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Abstract. This paper analyzes the solution of fourth-order linear and nonlinear two point boundary
value problems. The suggested method is quite innovative and it is completely different from all
previous methods used for solving such kind of boundary value problems. The method is based
on employing an elegant operational matrix of derivatives expressed in terms of the well-known
harmonic numbers. Two algorithms are presented and implemented for obtaining new approximate
solutions of linear and nonlinear fourth-order boundary value problems. The two algorithms rely on
employing the new introduced operational matrix for reducing the differential equations with their
boundary conditions to systems of linear or nonlinear algebraic equations, which can be efficiently
solved by suitable solvers. For this purpose, the two spectral methods, namely, Petrov–Galerkin and
collocation methods are applied. Some illustrative examples are considered aiming to ascertain the
wide applicability, validity, and efficiency of the two proposed algorithms. The obtained numerical
results are satisfactory and the approximate solutions are very close to the analytical solutions and
they are more accurate than those obtained by some other existing techniques in literature.

Keywords: shifted Legendre polynomials, harmonic numbers, fourth-order boundary value
problems, Petrov–Galerkin method, collocation method.

1 Introduction

Spectral methods on bounded domains typically employ grids consisting of zeros of
Chebyshev polynomials, or zeros of Legendre polynomials, or some other points re-
lated to various orthogonal polynomials (see [34]). The aim of spectral methods is to
approximate functions (solutions of differential equations) by means of truncated series
of orthogonal polynomials. There are three well-known methods of spectral methods,
namely, tau, collocation and Galerkin methods (see, for example, [5, 8, 13, 19, 29]). The
choice of the suitable used spectral method suggested for solving the given equation
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depends certainly on the type of the differential equation and also on the type of the
boundary conditions governed by it. The choice of test functions distinguishes between
the three versions of spectral schemes.

In Galerkin method, the test functions are the same as the trial functions and they
are chosen such that each member of them satisfies the boundary conditions governed
by the given differential equation. Petrov–Galerkin method is widely used for solving
ordinary and partial differential equations, see, for example, [1,9,12,18,30]. The Petrov–
Galerkin methods have generally come to be known as “stabilized” formulations be-
cause they prevent the spatial oscillations and sometimes yield nodally exact solutions,
where the classical Galerkin method would fail badly (see [35]). The main difference
between Galerkin and Petrov–Galerkin methods is that the test functions in Petrov–
Galerkin methods are not identical with the trial functions unlike Galerkin methods (see,
for example, [9]).

High order boundary value problems play important parts in physics, engineering
disciplines and applied mathematics. There is a great number of authors interested in
solving these kinds of boundary value problems. In this respect, there is a huge number
of articles handle both of high odd- and high even-order boundary value problems. For
example, in the two papers [9, 12], the authors have employed Petrov–Galerkin methods
together with the two orthogonal polynomials, namely, ultraspherical and generalized
Jacobi polynomials for handling odd-order differential equations, while in the two pa-
pers [10, 11], the authors handled high even-order differential equations by applying the
Galerkin method. For this purpose, they constructed suitable basis functions satisfying
the underlying boundary conditions on the given differential equation. The suggested
algorithms in these articles are suitable for handling one and two dimensional linear high
even-order boundary value problems.

Fourth-order boundary value problems are of old and recent interests. For some old
studies about these problems, see, for example, [4, 16]. Many other techniques were
used for solving fourth-order boundary value problems, for example, variational iteration
method is applied in [25], non-polynomial sextic spline method is applied in [20], quintic
non-polynomial spline method in [22] and Jacobi Gelrkin methods in [14, 15]. Theorems
which list the conditions for the existence and uniqueness of solution of such problems
are thoroughly discussed in a book by Agarwal [2].

The employment of operational matrices for solving different kinds of differential
equations is considered as a common technique. There are several studies in this respect.
This approach has two main advantages, the first is its simplicity, and the second is the
accuracy of the approximate solutions resulted from their uses. For example, in [13], the
authors employed the operational matrices of derivatives of Chebyshev polynomials of
the second kind to solve the singular Lane–Emden type equations. Some other studies
in [26, 27] employ operational matrices of derivatives for solving the same type of equa-
tions. Other kinds of differential equations were handled by the same technique (see, for
example, [23, 31, 36]).

