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Abstract

Recent developments in path integral methodology have significantly reduced
the computational expense of including quantum mechanical effects in the
nuclear motion in ab initio molecular dynamics simulations. However, the
implementation of these developments requires a considerable programming
effort, which has hindered their adoption. Here we describe i-PI, an interface
written in Python that has been designed to minimise the effort required
to bring state-of-the-art path integral techniques to an electronic structure
program. While it is best suited to first principles calculations and path inte-
gral molecular dynamics, i-PI can also be used to perform classical molecular
dynamics simulations, and can just as easily be interfaced with an empirical
forcefield code. To give just one example of the many potential applications
of the interface, we use it in conjunction with the CP2K electronic struc-
ture package to showcase the importance of nuclear quantum effects in high
pressure water.
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Licensing provisions: GPLv3, MIT
Programming language: Python
Computer: multiple architectures
Operating system: Linux, Mac OSX, Windows
RAM: less than 256 Mb
Keywords: path integral, molecular dynamics, ab initio
Classification: 7.7
External routines/libraries: NumPy
Nature of problem:
Bringing the latest developments in the modelling of nuclear quantum effects with
path integral molecular dynamics to ab initio electronic structure programs with
minimal implementational effort.
Solution method:
State-of-the-art path integral molecular dynamics techniques are implemented in
a Python interface. Any electronic structure code can be patched to receive the
atomic coordinates from the Python interface, and to return the forces and energy
that are used to integrate the equations of motion.
Restrictions:
This code only deals with distinguishable particles. It does not include fermonic
or bosonic exchanges between equivalent nuclei, which can become important at
very low temperatures.
Running time:
Depends dramatically on the nature of the simulation being performed. A few
minutes for short tests with empirical force fields, up to several weeks for produc-
tion calculations with ab initio forces.

1. Introduction

Molecular dynamics simulations are becoming increasingly capable not
only of assisting the interpretation of experiments, but also of predicting
the properties and the behaviour of new materials and compounds [1]. Be-
sides the increase in available computer power, these developments have been
made possible by an increasingly accurate treatment of the interactions be-
tween the atoms, in particular by an explicit treatment of the electronic
structure problem [2, 3]. However, as the methods that are used to treat the
quantum nature of the electrons improve, it becomes increasingly clear that
in the presence of light atoms, such as hydrogen or lithium, the error due
to approximating the nuclei as classical particles is at least as large as the
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errors due to the approximate modelling of the electrons. The importance
of nuclear quantum effects (NQEs) is evident from the fact that the zero-
point energy associated with a typical O–H stretching mode is in excess of
200 meV. This has significant implications: for example, one can show by
extrapolating the experimental values for isotopically pure light, heavy and
tritiated water that a hypothetical liquid with classical nuclei would have a
50% higher heat capacity than H2O and a pH of about 8.5.

Within the Born-Oppenheimer approximation, NQEs can be modelled
using the imaginary time path integral formalism [4, 5, 6, 7]. This formalism
maps the quantum mechanical partition function for a set of distinguishable
nuclei onto the classical partition function of a so-called ring polymer, com-
posed of n replicas (beads) of the physical system connected by harmonic
springs. The number of replicas needed to achieve a converged result is typ-
ically a small multiple of β~ωmax, where β is the inverse temperature and
ωmax is the largest vibrational frequency in the system. For the archetypical
case of room-temperature liquid water, most properties are reasonably well
converged with n = 32 – making the path integral simulation 32 times more
expensive than a classical simulation.

As a consequence of this large overhead, NQEs were for many years only
rarely considered in the context of ab initio molecular dynamics [8, 9, 10].
However, with the advent of massively parallel computers, including these
effects has become somewhat more affordable [11, 12], and their simulation
has also been facilitated by new methodological developments. In particu-
lar, it has recently been realised that an approximate modelling of NQEs
can be obtained by applying a coloured (correlated)-noise Langevin equation
thermostat to classical molecular dynamics [13, 14, 15]. Moreover, this idea
can be turned into a systematically convergent, accurate method [16, 17] by
combining coloured noise with path integral molecular dynamics (PIMD). To
give an example, the PIGLET method [17] makes it possible to treat NQEs
in liquid water at 300 K with as few as 6 beads, which promises to make
accurate ab initio PIMD calculations almost routine.

