1,305 research outputs found

    Evaluating functions of positive-definite matrices using colored noise thermostats

    Get PDF
    Many applications in computational science require computing the elements of a function of a large matrix. A commonly used approach is based on the the evaluation of the eigenvalue decomposition, a task that, in general, involves a computing time that scales with the cube of the size of the matrix. We present here a method that can be used to evaluate the elements of a function of a positive-definite matrix with a scaling that is linear for sparse matrices and quadratic in the general case. This methodology is based on the properties of the dynamics of a multidimensional harmonic potential coupled with colored noise generalized Langevin equation (GLE) thermostats. This "f−f-thermostat" (FTH) approach allows us to calculate directly elements of functions of a positive-definite matrix by carefully tailoring the properties of the stochastic dynamics. We demonstrate the scaling and the accuracy of this approach for both dense and sparse problems and compare the results with other established methodologies.Comment: 8 pages, 4 figure

    Optimized auxiliary oscillators for the simulation of general open quantum systems

    Full text link
    A method for the systematic construction of few-body damped harmonic oscillator networks accurately reproducing the effect of general bosonic environments in open quantum systems is presented. Under the sole assumptions of a Gaussian environment and regardless of the system coupled to it, an algorithm to determine the parameters of an equivalent set of interacting damped oscillators obeying a Markovian quantum master equation is introduced. By choosing a suitable coupling to the system and minimizing an appropriate distance between the two-time correlation function of this effective bath and that of the target environment, the error induced in the reduced dynamics of the system is brought under rigorous control. The interactions among the effective modes provide remarkable flexibility in replicating non-Markovian effects on the system even with a small number of oscillators, and the resulting Lindblad equation may therefore be integrated at a very reasonable computational cost using standard methods for Markovian problems, even in strongly non-perturbative coupling regimes and at arbitrary temperatures including zero. We apply the method to an exactly solvable problem in order to demonstrate its accuracy, and present a study based on current research in the context of coherent transport in biological aggregates as a more realistic example of its use; performance and versatility are highlighted, and theoretical and numerical advantages over existing methods, as well as possible future improvements, are discussed.Comment: 23 + 9 pages, 11 + 2 figures. No changes from previous version except publication info and updated author affiliation
    • …
    corecore