF
    Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome

    Fast Spectral Collocation Method for Solving Nonlinear Time-Delayed Burgers-Type Equations with Positive Power Terms

    Get PDF
    Since the collocation method approximates ordinary differential equations, partial differential equations, and integral equations in physical space, it is very easy to implement and adapt to various problems, including variable coefficient and nonlinear differential equations. In this paper, we derive a Jacobi-Gauss-Lobatto collocation method (J-GL-C) to solve numerically nonlinear time-delayed Burgers-type equations. The proposed technique is implemented in two successive steps. In the first one, we apply nodes of the Jacobi-Gauss-Lobatto quadrature which depend upon the two general parameters , and the resulting equations together with the two-point boundary conditions constitute a system of ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve a system of ODEs of second order in time. We present numerical results which illustrate the accuracy and flexibility of these algorithms
    corecore