5 research outputs found

    Efficient neural decoding of self-location with a deep recurrent network

    Get PDF
    Place cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal's location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal. In this work we use a novel recurrent neural network (RNN) decoder to infer the location of freely moving rats from single unit hippocampal recordings. RNNs are biologically plausible models of neural circuits that learn to incorporate relevant temporal context without the need to make complicated assumptions about the use of prior information to predict the current state. When decoding animal position from spike counts in 1D and 2D-environments, we show that the RNN consistently outperforms a standard Bayesian approach with either flat priors or with memory. In addition, we also conducted a set of sensitivity analysis on the RNN decoder to determine which neurons and sections of firing fields were the most influential. We found that the application of RNNs to neural data allowed flexible integration of temporal context, yielding improved accuracy relative to the more commonly used Bayesian approaches and opens new avenues for exploration of the neural code

    Decoding of human identity by computer vision and neuronal vision

    Get PDF
    Extracting meaning from a dynamic and variable flow of incoming information is a major goal of both natural and artificial intelligence. Computer vision (CV) guided by deep learning (DL) has made significant strides in recognizing a specific identity despite highly variable attributes. This is the same challenge faced by the nervous system and partially addressed by the concept cells—neurons exhibiting selective firing in response to specific persons/places, described in the human medial temporal lobe (MTL) ⁠. Yet, access to neurons representing a particular concept is limited due to these neurons’ sparse coding. It is conceivable, however, that the information required for such decoding is present in relatively small neuronal populations. To evaluate how well neuronal populations encode identity information in natural settings, we recorded neuronal activity from multiple brain regions of nine neurosurgical epilepsy patients implanted with depth electrodes, while the subjects watched an episode of the TV series “24”. First, we devised a minimally supervised CV algorithm (with comparable performance against manually-labeled data) to detect the most prevalent characters (above 1% overall appearance) in each frame. Next, we implemented DL models that used the time-varying population neural data as inputs and decoded the visual presence of the four main characters throughout the episode. This methodology allowed us to compare “computer vision” with “neuronal vision”—footprints associated with each character present in the activity of a subset of neurons—and identify the brain regions that contributed to this decoding process. We then tested the DL models during a recognition memory task following movie viewing where subjects were asked to recognize clip segments from the presented episode. DL model activations were not only modulated by the presence of the corresponding characters but also by participants’ subjective memory of whether they had seen the clip segment, and by the associative strengths of the characters in the narrative plot. The described approach can offer novel ways to probe the representation of concepts in time-evolving dynamic behavioral tasks. Further, the results suggest that the information required to robustly decode concepts is present in the population activity of only tens of neurons even in brain regions beyond MTL

    Integrating statistical and machine learning approaches to identify receptive field structure in neural populations

    Full text link
    Neural coding is essential for understanding how the activity of individual neurons or ensembles of neurons relates to cognitive processing of the world. Neurons can code for multiple variables simultaneously and neuroscientists are interested in classifying neurons based on the variables they represent. Building a model identification paradigm to identify neurons in terms of their coding properties is essential to understanding how the brain processes information. Statistical paradigms are capable of methodologically determining the factors influencing neural observations and assessing the quality of the resulting models to characterize and classify individual neurons. However, as neural recording technologies develop to produce data from massive populations, classical statistical methods often lack the computational efficiency required to handle such data. Machine learning (ML) approaches are known for enabling efficient large scale data analysis; however, they require huge training data sets, and model assessment and interpretation are more challenging than for classical statistical methods. To address these challenges, we develop an integrated framework, combining statistical modeling and machine learning approaches to identify the coding properties of neurons from large populations. In order to evaluate our approaches, we apply them to data from a population of neurons in rat hippocampus and prefrontal cortex (PFC), to characterize how spatial learning and memory processes are represented in these areas. The data consist of local field potentials (LFP) and spiking data simultaneously recorded from the CA1 region of hippocampus and the PFC of a male Long Evans rat performing a spatial alternation task on a W-shaped track. We have examined this data in three separate but related projects. In one project, we build an improved class of statistical models for neural activity by expanding a common set of basis functions to increase the statistical power of the resulting models. In the second project, we identify the individual neurons in hippocampus and PFC and classify them based on their coding properties by using statistical model identification methods. We found that a substantial proportion of hippocampus and PFC cells are spatially selective, with position and velocity coding, and rhythmic firing properties. These methods identified clear differences between hippocampal and prefrontal populations, and allowed us to classify the coding properties of the full population of neurons in these two regions. For the third project, we develop a supervised machine learning classifier based on convolutional neural networks (CNNs), which use classification results from statistical models and additional simulated data as ground truth signals for training. This integration of statistical and ML approaches allows for statistically principled and computationally efficient classification of the coding properties of general neural populations

    Neural correlates of navigation in large-scale space

    Get PDF
    Navigation and self-localisation are fundamental to spatial cognition. The cognitive map supporting these abilities is implemented in the hippocampal formation. Place cells in the hippocampus fire when the animal is at a specific location – a place field. They are thought to be involved in navigation and self-localisation but usually studied in constrained environments, limiting observable states. In this thesis, I present two experiments studying place cells in large open field environments, a novel auditory cue-triggered navigational task, and a technical solution for conducting large scale automated experiments. Place cells are frequently reactivated during immobility, rapidly replaying trajectories through environments. These replay events are thought to be involved in navigational planning. Using a novel automated cue-triggered navigational task in a large open field environment, I show that replay is not associated with navigation to the goal. Instead, it occurs reliably at the end of successful trials, when an associated reward is received, but not during consumption of scattered pellets. The trajectories in these events are predictive of the animal’s movement after, but not before, the reward. The number of place fields per cell, their size and other properties have not been fully characterised. Using multiple large open field environments of different size, I show that place field size, shape and density changes systematically with distance from walls. However, through a homeostatic mechanism, the mean firing rate and proportion of co-active units in the population remains constant throughout environments, as does the accuracy of their spatial representation. Multiple place field properties are conserved by cells across environments, including the number of fields, which is quantified relative to environment size using a gamma-Poisson model. Place cell population models suggest two sub-populations, with uniform and boundary dependent field distributions. These results provide a comprehensive account of place cell population statistics in different size environments

    Efficient neural decoding of self-location with a deep recurrent network.

    No full text
    Place cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal's location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal. In this work we use a novel recurrent neural network (RNN) decoder to infer the location of freely moving rats from single unit hippocampal recordings. RNNs are biologically plausible models of neural circuits that learn to incorporate relevant temporal context without the need to make complicated assumptions about the use of prior information to predict the current state. When decoding animal position from spike counts in 1D and 2D-environments, we show that the RNN consistently outperforms a standard Bayesian approach with either flat priors or with memory. In addition, we also conducted a set of sensitivity analysis on the RNN decoder to determine which neurons and sections of firing fields were the most influential. We found that the application of RNNs to neural data allowed flexible integration of temporal context, yielding improved accuracy relative to the more commonly used Bayesian approaches and opens new avenues for exploration of the neural code
    corecore