Unfortunately, most ab initio electronic structure codes only contain rudi-
mentary implementations of PIMD, if any at all. We have developed i-PI in
order to reduce the effort of introducing the latest PIMD developments into
electronic structure codes, so as to make them readily available to a broader
community. The framework we have adopted is a server-client model, in
which i-PI acts as a server passing atomic coordinates to (multiple instances
of) an electronic structure client program, and receiving the energy and forces
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in return. This allows all of the PIMD machinery to be confined to the
Python server side, and minimises the modifications that have to be made
to the electronic structure code.

2. Program overview

i-PI has been developed with the awareness that the cost of an ab initio
PIMD simulation will be dominated by the electronic structure problem, and
with a few clear goals:

• to minimise the effort required to modify the client ab initio electronic
structure code,

• to include no feature specific to a particular client code,

• to be modular, simple to extend and with a structure that reflects the
underlying physics,

• to be efficient, but never at the cost of clarity.

In order to acheive these goals we have chosen the Python programming
language, and a client-server model in which i-PI acts as the server, dealing
exclusively with evolving the nuclear degrees of freedom according to the
equations of motion. The evaluation of the forces, the potential and the virial
is delegated to one or more instances of the client code (see Figure 1). i-PI
maintains a list of active clients, to which it dispatches the positions of the
nuclei and from which it collects the forces and energy as soon as they have
been computed. The communication is kept to a minimum, not so much for
its impact on performance, as for the fact that exchanging more information
would require a more substantial implementation effort on the client side. All
the details of the force evaluation – such as the parameters of the electronic
structure calculation – are left to the input of the external code: i-PI only
sends the dimensions of the simulation box (h) and the coordinates of the
nuclei (x), and expects the atomic species to be stored internally by the client
code in the same order they are in the i-PI input. The client code computes
and returns the ionic forces (f), electronic energy (U) and stress tensor (σ),
possibly supplemented by a string that contains any further information on
the electronic structure (e.g. the dipole moment, the partial charges of the
atoms, etc.) that might be required for post-processing; i-PI simply outputs
this string verbatim.
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Figure 1: Schematic overview of the client-server model underlying i-PI. The communica-
tion is kept to a minimum, and so are the modifications that need to be made to adapt an
existing electronic structure code to act as the client. The client is not restarted between
successive force evaluations, so that the overhead associated with initialisation is avoided.

The client-server communication is implemented using sockets. If de-
sired, i-PI can communicate with the clients across the internet, realising a
rudimentary distributed computing paradigm. If one wishes to reduce the
communication overhead – e.g. if one wants to use i-PI with an empirical
forcefield driver – local UNIX-domain sockets can be used. It would also be
easy to implement different communication methods, e.g. via inter-process
MPI or writing to disk.

Instances of the patched ab initio code can register themselves dynami-
cally, and i-PI keeps track of the active clients so that the forces on multiple
path integral replicas can be evaluated at once. The trivial layer of paral-
lelism over the beads can therefore be fully exploited. We would recommend
implementing the communication code into the client software in a way that
mimics one of the existing procedures that update nuclear positions, as is
done in molecular dynamics, geometry optimisation, etc. The electronic
structure infrastructure only has to be initialised once, before the client con-
nects to the i-PI server and waits to receive a set of atomic coordinates. It
then performs an electronic structure calculation, returns the energy, forces
and stress tensor to the server, and waits for the next set of coordinates. The
converged density/wavefunction from the previous step can be re-used as the
starting point for the next, which is advantageous because in all probabil-
ity this will correspond to a very similar atomic configuration. This makes
our approach superior to a scripting approach in which the client code is
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re-launched with a new input for each atomic configuration. In order to fully
take advantage of the density/wavefunction extrapolation techniques imple-
mented in many modern electronic structure codes, i-PI will always try to
dispatch the same replica to a given instance of the client, to ensure that a
smooth sequence of configurations is provided to each client from one time
step to the next.

Figure 2: Schematic overview of the functioning of the depend class used as the base for
properties and physical quantities in i-PI. A few “primitive” quantities – such as atomic
positions or momenta – can be modified directly. For most properties, one defines a
function that can compute their value based on the values of other properties. Whenever
one property is modified, all the quantities that depend on it are marked as tainted, so
that – when the value of one of the properties is used, the function can be invoked and
the updated value can be obtained and cached. If the same quantity is requested again
and it has not been marked as tainted in the mean time, the cached value is returned.

To make the internal coding of i-PI as transparent and as close to the
physics of the problem as possible, we have introduced a dedicated Python
class to represent physical quantities – such as the atomic coordinates, the
momenta, the kinetic energy, etc. Instances of this class can be used simply
as variables containing the value of the quantity they represent. However,
they also contain information on how each quantity depends on others, and
how it can be computed from its dependencies (see Figure 2). Derived quan-
tities are computed automatically when requested, and their value is cached
for future reference. If the same quantity is needed again, the cached value
will be used, avoiding the overhead of re-computing it. If however one of
the quantities it depends on has been modified, it will be re-evaluated au-
tomatically. This mechanism of dependency detection and value caching
considerably de-clutters the code, since one does not need to keep track of
when quantities need to be recomputed.
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The input for i-PI consists in a xml file, containing a number of tags
and options that specify the details of the simulation. The list of available
options are described in detail in the manual. i-PI can dump the full state
of the simulation as checkpoint files, that can be used to seamlessly re-start
a simulation and that have the same format of an input file, so it is easy to
modify some of the options, if desired.

3. Program features

Integrating the PIMD equations of motion involves a number of techni-
calities. Fortunately, these can be kept to a minimum by using stochastic
thermostatting [18] – which avoids the complication of integrating Nosé-
Hoover chain thermostats – and by formulating the time evolution using a
symmetric Trotter splitting algorithm [19]. This is the approach we have
adopted in the i-PI program.

The program implements the most recent developments in path integral
and colored-noise molecular dynamics, including the following:

• molecular dynamics and PIMD in the NVE, NVT and NPT ensembles,
with the high-frequency internal vibrations of the path propagated in
the normal-mode representation [18];

• ring polymer contraction [20, 21], implemented by exposing multiple
socket interfaces to deal separately with short and long-range compo-
nents of the potential energy;

• efficient stochastic velocity rescaling [22] and path integral Langevin
equation thermostats [18];

• various generalized Langevin equation (GLE) thermostats, including
the optimal sampling [23, 24], quantum [14], and δ [25] thermostats,
the parameters for which can be downloaded from an on-line reposi-
tory [26];

• mixed path integral–generalized Langevin equation techniques for ac-
celerated convergence, including both PI+GLE [16] and the more recent
and effective version PIGLET [17];

• all the standard estimators for structural properties, the quantum ki-
netic energy, pressure, etc.;
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• more sophisticated estimators such as the scaled-coordinate heat capac-
ity estimator [27], estimators to obtain isotope fractionation free ener-
gies by re-weighting a simulation of the most abundant isotope [28], and
a displaced-path estimator for the particle momentum distribution [29];

• the infrastructure that is needed to perform ring polymer molecular dy-
namics (RPMD) [30, 31] and centroid molecular dynamics (CMD) [32,
33] approximate quantum dynamics calculations.

4. Constant-pressure path integral molecular dynamics

Most of the techniques listed above have been discussed in detail else-
where. However, our implementation of PIMD in the NPT ensemble has
not been described before now. The approach we have adopted for this is
a relatively straightforward combination of ideas taken from path integral
Langevin equation thermostats [18], stochastic barostats for conventional
MD [34], and previous work on constant-pressure PIMD [35]. We report
it here as this combination is robust, transparent and streamlined, and we
think it could be useful as a reference for future implementations of PIMD
and PIGLET in the NPT ensemble.

Consider a classical system composed ofN atoms, described by the Hamil-
tonian

H(p,q) =
N∑
i=1

p2
i

2mi

+ U(q1, . . . ,qN), (1)

where U is the potential energy of the system, and mi the mass of the i-th
atom. The path integral Hamiltonian for the same system reads [18]

Hn(p,q) = H0
n(p,q) +

n∑
j=1

U
(
q

(j)
1 , . . . ,q

(j)
N

)
, (2)

where q
(j)
i contains the Cartesian coordinates of the i-th atom in the j-th

replica and

H0
n(p,q) =

N∑
i=1

n∑
j=1

(
|p(j)
i |2

2mi

+
1

2
miω

2
n|q

(j)
i − q

(j−1)
i |2

)
, (3)

is the free-particle ring-polymer Hamiltonian. Here ωn = n/β~ and cyclic

boundary conditions are implied: q
(j)
i ≡ q

(j+n)
i .
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We have chosen to implement a version of the NPT ensemble in which
only the centroid coordinates q̄i = 1

n

∑
j q

(j)
i are scaled when the simulation

cell volume V is changed [35]. Following previous literature on molecular
dynamics at constant pressure [36, 37, 35, 34] we allow the cell volume to
fluctuate, assigning a fictitious ‘mass’ µ to the cell and using the log-derivative
of the cell volume V with respect to time to define the cell ‘momentum’
α = µV̇ /3V . The fictitious mass can be related to a characteristic relaxation
time scale for the cell dynamics, τα, by µ = 3Nτ 2

α/β.
Let us start by stating the equations of motion we will use; we will then

move on to describe the corresponding stationary distribution, and finally
how the equations of motion can be integrated. Although other stochastic
thermostats could be used, we will consider here the case of a white-noise
Langevin piston and of a configurational PILE-L thermostat on the ring
polymer normal modes [18]. We will write the equations of motion in the

normal mode representation, using q̃
(k)
i =

∑
j q

(j)
i Cjk (where Cjk is defined in

Ref. [18]) to indicate the k-th normal-mode component corresponding to the

quantity q for the i-th atom, and f̃
(k)
i as a short-hand to indicate the force

−∂U/∂q̃(k)
i . In this notation, equations of motion for p̃

(k)
i and q̃

(k)
i , split

according to the same scheme we will use for the Liouville operator further
down, are as follows:

˙̃p
(k)
i =

√
2nmiγk
β

ξ
(k)
i − γkp̃

(k)
i (4a)

+ f̃
(k)
i (4b)

− p̃
(k)
i δk0 α/µ (4c)

˙̃q
(k)
i =

−miω
2
kq̃

(k)
i

p̃
(k)
i /mi

}
(4d)

+ q̃
(k)
i δk0 α/µ (4e)

V̇ =3V α/µ (4f)

α̇ =

√
2nµγα
β

ξα − γαα (4g)

+ 3n

[
V (Pint − Pext) +

1

β

]
. (4h)

Here ξα is a scalar and ξ
(k)
i a vector of uncorrelated normal deviates with
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zero mean and unit variance, and we use the centroid-virial estimator for the
internal pressure in the form

Pint = − 1

n

∑
j

dU(q(j))

dV
+

1

3nV

[∑
i

|p̃(0)
i |2

mi

+
∑
ij

(
q

(j)
i − q̄i

)
· ∂U(q(j))

∂q
(j)
i

]
.

(5)
Note that the kinetic energy term in this estimator could equally well be

substituted by its mean,
〈∑

i |p̃
(0)
i |2/mi

〉
= 3Nn/β. However, we use the

instantaneous value as this is needed for the dynamics to have a well-defined
conserved quantity. Note also that we use dU(q(j))/dV to signify the total
derivative of the potential energy with respect to volume, which typically
contains a term obtained from the virial. We shall not enter into the details
of how the virial should be computed, since the evaluation of the potential
energy component of the pressure is delegated to the client program. Re-
gardless of the implementation, one should make sure that the client returns
the total derivative, including terms that depend explicitly on the volume
such as tail corrections.

It is straightforward but tedious to show that the equations of motion in
Eqs. (4a)-(4h) have the conserved quantity

Econs = Hn(p,q) + nPextV +
α2

2µ
− n

β
lnV + ∆H, (6)

where ∆H is the heat transfer balance of the thermostatting steps in Eqs. (4a)
and (4g), as explained in Refs. [38, 18].

Similarly, one can show that the probability distribution

ρ(p,q, α, V ) ∝ exp

(
−β
n

[
Hn(p,q) + nPextV +

α2

2µ

])
(7)

is stationary with respect to the Liouville operator

L =
∑
ik

L(ik)
γ + Lγα +

∑
ik

L(ik)
U + Lα

+

(∑
i

L(i0)
0 +

∑
i

L(i)
p +

∑
i

L(i)
q + LV

)
+
∑
i(k>0)

L(ik)
0

= Lγ + Lγα + LU + Lα + L0
0 + L′0,

(8)
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where the splitting of the Liouville operator is that arising from the subdi-
vision of the equations of motion (4a)-(4h):

L(ik)
γ =− γk

∂(p̃
(k)
i ·)

∂p̃
(k)
i

− nmiγk
β

∂2 ·
∂p̃

(k)2
i

(9a)

L(ik)
U =f̃

(k)
i

∂ ·
∂p̃

(k)
i

(9b)

L(i)
p =− α

µ

∂(p̃
(0)
i ·)

∂p̃
(0)
i

(9c)

L(ik)
0 =

p̃
(k)
i

mi

∂ ·
∂q̃

(k)
i

−miω
2
kq̃

(k)
i

∂ ·
∂p̃

(k)
i

(9d)

L(i)
q =

α

µ

∂(q̃
(0)
i ·)

∂q̃
(0)
i

(9e)

LV =3
α

µ

∂(V ·)
∂V

(9f)

Lγα =− γα
∂(α·)
∂α

− nµγα
β

∂2 ·
∂α2

(9g)

Lα =3n

[
V (Pint − Pext) +

1

β

]
∂ ·
∂α

. (9h)

Note that we have modified slightly the equations of motion given in [34]
by including just one 1/β in Eq. (4h) and (9h) rather than two, so that
we obtain the same NPT stationary distribution as in Ref. [35] (see Eq. (7)).
Also, the PextV term in this distribution is multiplied by the number of beads,
which is consistent with the fact that the path integral partition function is
evaluated at n times the physical temperature.

The integration scheme we have implemented in i-PI follows closely that
of Ref. [34] and is based on the following symmetric Trotter splitting of the
propagator

e−L∆t ≈e−(Lγ+Lγα )∆t/2e−(LU+Lα)∆t/2e−(L00+L′0)∆te−(LU+Lα)∆t/2e−(Lγ+Lγα )∆t/2.

(10)

Thus, the thermostat is first applied to the ring polymer and cell momenta
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for half a time step (Eqs. (4a) and (4g)):

α ← e−γα∆t/2α +

√
nµ

β
(1− e−γα∆t)ξα

p̃
(k)
i ← e−γk∆t/2p̃

(k)
i +

√
nmi

β
(1− e−γk∆t)ξ

(k)
i .

(11)

Next, the momenta are evolved under the action of the pressure term and
the inter-atomic forces for half a time step (Eqs. (4b) and (4h)):

α ←α + 3n
∆t

2

[
V (Pint − Pext) +

1

β

]
+

(
∆t

2

)2∑
i

1

mi

f̃
(0)
i · p̃

(0)
i +

(
∆t

2

)3∑
i

1

3mi

f̃
(0)
i · f̃

(0)
i

p̃
(k)
i ← p̃

(k)
i + f̃

(k)
i ∆t/2.

(12)

This brings us to the central term in Eq. (10), which comprises two indepen-
dent (and commuting) Liouvillians. One of these (Eqs. (9e), (9c), (9f) and
the k = 0 term in (9d)) evolves the centroid using an algorithm identical to
the stochastic classical barostat of Ref. [34],

p̃
(0)
i ← p̃

(0)
i e−∆t α/µ

q̃
(0)
i ← q̃

(0)
i e∆t α/µ +

sinh ∆t α/µ

α/µ

p̃
(0)
i

mi

V ←V e3∆t α/µ,

(13)

while the other (comprising the terms with k > 0 in Eq. (9d)) evolves the
internal modes using an algorithm identical to the free ring polymer NVE
integrator in Ref. [18](