In this paper, we aim to introduce a novel operational matrix of derivatives in terms
of the well-known harmonic numbers, and then employ the introduced operational matrix
to numerically solve both of linear and nonlinear fourth-order boundary value problems.
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For this purpose, Petrov–Galerkin method is applied on linear equations and the typical
collocation method is applied on nonlinear equations.

2 Preliminaries

In this section, we present some definitions and relations that will be used throughout this
paper.

2.1 Shifted Legendre polynomials

The shifted Legendre polynomials L∗k(x) are defined on [a, b] as

L∗k(x) = Lk

(
2x− a− b
b− a

)
, k = 0, 1, . . . ,

where Lk(x) are the Legendre polynomials. These polynomials may be generated by
using the recurrence relation

(k + 1)L∗k+1(x) = (2k + 1)
2x− b− a
b− a

L∗k(x)− kL∗k−1(x), k = 1, 2, . . . , (1)

with L∗0(x) = 1, L∗1(x) = (2x− b− a)/(b− a) or alternatively from Rodrigues’ formula

L∗k(x) =
1

(b− a)kk!
Dk
[(
x2 − (b+ a)x+ ba

)k]
, D ≡ d

dx
.

The orthogonality relation for L∗k(x) on [a, b] is given by

b∫
a

L∗j (x)L∗k(x) dx =

{
(b− a)/(2k + 1), k = j,

0, k 6= j.
(2)

The following theorem is useful in the sequel.

Theorem 1. If the q times repeated integration of L∗k(x) is denoted by

I
(q)
k (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫
L∗k(x)

q times︷ ︸︸ ︷
dxdx · · · dx,

then

I
(q)
k (x) =

(b− a)q

22q

q∑
r=0

(−1)r
(
q
r

)
(k + q − 2r + 1/2)Γ(k − r + 1/2)

Γ(k + q − r + 3/2)
L∗k+q−2r(x)

+ πq−1(x), (3)

and πq−1(x) is a polynomial of degree at most (q − 1).

Proof. See [7].
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2.2 Harmonic numbers

The nth harmonic number is defined as (see [28])

Hn =

n∑
i=1

1

i
. (4)

The recurrence relation satisfied by Hn is

Hn −Hn−1 =
1

n
, n = 1, 2, . . . .

The numbers Hn have the integral representation

Hn =

1∫
0

1− xn

1− x
dx.

The following Lemma is useful in what follows.

Lemma 1. The harmonic numbers Hk satisfy the following three-term recurrence rela-
tion:

(2k − 1)Hk−1 − (k − 1)Hk−2 = kHk, k > 2. (5)

Proof. The recurrence relation (5) can be easily proved with the aid of relation (4).

3 Harmonic numbers operational matrix of derivatives

In this section, a novel operational matrix of derivatives in terms of the well-known
harmonic numbers will be introduced. First, choose the following set of basis functions

φk(x) = (x− a)2(b− x)2L∗k(x), k = 0, 1, 2, . . . . (6)

It is worthy to note here that the set of polynomials {φk(x): k = 0, 1, 2, . . . } is a linearly
independent set. Moreover, the polynomials {φk(x): k = 0, 1, . . .} are orthogonal with
respect to the weight function w(x) = (x− a)−4(b− x)−4, that is,

b∫
a

φk(x)φj(x)

(x− a)4(b− x)4
dx =

{
0, k 6= j,

(b− a)/(2k + 1), k = j.

Let us denote Hr
w(I) (r = 0, 1, 2, . . .) as the weighted Sobolev spaces, whose inner

products and norms are denoted by (·, ·)r,w and ‖·‖r,w, respectively (see [5]). To account
for homogeneous boundary conditions, we define

H2
0,w(I) =

{
v ∈ H2

w(I): v(a) = v(b) = v′(a) = v′(b) = 0
}
,
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where I = (a, b). Now, define the following subspace of H2
0,w(I):

VN = span
{
φ0(x), φ1(x), . . . , φN (x)

}
.

