123 research outputs found

    Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform

    Get PDF
    Neural networks have enabled great advances in recent times due mainly to improved parallel computing capabilities in accordance to Moore’s Law, which allowed reducing the time needed for the parameter learning of complex, multi-layered neural architectures. However, with silicon technology reaching its physical limits, new types of computing paradigms are needed to increase the power efficiency of learning algorithms, especially for dealing with deep spatio-temporal knowledge on embedded applications. With the goal of mimicking the brain’s power efficiency, new hardware architectures such as the SpiNNaker board have been built. Furthermore, recent works have shown that networks using spiking neurons as learning units can match classical neural networks in supervised tasks. In this paper, we show that the implementation of state-of-the-art models on both the MNIST and the event-based NMNIST digit recognition datasets is possible on neuromorphic hardware. We use two approaches, by directly converting a classical neural network to its spiking version and by training a spiking network from scratch. For both cases, software simulations and implementations into a SpiNNaker 103 machine were performed. Numerical results approaching the state of the art on digit recognition are presented, and a new method to decrease the spike rate needed for the task is proposed, which allows a significant reduction of the spikes (up to 34 times for a fully connected architecture) while preserving the accuracy of the system. With this method, we provide new insights on the capabilities offered by networks of spiking neurons to efficiently encode spatio-temporal information.Consejo Nacional de Ciencia Y Tecnología (México) FC2016-1961European Union's Horizon 2020 No 824164 HERMESMinisterio de Ciencia, Innovación y Universidades TEC2015-63884-C2-1-

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Improving classification accuracy of feedforward neural networks for spiking neuromorphic chips

    Full text link
    Deep Neural Networks (DNN) achieve human level performance in many image analytics tasks but DNNs are mostly deployed to GPU platforms that consume a considerable amount of power. New hardware platforms using lower precision arithmetic achieve drastic reductions in power consumption. More recently, brain-inspired spiking neuromorphic chips have achieved even lower power consumption, on the order of milliwatts, while still offering real-time processing. However, for deploying DNNs to energy efficient neuromorphic chips the incompatibility between continuous neurons and synaptic weights of traditional DNNs, discrete spiking neurons and synapses of neuromorphic chips need to be overcome. Previous work has achieved this by training a network to learn continuous probabilities, before it is deployed to a neuromorphic architecture, such as IBM TrueNorth Neurosynaptic System, by random sampling these probabilities. The main contribution of this paper is a new learning algorithm that learns a TrueNorth configuration ready for deployment. We achieve this by training directly a binary hardware crossbar that accommodates the TrueNorth axon configuration constrains and we propose a different neuron model. Results of our approach trained on electroencephalogram (EEG) data show a significant improvement with previous work (76% vs 86% accuracy) while maintaining state of the art performance on the MNIST handwritten data set.Comment: IJCAI-2017. arXiv admin note: text overlap with arXiv:1605.0774

    Performance Evaluation of Neural Networks for Animal Behaviors Classification: Horse Gaits Case Study

    Get PDF
    The study and monitoring of wildlife has always been a subject of great interest. Studying the behavior of wildlife animals is a very complex task due to the difficulties to track them and classify their behaviors through the collected sensory information. Novel technology allows designing low cost systems that facilitate these tasks. There are currently some commercial solutions to this problem; however, it is not possible to obtain a highly accurate classification due to the lack of gathered information. In this work, we propose an animal behavior recognition, classification and monitoring system based on a smart collar device provided with inertial sensors and a feed-forward neural network or Multi-Layer Perceptron (MLP) to classify the possible animal behavior based on the collected sensory information. Experimental results over horse gaits case study show that the recognition system achieves an accuracy of up to 95.6%.Junta de Andalucía P12-TIC-130

    Parallel simulation of neural networks on SpiNNaker universal neuromorphic hardware

    Get PDF
    Artificial neural networks have shown great potential and have attracted much research interest. One problem faced when simulating such networks is speed. As the number of neurons increases, the time to simulate and train a network increases dramatically. This makes it difficult to simulate and train a large-scale network system without the support of a high-performance computer system. The solution we present is a "real" parallel system - using a parallel machine to simulate neural networks which are intrinsically parallel applications. SpiNNaker is a scalable massively-parallel computing system under development with the aim of building a general-purpose platform for the parallel simulation of large-scale neural systems. This research investigates how to model large-scale neural networks efficiently on such a parallel machine. While providing increased overall computational power, a parallel architecture introduces a new problem - the increased communication reduces the speedup gains. Modeling schemes, which take into account communication, processing, and storage requirements, are investigated to solve this problem. Since modeling schemes are application-dependent, two different types of neural network are examined - spiking neural networks with spike-time dependent plasticity, and the parallel distributed processing model with the backpropagation learning rule. Different modeling schemes are developed and evaluated for the two types of neural network. The research shows the feasibility of the approach as well as the performance of SpiNNaker as a general-purpose platform for the simulation of neural networks. The linear scalability shown in this architecture provides a path to the further development of parallel solutions for the simulation of extremely large-scale neural networks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore