2,450 research outputs found

    Quantum Private Comparison: A Review

    Full text link
    As an important branch of quantum secure multiparty computation, quantum private comparison (QPC) has attracted more and more attention recently. In this paper, according to the quantum implementation mechanism that these protocols used, we divide these protocols into three categories: The quantum cryptography QPC, the superdense coding QPC, and the entanglement swapping QPC. And then, a more in-depth analysis on the research progress, design idea, and substantive characteristics of corresponding QPC categories is carried out, respectively. Finally, the applications of QPC and quantum secure multi-party computation issues are discussed and, in addition, three possible research mainstream directions are pointed out

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Multi-party quantum private comparison of size relationship with two third parties based on d-dimensional Bell states

    Full text link
    In this paper, we put forward a multi-party quantum private comparison (MQPC) protocol with two semi-honest third parties (TPs) by adopting d-dimensional Bell states, which can judge the size relationship of private integers from more than two users within one execution of protocol. Each TP is permitted to misbehave on her own but cannot collude with others. In the proposed MQPC protocol, TPs are only required to apply d-dimensional single-particle measurements rather than d-dimensional Bell state measurements. There are no quantum entanglement swapping and unitary operations required in the proposed MQPC protocol. The security analysis validates that the proposed MQPC protocol can resist both the outside attacks and the participant attacks. The proposed MQPC protocol is adaptive for the case that users want to compare the size relationship of their private integers under the control of two supervisors. Furthermore, the proposed MQPC protocol can be used in the strange user environment, because there are not any communication and pre-shared key between each pair of users.Comment: 15 pages, 1 figure, 1 tabl

    Security of distributed-phase-reference quantum key distribution

    Full text link
    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. Since many years, a full security proof of these schemes in a realistic setting has been elusive. For the first time, we solve this long standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.Comment: 4 pages + appendix, 4 figure

    The Security of Practical Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdropper's power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change
    corecore