Any function y(x) ∈ H2
0,w(I) can be expanded in terms of the polynomials φk(x) as

y(x) =

∞∑
k=0

ckφk(x), (7)

where

ck =
2k + 1

b− a

b∫
a

y(x)φk(x)

(x− a)4(b− x)4
dx. (8)

In Eq. (7), y(x) can be approximated by the first (N + 1) terms, that is,

y(x) ' yN (x) =

N∑
k=0

ckφk(x) = CTΦ(x), (9)

where
CT = [c0, c1, . . . , cN ], Φ(x) = [φ0(x), φ1(x), . . . , φN (x)]T. (10)

Now, the main theorem, from which a novel operational matrix of derivatives can be
expressed in terms of harmonic numbers will be stated and proved.

Theorem 2. If the polynomials φk(x) are selected as in (6), then for all k > 1, one has

Dφk(x) =
2

b− a

k−1∑
j=0

(k+j) odd

(2j + 1)(1 + 4Hk − 4Hj)φj(x) + ξk(x), (11)

where ξk(x) is given by

ξk(x) = 2(x− a)

{
(b− x)(a+ b− 2x), k even,

(a− b)(b− x), k odd.
(12)

Proof. Our strategy is to prove Theorem 2 on [−1, 1], and hence the proof on the general
interval [a, b] can be easily transported. Now, we intend to prove the relation

Dψk(x) =

k−1∑
j=0

(k+j) odd

(2j + 1)(1 + 4Hk − 4Hj)ψj(x) + γk(x), (13)

where

ψk(x) =
(
1− x2

)2
Lk(x) and γk(x) = 4

(
x2 − 1

){x, k even,

1, k odd.
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We proceed by induction on k. For k = 1, it is clear that each of the two sides of (13) is
equal to (1−x2)(1−5x2). Now, assume that relation (13) is valid for (k−2) and (k−1),
and we will show its validity for k. The polynomials ψk(x) satisfy the same recurrence
relation of Legendre polynomials, that is,

ψk(x) =
2k − 1

k
xψk−1(x)− (k − 1)

k
ψk−2(x), k > 2, (14)

which gives immediately after differentiation

Dψk(x) =
2k − 1

k
xDψk−1(x) +

2k − 1

k
ψk−1(x)− (k − 1)

k
Dψk−2(x). (15)

The application of the induction hypothesis twice on Dψk−1(x) and Dψk−2(x) in (15)
yields

Dψk(x) =
(2k − 1)x

k

k−2∑
j=0

(k+j) even

(2j + 1)(1− 4Hj + 4Hk−1)ψj(x)

− (k − 1)

k

k−3∑
j=0

(k+j) odd

(2j + 1)(1− 4Hj + 4Hk−2)ψj(x)

+
2k − 1

k
ψk−1(x) +

2k − 1

k
xγk−1(x)− k − 1

k
γk−2(x). (16)

Substituting the recurrence relation (14) in the form

xψj(x) =
j + 1

2j + 1
ψj+1(x) +

j

2j + 1
ψj−1(x)

into relation (16), then after performing some rather lengthy manipulations, we get

Dψk(x) =

k−3∑
j=1

(k+j) odd

gkjψj(x)

+

[
2k − 1 +

4(k − 1)(2k − 1)(Hk−1 −Hk−2)

k

]
ψk−1(x)

+ θk

[
4(2k − 1)Hk−1

k
− 4(k − 1)Hk−2

k
− (7k − 4)

k

]
ψ0(x)

+
2k − 1

k
xγk−1(x)− k − 1

k
γk−2(x), (17)

where

gkj = 2j + 1− 4j(2k − 1)Hj−1

k
+

4(2j + 1)(k − 1)Hj

k
− 4(j + 1)(2k − 1)Hj+1

k

− 4(2j + 1)(k − 1)Hk−2

k
+

4(2j + 1)(2k − 1)Hk−1

k
, (18)
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and

θk =

{
1, k odd,

0, k even.

