5 research outputs found

    Efficient probabilistic planar robot motion estimation given pairs of images

    Full text link
    Estimating the relative pose between two camera positions given image point correspondences is a vital task in most view based SLAM and robot navigation approaches. In order to improve the robustness to noise and false point correspondences it is common to incorporate the constraint that the robot moves over a planar surface, as is the case for most indoor and outdoor mapping applications. We propose a novel estimation method that determines the full likelihood in the space of all possible planar relative poses. The likelihood function can be learned from existing data using standard Bayesian methods and is efficiently stored in a low dimensional look up table. Estimating the likelihood of a new pose given a set of correspondences boils down to a simple look up. As a result, the proposed method allows for very efficient creation of pose constraints for vision based SLAM applications, including a proper estimate of its uncertainty. It can handle ambiguous image data, such as acquired in long corridors, naturally. The method can be trained using either artificial or real data, and is applied on both controlled simulated data and challenging images taken in real home environments. By computing the maximum likelihood estimate we can compare our approach with state of the art estimators based on a combination of RANSAC and iterative reweighted least squares and show a significant increase in both the efficiency and accuracy

    An improved block matching algorithm for motion estimation invideo sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms

    An improved block matching algorithm for motion estimation in video sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms
    corecore