p̃
(k)
i

q̃
(k)
i

)
←
(

cosωk∆t −miωk sinωk∆t
[1/miωk] sinωk∆t cosωk∆t

)(
p̃

(k)
i

q̃
(k)
i

)
, (14)

where ωk = 2ωn sin kπ/n. At this point, one continues with the second
part of the integrator, executing again the steps in Eqs. (12), and finally
applying the thermostats as in Eq. (11). Note that the modular nature
of this integration scheme means it is very easy to implement a different
thermostatting approach for the ions or the cell, simply by changing Eq. (11)
to the appropriate propagator.
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5. An example application: high pressure water

To highlight some of the more advanced features available in i-PI, we
have used it to perform an illustrative ab initio PIGLET [17] simulation of
supercritical water at 750 K and 10 GPa. This simulation is both technically
challenging and physically interesting. We shall use it to reveal the impor-
tance of NQEs under conditions similar to those explored in the pioneering
work of Ref. [39], in which calculations were performed at constant volume
and without quantum effects in the nuclear motion.

5.1. Computational details

All the present calculations used a simulation box containing 64 water
molecules, initially equilibrated at the desired state point using an empirical
forcefield [40]. Starting from this configuration, we performed 25 ps of NVT
dynamics with classical nuclei and ab initio forces. We employed a patched
version of CP2K [41] as the electronic structure client, with computational
details similar to those used in Ref. [42]. We used the BLYP exchange-
correlation functional [43, 44] and GTH pseudopotentials [45]. Wave func-
tions were expanded in the Gaussian DZVP basis set, while the electronic
density was represented using an auxiliary plane wave basis, with a kinetic
energy cutoff of 300 Ry. In our constant-pressure simulations we used a
TZV2P basis set, a cutoff of 800 Ry, and a plane wave grid consistent with
a cubic reference cell with a side of 10.5 Å (the higher cutoff was necessary
to converge the stress tensor used to define the pressure virial). We included
D3 empirical Van der Waals corrections [46, 47, 48], which are essential to
obtain a reasonable description of water at constant pressure.

After the preliminary NVT equilibration, we performed a reference 40 ps
NPT trajectory with classical nuclei, with the first 5 ps discarded for equili-
bration. The integration time step was 0.5 fs. We used a stochastic velocity
rescaling thermostat [22] for the ions, with a time constant of 20 fs, and an
optimal-sampling GLE thermostat [24] for the cell momentum – for which
we chose a fictitious mass consistent with τα = 500 fs. We then performed
40 ps of simulation with quantum ions, modelling the quantum nature of nu-
clei using a 4-bead path integral supplemented with PIGLET colored noise.
The cell momentum was thermostatted using an optimal-sampling, classical
GLE thermostat. Input files for both i-PI and CP2K are provided among
the examples attached to the source code of i-PI.
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Figure 3: Histogram of the density (upper panel) and of the instantaneous internal pressure
estimator in Eq. (5) (lower panel), comparing NPT simulations with classical and quantum
nuclei.

5.2. Results and discussion

Figure 3 reports the histograms of density and internal pressure obtained
during the simulations. The average density in the classical simulation is
1.644 ± 0.001 g/cm3, which is qualitatively consistent with the simulation
of Ref. [39], which observed an average pressure of 14.5 GPa in the NVT
ensemble at a density of 1.72 g/cm3. The density appears to be slightly
higher for simulations with quantum nuclei, 1.654 ± 0.003 g/cm3, but one
should note that the correlation time for ρ tends to be underestimated in
relatively short ab initio runs, so the quantum effect is barely significant
given that our computed error bars are likely to be optimistic. Note that the
estimator for the internal pressure is correctly peaked around the value fixed
by the definition of the ensemble.

The small role that NQEs play in determining the equilibrium density is
not surprising: even at room temperature, the isotope effect on the number
density of water is extremely small. However, one should not think that at
these high temperatures the quantum nature of light nuclei can be neglected.
It is clear from the radial distribution functions reported in Figure 4 that,
while nuclear quantum effects do not change the long-range structure, they
do have a very sizeable impact on the short-range part of g(r). There is very
little effect on the oxygen-oxygen gOO(r) (the difference is barely significant
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Figure 4: Radial distribution functions from NPT simulations of water at a temperature
of 750 K and a pressure of 10 GPa. Simulations with classical and quantum nuclei are
compared.

considering the statistical error bars), but gHH(r) and gOH(r) are noticeably
over-structured for r < 2 Å in the classical simulation. Notice in particular
how the quantum gOH(r) departs significantly from zero between the intra-
molecular and inter-molecular regions. This is a sign that the combined effect
of pressure and NQEs leads to significant delocalization of protons along the
hydrogen bonds.

To investigate this delocalisation further, we have adopted the simple
protocol used in Ref. [39] to identify charged species. Each proton in the
simulation is assigned to the closest oxygen atom. One can then distinguish
between neutral, positively and negatively charged species based on the num-
ber of protons assigned to each oxygen. We will refer to “+” species as those
oxygen atoms to which three protons have been assigned, and “−” species
as those with just one. Given the artificial nature of this procedure, we
do not intend to imply that these species correspond to water, hydronium
and hydroxide. However, they do provide a simple way to characterise how
much each frame departs from the conventional picture of a molecular fluid
composed of neutral molecules. In all of our simulations, we only detected a
single instance of a “doubly ionised” oxygen, so in the discussion that follows
we shall assume that the charged O atoms always form in pairs.
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Figure 5: These bar charts depict the probability of finding n+− charged pairs in a snap-
shot of our simulation box. The upper panel is for a classical simulation, and the lower
panel for a quantum simulation. The dots joined with lines represent the values for a
binomial distribution fitted to the computed probabilities – each snapshot contains 64
water molecules, so can accommodate a maximum of 32 ion pairs. The best-fit probabil-
ity of a pair being ionized is found to be p+− = 0.019 for the quantum simulation and
p+− = 0.0014 for the classical simulation.
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Figure 5 shows very clearly just how important NQEs are in determining
the fluctuations of protons along hydrogen bonds. Most frames in the clas-
sical simulation only contain neutral species – the concentration of + or −
is ≈ 0.07%, even smaller than that observed in Ref. [39], where the density
was higher. In the quantum simulation, the concentration is much larger,
about 0.97%, and there is a fairly large probability of having more than one
pair of ions in any given frame. Interestingly, in both cases the probability
of finding n+− ionised pairs follows closely a binomial distribution, which is
a sign that the ionisation events are weakly correlated with each other.
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Figure 6: Radial distribution functions for positively and negatively charged defects in
NPT simulations of water at 10 GPa and 750 K. Results from quantum and classical
simulations are compared, and the lower panel shows the long-range part of g+−(r) on an
enlarged scale. Given the low concentration of defects, the radial distribution functions
are very noisy, and the normalisation is problematic, so the scale of the ordinate should
be considered as arbitrary.

It is interesting to investigate the spatial distribution of these ion pairs:
in Figure 6 we show the radial distribution functions g+−(r). The distribu-
tions are very noisy, particularly in the classical case, where we have only a
handful of snapshots containing more than a single ion pair. In the quantum
simulation, we could collect better statistics, because the concentration of ion
pairs is larger. In this case, is clear that the radial distribution function is
almost flat for r > 3 Å (see lower panel of Figure 6), which is consistent with
the binomial distribution of n+− in Figure 5. Furthermore, the upper panel
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of Figure 6 clearly shows that, in the vast majority of cases, what is detected
as a pair of ions is simply an excursion of a proton along a compressed hy-
drogen bond. This is consistent with the observation of short-lived charged
species in classical simulations of water at considerably higher pressure [49].