Now, the elements gkj in (18) after making use of the recurrence relation in Lemma 1,
can be simplified to take the formula

gkj = (2j + 1)(1 + 4Hk − 4Hj). (19)

Repeated use of Lemma 1 in (17), and after performing some rather manipulation, lead to

Dψk(x) =

k−1∑
j=0

(k+j) odd

(2j + 1)(4Hk − 4Hj + 1)ψj(x)− 4(2k − 1)

k
θkψ0(x)

+

(
2k − 1

k

)
xγk−1(x)−

(
k − 1

k

)
γk−2(x), (20)

and by noting that

−4(2k − 1)

k
θkψ0(x) +

(
2k − 1

k

)
xγk−1(x)−

(
k − 1

k

)
γk−2(x) = γk(x),

then the proof of formula (13) is completed.
Now, if x in (13) is replaced by (2x− a− b)/(b− a), then after some manipulations,

it can be shown that

Dφk(x) =
2

b− a

k−1∑
j=0

(k+j) odd

(2j + 1)(1 + 4Hk − 4Hj)φj(x) + ξk(x)

and

ξk(x) = 2(x− a)

{
(b− x)(a+ b− 2x), k even,

(a− b)(b− x), k odd.

This completes the proof of Theorem 2.

Now, and with the aid of Theorem 2, the first derivative of the vector Φ(x) defined
in (10) can be expressed in the matrix form:

dΦ(x)

dx
= MΦ(x) + ξ(x), (21)

where ξ(x) = (ξ0(x), ξ1(x), . . . , ξN (x))T and M = (mkj)06k,j6N is an (N + 1) ×
(N + 1) matrix whose nonzero elements can be given explicitly from relation (11) as

mkj =

{
2/(b− a)(2j + 1)(1 + 4Hk − 4Hj), k > j, (k + j) odd,

0, otherwise.
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For example, for N = 5, the operational matrix M is the following (6× 6) matrix:

M =
2

b− a


0 0 0 0 0 0
5 0 0 0 0 0
0 9 0 0 0 0

25/3 0 35/3 0 0 0
0 16 0 14 0 0

152/15 0 62/3 0 81/5 0

 .

Corollary 1. The second-, third- and fourth-order derivatives of the vector Φ(x) are
given respectively by

d2Φ(x)

dx2
= M2Φ(x) +Mξ(x) + ξ(1)(x), (22)

d3Φ(x)

dx3
= M3Φ(x) +M2ξ(x) +Mξ(1)(x) + ξ(2)(x), (23)

d4Φ(x)

dx4
= M4Φ(x) +M3ξ(x) +M2ξ(1)(x) +Mξ(2)(x) + ξ(3)(x). (24)

4 Solution of fourth-order two point BVPs

In this section, we are interested in developing two numerical algorithms for solving both
of linear and nonlinear fourth-order two point BVPs. The operational matrix of derivatives
that introduced in Section 3 is employed for this purpose. The linear equations are handled
by the application of a Petrov–Galerkin method, while the nonlinear equations are handled
by the application of the typical collocation method.

4.1 Linear fourth-order BVPs

Consider the linear fourth-order boundary value problem

y(4)(x) + f3(x)y(3)(x) + f2(x)y(2)(x)

+ f1(x)y(1)(x) + f0(x)y(x) = g(x), x ∈ (a, b), (25)

subject to the homogenous boundary conditions

y(a) = y(b) = y′(a) = y′(b) = 0. (26)

If y(x) is approximated as

y(x) ' yN (x) =

N∑
k=0

ckφk(x) = CTΦ(x), (27)

then making use of relations (21)–(24), the following approximations for y(`)(x),
1 6 ` 6 4, are obtained:

y(1)(x) ' CT
(
MΦ(x) + ξ

)
, y(2)(x) ' CT

(
M2Φ(x) + η2(x)

)
, (28)
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y(3)(x) ' CT
(
M3Φ(x) + η3(x)

)
, y(4)(x) ' CT

(
M4Φ(x) + η4(x)

)
, (29)

where
η2(x) = Mξ(x) + ξ(1)(x),

η3(x) = M2ξ(x) +Mξ(1)(x) + ξ(2)(x),

η4(x) = M3ξ(x) +M2ξ(1)(x) +Mξ(2)(x) + ξ(3)(x).

If we substitute by relations (27)–(29) into Eq. (25), then one can write the residualR(x),
of this equation as

R(x) = CT
(
M4Φ(x) + η4(x)

)
+ f3(x)CT

(
M3Φ(x) + η3(x)

)
+ f2(x)

(
M2Φ(x) + η2(x)

)
+ f1(x)CT

(
MΦ(x) + ξ(x)

)
+ f0(x)CTΦ(x)− g(x). (30)

The application of Petrov–Galerkin method (see [5]) yields the following (N + 1) linear
equations in the unknown expansion coefficients ci:

b∫
a

R(x)L∗i (x) dx = 0, i = 0, 1, . . . , N. (31)

Thus Eq. (31) generates a set of (N + 1) linear equations, which can be solved for the
unknown components of the vectorC, and hence the approximate spectral solution yN (x)
given in (27) can be obtained.

Remark 1. It is worthy to note here that, with the aid of a suitable transformation,
problem (25), governed by the nonhomogeneous boundary conditions

y(a) = α1, y(b) = α2, y′(a) = β1, y′(b) = β2, (32)

can be easily transformed to a problem similar to (25)–(26) (see [10]).

4.2 Solution of nonlinear fourth-order two point BVPs

Consider the following nonlinear fourth-order boundary value problem:

y(4)(x) = F
(
x, y(x), y(1)(x), y(2)(x), y(3)(x)

)
, (33)

governed by the homogenous boundary conditions

y(a) = y(b) = y′(a) = y′(b) = 0. (34)

If y(`)(x), 0 6 ` 6 4, are approximated as in (27)–(29), then the following nonlinear
equations in the unknown vector C can be obtained:

CT
(
M4Φ(x)+η4(x)

)
≈ F

(
x, CTΦ(x), CT

(
MΦ(x)+ξ(x)

)
,

CT
(
M2Φ(x)+η2(x)

)
, CT

(
M3Φ(x)+η3(x)

))
. (35)
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To find a numerical solution yN (x), Eq. (35) is collocated at (N + 1) points. There
are several choices for these points. For example, they may taken to be the zeros of
the polynomials L∗N+1(x), or T ∗N+1(x), or U∗N+1(x), where L∗i (x), T ∗i (x), U∗i (x) are
respectively the shifted Legendre and shifted Chebyshev polynomials of the first and
second kinds. It should be noted here that, for every choice of the collocation points,
a set of (N + 1) nonlinear equations is generated in the expansion coefficients ci. With
the aid of the well-known Newton’s iterative method, this nonlinear system can be solved,
and hence the corresponding approximate solution yN (x) can be obtained.

5 Convergence and error analysis

In this section, the convergence and error analysis of the suggested approximate solution
will be investigated. We will state and prove a theorem in which the expansion in (7) of
a function y(x) = (x− a)2(b− x)2Q(x) ∈ H2

0,w(I), where Q(x) is of bounded second
derivative, converges uniformly to y(x). Moreover, an upper bound for the global error
(in L2

w norm) is given.

Theorem 3. A function y(x) = (x− a)2(b− x)2Q(x) ∈ H2
0,w(I), w = (1/(x− a)4 ×

(b−x)4) with |Q′′(x)| 6M , can be expanded as an infinite sum of the basis given in (7).
This series converges uniformly to y(x), and the coefficients in (7) satisfy the inequality

|ck| <
√
π/2M(b− a)2

(k − 3/2)3/2
∀k > 2. (36)

Proof. From Eq. (8) and with the aid of (6), one has

ck =
2k + 1

b− a

b∫
a

Q(x)L∗k(x) dx. (37)

If the last relation is integrated by parts twice with the aid of Theorem 1 (for q = 2), then
for all k > 2, we have

ck =
1

4
(b−a)(2k+1)

b∫
a

[
L∗k−2(x)

(2k−1)(2k+1)
− 2L∗k(x)

(2k−1)(2k+3)
+

L∗k+2(x)

(2k+1)(2k+3)

]
×Q′′(x)dx. (38)

Making use of the substitution (2x − a − b)/(b − a) = cos θ enables one to put the
coefficients ck in the form

ck =
1

8
(b−a)2(2k+1)

π∫
0

[
Lk−2(cos θ)

(2k−1)(2k+1)
− 2Lk(cos θ)

(2k−1)(2k+3)
+

Lk+2(cos θ)

(2k+1)(2k+3)