As was shown in a recent study of water under ambient conditions [50],
nuclear quantum effects dramatically enhance the delocalisation of the proton
along the hydrogen bond. This suggests that perturbations that modulate
the average O–O distance, such as pressure, might trigger auto-ionisation
more easily than in the classical case. In fact, not all of the ion pairs in the
present simulations are close together and short-lived: if we define an isolated
ion as a positive species that has no negative counterpart within 3 Å of it,
we find a concentration of 6 × 10−3% of these isolated ions in our classical
simulations, and of 0.24% in our quantum simulations. This is not far from
the value of 0.5 % measured in shock-compressed water at 13 GPa [51, 52].
However, our definition of an isolated ion is somewhat arbitrary, and the
concentrations we quote will be strongly system-size dependent. Neverthe-
less, the ratio between these concentrations and the overall fraction of ionised
species indicates that quantum effects have an even more dramatic impact
on genuine auto-ionisation events than they do on local hydrogen bond fluc-
tuations. This is perhaps not too surprising, given the significant isotope
effect on the pH of water under ambient conditions.

The presence of a significant fraction of ionised species increases the mo-
bility of protons, which can hop from molecule to molecule in a Grotthuss-
like fashion. Even though PIMD (and particularly the heavily-thermostatted
PIGLET method) does not allow us to make quantitative statements about
how quantum effects enhance proton mobility, one can clearly see that by
the end of our quantum simulation a significant fraction of the protons has
been exchanged between water molecules (see Figure 7). On the contrary,
in the classical case all the water molecules maintain their chemical identity
thoughout our simulation. Using an approximate quantum dynamics tech-
nique such as RPMD [31] or CMD [32, 33] to study the dynamics in high
pressure water would be an interesting future application of i-PI.

6. Conclusions

In this paper we have introduced i-PI, a Python interface designed to
facilitate including nuclear quantum effects in ab initio path integral molec-
ular dynamics simulations. Our program delegates the calculation of the
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Figure 7: A snapshot from the final stage of our 40 ps quantum simulation of water at
750 K and 10 GPa. Protons that are bound to a different oxygen than the one they were
bound to in the initial configuration of the trajectory are highlighted in blue. Note that
many exchanges have occurred. In our classical simulation, no exchanges were observed.

potential, forces and virial tensor to an external code, keeping the electronic
structure calculation and the propagation of the nuclear dynamics separate.
Communication between the codes is achieved using internet sockets, which
exchange just the essential information, thereby minimising the number of
modifications that have to be made to the ab initio client. i-PI implements
the most recent developments in path integral simulation technology, includ-
ing correlated-noise methods that accelerate the convergence with respect
to the number of beads, and an implementation of NPT PIMD based on
stochastic thermostatting.

We have demonstrated the potential of i-PI with an application to the
ab initio simulation of high-pressure water. Our simulations with classical
nuclei are consistent with previous simulations [39, 49], performed at a similar
thermodynamic state point and using similar computational details for the
electronic structure. However, our results show that even at a temperature as
high as 750 K nuclear quantum effects play an important role in determining
the behaviour of water. The concentration of ionised species – as defined by a
simple geometric criterion – is increased by more than an order of magnitude
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when one treats the nuclei as quantum particles. We have characterised the
nature of these charged species, observing that in the vast majority of cases
they correspond to fluctuations of a proton along a compressed hydrogen
bond, giving rise to a transient contact pair rather than to well-separated,
solvated charges. Nevertheless, at the high ionic concentrations (more than
1 %) observed in quantum simulations, a smaller fraction of these fluctuations
leads to long-range separation of ionised species, and to effective transport
and exchange of protons across the hydrogen-bond network, which is observed
in classical simulations only at a much higher pressure [39, 49].

These results and those of many other recent studies are leading to an
increasing body of evidence that it is desirable (and in some cases even essen-
tial) to include nuclear quantum effects in molecular dynamics simulations
if one wants to obtain a realistic description of systems containing hydrogen
atoms. The inclusion of quantum effects certainly entails a computational
overhead, but recent methodological developments that combine path inte-
grals with correlated-noise, generalized Langevin dynamics have reduced this
overhead considerably. We envisage that the introduction of i-PI will make
these new techniques more readily accessible, and thereby encourage the
more routine inclusion of NQEs in ab initio molecular dynamics simulations.
The modular nature of i-PI should also ensure that further methodological
developments will be easy to incorporate, so that communities that use a
diverse variety of electronic structure programs can be kept up-to-date with
the field.
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