]
×Q′′

(
1

2
(a+ b+ (b− a) cos θ)

)
sin θ dθ, k > 2. (39)
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Now, taking into consideration that |Q′′(x)| 6 M and making use of the inequality (see
[6]):

√
sin θ

∣∣Lk(cos θ)
∣∣ <√ 2

π(k + 1/2)
, 0 6 θ 6 π,

then from (39) it can be shown that

|ck| <
√
πM(b− a)2(2k + 1)√

2k − 3(2k − 1)(2k + 3)
,

and accordingly the following inequality holds:

|ck| <
√
π/2M(b− a)2

(k − 3/2)3/2
∀k > 2.

This prove (36), and hence completes the proof of Theorem 3.

Theorem 4. If y(x) satisfies the assumptions of Theorem 3, and if we consider the
expansion yN (x) =

∑N
k=0 ckφk(x), then the following error estimate (in the sense of

L2
w-norm, w = (x− a)−4(b− x)−4) holds:

‖y − yN‖w <
√

2π/3M(b− a)5/2

N3/2
. (40)

Proof. The orthogonality property of the polynomials {φi(x)} together with Eq. (8)
enables one to get

‖y − yN‖2w =

∞∑
k=N+1

(b− a)

(2k + 1)
c2k.

In view of Theorem 3, we can write

‖y − yN‖2w < 2πM2(b− a)5
∞∑

k=N+1

1

k4
.

Applying the integral test for series (see [33]) yields

‖y − yN‖2w < 2πM2(b− a)5
∞∫
N

x−4dx =
2πM2(b− a)5

3N3
,

and accordingly

‖y − yN‖w <
√

2π/3M(b− a)5/2

N3/2
.

Theorem 4 is now proved.
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6 Numerical results and discussions

In this section, the two presented algorithms, namely, PGOMM and COMM, which
presented in Section 4, are applied to solve linear and nonlinear fourth-order two point
boundary value problems. As expected, the accuracy increases as the number of terms of
the basis expansion increases.

Example 1. Consider the fourth-order linear equation (see [17, 21, 24])

y(4)(x)− (c+ 1)y′′(x) + cy(x) =
1

2
cx2 − 1, 0 6 x 6 1,

y(0) = y′(0) = 1, y(1) = sinh(1) +
3

2
, y′(1) = 1 + cosh(1).

(41)

The exact solution of (41) is

y(x) = 1 +
x2

2
+ sinh(x).

In Table 1, the maximum absolute errors E, which resulted from the application of
PGOMM, are listed for various values of N and c, while in Table 2, a comparison
between the best absolute errors obtained by the application of PGOMM (at N = 10)
with the best errors obtained by the methods namely, ADM, HPM, DTM developed
in [24], and the method namely RKHSM developed in [17]. Moreover, in Table 3, we
display a comparison between the relative errors obtained by the application of PGOMM
(N = 11) with the relative errors resulted from the application of 20th-order homotopy
analysis method in [21]. The relative errors are calculated by the formula

δ(x) =

∣∣∣∣yexact(x)− yapproximate(x)

yexact(x)

∣∣∣∣.
Remark 2. From Table 2 it is clear that the approximate solution obtained by using
PGOMM is in good agreement with the exact solution for all values of c, even if c is very
large, unlike the approximate solutions obtained by applying ADM and HPM in [24].

Table 1. Maximum pointwise error |yexact − yN | using PGOMM for Example 1.

N c = 10 c = 106 c = 108 c = 1010 c = 1020

4 8.34845 · 10−11 7.2599 · 10−11 7.26161 · 10−11 7.26161 · 10−11 7.26162 · 10−11

6 4.57783 · 10−14 3.66014 · 10−14 3.64329 · 10−14 3.63589 · 10−14 3.63373 · 10−14

8 6.18429 · 10−16 6.04551 · 10−16 6.24934 · 10−16 5.30175 · 10−16 6.17345 · 10−16

Table 2. Comparison between the maximum absolute
errors for Example 1 using different methods.

Method c = 10 c = 106

PGOMM (N = 10) 6.1 · 10−16 7.9 · 10−16

ADM in [24] 7.6 · 10−3 2.6 · 10+6

HPM in [24] 7.6 · 10−3 2.6 · 10+6

DTM in [24] 1.6 · 10−8 4.2 · 10−3

RKHSM(u1011 ) in [17] 1.7 · 10−9 4.1 · 10−10
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Table 3. Comparison between the relative errors δ(x) obtained by different methods for Example 1.

x c = 100 c = 108

PGOMM (N = 11) 20th-order [21] PGOMM (N = 11) 20th-order [21]
0.1 0.0 8.6 · 10−9 0.0 8.9 · 10−5

0.2 5.68434 · 10−14 4.6 · 10−9 5.68434 · 10−14 4.7 · 10−5

0.3 5.68434 · 10−14 4.4 · 10−9 5.68434 · 10−14 3.5 · 10−5

0.4 7.10543 · 10−14 4.3 · 10−9 8.52651 · 10−14 3.4 · 10−5

0.5 1.13687 · 10−13 3.9 · 10−9 1.13687 · 10−13 3.0 · 10−5

0.6 8.52651 · 10−14 3.5 · 10−9 8.52651 · 10−14 2.6 · 10−5

0.7 4.19220 · 10−13 2.9 · 10−9 4.19220 · 10−13 2.0 · 10−5

0.8 1.49214 · 10−13 2.5 · 10−9 1.49214 · 10−13 2.6 · 10−5

0.9 3.90799 · 10−13 3.8 · 10−9 3.76588 · 10−13 4.0 · 10−5

Table 4. Comparison between the absolute errors for Example 2.

x COMM (N = 4) COMM (N = 6) COMM (N = 8) RKHSM (u1011 ) [17]
0.0 0.0 0.0 0.0 0.0
0.1 7.69876 · 10−11 7.43711 · 10−14 2.77556 · 10−17 2.78 · 10−8

0.2 5.87005 · 10−10 1.74749 · 10−13 0.0 8.09 · 10−8

0.3 1.15724 · 10−9 1.96093 · 10−13 5.55112 · 10−17 1.20 · 10−7

0.4 9.58059 · 10−10 4.42368 · 10−13 2.498 · 10−16 1.25 · 10−7

0.5 8.1097 · 10−11 8.16014 · 10−15 5.55112 · 10−17 9.56 · 10−8

0.6 1.10346 · 10−9 4.51764 · 10−13 3.46945 · 10−16 4.82 · 10−8

0.7 1.25497 · 10−9 1.88627 · 10−13 4.30211 · 10−16 7.38 · 10−9

0.8 6.25015 · 10−10 1.89848 · 10−13 5.41234 · 10−16 1.07 · 10−8

0.9 7.9979 · 10−11 7.90253 · 10−14 3.1572 · 10−16 7.08 · 10−9

1.0 7.63278 · 10−17 3.18772 · 10−17 5.74221 · 10−16 0.0

Example 2. Consider the following nonlinear fourth-order boundary value problem (see
[17]):

y(4)(x)− exy′′(x) + y(x) + sin
(
y(x)

)
= f(x), 0 6 x 6 1,

y(0) = y′(0) = 1, y(1) = 1 + sinh(1), y′(1) = cosh(1)
(42)

with f(x) = 1− (−2 + ex) sinh(x) + sin(sinh(x) + 1) and the exact solution

y(x) = sinh(x) + 1.

In Table 4, the absolute errors are listed for various values of N . In order to compare the
absolute errors obtained by applying COMM with those obtained by applying RHKSM
in [17], we list the absolute errors obtained by the application of RHKSM in the last
column of this table. This table shows that the approximate solution of problem (42)
obtained by using COMM is of high efficiency and more accurate than the approximate
solution obtained by RHKSM [17].

Example 3. Consider the following fourth-order nonlinear boundary value problem (see
[3]):

y(4)(x) +
(
y′′(x)

)2
= sinx+ sin2(x), 0 6 x 6 1,

y(0) = 0, y′(0) = 1, y(1) = sin 1, y′(1) = cos 1.
(43)
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Table 5. Maximum absolute errors of |y − yN | for
Example 3 for N = 2, 4, 6, 8, 10.

N E1 E2 E3

2 8.63 · 10−7 1.31 · 10−6 5.66 · 10−7

4 9.88 · 10−10 2.12 · 10−9 4.29 · 10−10

6 3.53 · 10−13 7.98 · 10−13 1.71 · 10−13

8 1.666 · 10−16 2.78 · 10−16 1.11 · 10−16

10 1.11 · 10−16 1.11 · 10−16 1.11 · 10−16

Table 6. Comparison between the absolute errors of |y − yN | for Example 3.

x The method in [3] (N = 2) E1 E2 E3

0.0 0.0 0.0 0.0 0.0
0.1 3.0026 · 10−6 2.339 · 10−7 3.905 · 10−7 1.293 · 10−7

0.2 1.0310 · 10−5 6.611 · 10−7 1.037 · 10−6 4.096 · 10−7

0.3 1.9108 · 10−5 8.634 · 10−7 1.308 · 10−6 5.657 · 10−7

0.4 2.9885 · 10−5 6.481 · 10−7 9.671 · 10−7 4.347 · 10−7

0.5 2.9885 · 10−5 1.199 · 10−7 1.841 · 10−7 7.693 · 10−7

0.7 2.1185 · 10−5 6.877 · 10−7 1.035 · 10−6 4.554 · 10−7

0.9 3.7203 · 10−6 2.0172 · 10−7 3.362 · 10−7 3.469 · 10−7

1.0 5.5144 · 10−7 0.0 0.0 0.0

The exact solution of the above problem is

y(x) = sinx.

In Table 5, we list the maximum absolute errors |y−yN | using COMM for various values
of N . Let E1, E2 and E3 denote the maximum absolute errors if the selected collocation
points are respectively, the zeros of the shifted Legnedre polynomials L∗N+1(x), and the
shifted Chebyshev polynomials of the first and second kinds T ∗N+1(x) and U∗N+1(x). The
numerical results show that the best errors are achieved when the selected collocation
points are the zeros of Chebyshev polynomials of the second kind. Table 6 displays
a comparison between the errors obtained by the application of COMM for the previous
three choices of the collocation points with the method developed in [3] for the case
N = 2. The comparison ascertains that our results are more accurate than those obtained
in [3].

Example 4. Consider the following fourth-order nonlinear boundary value problem (see
[32]):

y(4)(x) = y2(x) + g(x), 0 < x < 1,

y(0) = y′(0) = 0, y(1) = y′(1) = 1,
(44)

where g(x) = −x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x − 48. The exact solution
of the above problem is

y(x) = x5 − 2x4 + 2x2.

Table 7 displays a comparison between the absolute errors obtained by the application of
COMM for N = 4 with the two methods developed in [32]. The comparison ascertains
that our method is more accurate than the two methods obtained in [32].
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Table 7. Comparison between the absolute errors for Example 4.

x Method in [32] (|φ2 − y|) Method in [32] (|ψ2 − y|) COMM (N = 2)
0.0 0.0 0.0 0.0
0.2 3.5906 · 10−5 8.1093 · 10−10 9.73223 · 10−20

0.4 1.0188 · 10−4 2.0542 · 10−9 5.29677 · 10−19

0.6 1.3579 · 10−4 2.2272 · 10−9 6.52792 · 10−18

0.8 8.5908 · 10−5 1.0115 · 10−9 2.91002 · 10−17

1.0 5.5799 · 10−13 0.0 8.79947 · 10−17

7 Conclusions

In this article, a novel operational matrix of derivatives is introduced. This operational
matrix is given in terms of the well-known harmonic numbers. Two algorithms based on
the application of the Petrov–Galerkin and collocation spectral methods are presented and
implemented for the sake of obtaining new approximate solutions of linear and nonlinear
fourth-order boundary value problems. The derivation of these algorithms rely on select-
ing a set of basis functions satisfying the boundary conditions of the given boundary value
problem in terms of shifted Legendre polynomials. The main advantages of the introduced
algorithms are their simplicity in application and their high accuracy, since high accurate
approximate solutions can be achieved by using a few number of terms of the suggested
expansion. The numerical results are convincing and the resulted approximate solutions
are very close to the exact ones.

Acknowledgment. The author would like to thank the referee for his carefully reading
the paper and also for his constructive comments, which have improved the paper.
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