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Abstract 

Navigation and self-localisation are fundamental to spatial cognition. The cognitive map 

supporting these abilities is implemented in the hippocampal formation. Place cells in the 

hippocampus fire when the animal is at a specific location – a place field. They are thought 

to be involved in navigation and self-localisation but usually studied in constrained 

environments, limiting observable states. In this thesis, I present two experiments studying 

place cells in large open field environments, a novel auditory cue-triggered navigational task, 

and a technical solution for conducting large scale automated experiments. 

Place cells are frequently reactivated during immobility, rapidly replaying trajectories through 

environments. These replay events are thought to be involved in navigational planning. 

Using a novel automated cue-triggered navigational task in a large open field environment, 

I show that replay is not associated with navigation to the goal. Instead, it occurs reliably at 

the end of successful trials, when an associated reward is received, but not during 

consumption of scattered pellets. The trajectories in these events are predictive of the 

animal’s movement after, but not before, the reward. 

The number of place fields per cell, their size and other properties have not been fully 

characterised. Using multiple large open field environments of different size, I show that 

place field size, shape and density changes systematically with distance from walls. 

However, through a homeostatic mechanism, the mean firing rate and proportion of co-

active units in the population remains constant throughout environments, as does the 

accuracy of their spatial representation. Multiple place field properties are conserved by cells 

across environments, including the number of fields, which is quantified relative to 

environment size using a gamma-Poisson model. Place cell population models suggest two 

sub-populations, with uniform and boundary dependent field distributions. These results 

provide a comprehensive account of place cell population statistics in different size 

environments. 
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Impact Statement 

We are constantly aware of our location and spend much of our time navigating to where 

we need to be. It can often feel effortless, especially in familiar places. Yet, there are times 

when figuring out where you are or how to get somewhere can be challenging, for example, 

when visiting a new city. If we knew how our brains manage this feat of spatial cognition, we 

might be able to improve our ability to navigate dramatically. Just like understanding how 

muscles work and the science of nutrition helps top athletes to keep improving. Based on 

how the brain has solved spatial awareness and navigation, it could also be possible to 

create machines with more autonomous capabilities in unchartered territories. 

The first evidence of how the brain represents space was uncovered half a century ago. 

Since then, several different types of brain cells relating to spatial cognition have been 

discovered in the brain region called the hippocampus and its surrounding areas. The first 

of these, called place cells, show a strong relationship between their activity and places in 

a way that implies spatial memory. For example, a place cell in your hippocampus is active 

when you are by the refrigerator, then goes quiet as you walk away, but becomes active 

again when you return. Over the five decades since their discovery, research has revealed 

many factors that influence the activity of these cells. For instance, the place cell may only 

be active when there is food in the refrigerator and inactive when it is empty. However, very 

little is known about how exactly the processes in the brain make these cells active, why is 

any given cell active in a particular location and not another, or how do they give rise to our 

ability to localise ourselves and navigate. This thesis presents the results from experiments 

aimed to improve our understanding of such fundamental properties of place cells. 

Specifically, the experiments investigate the activity of place cells in rats while they are either 

engaged in a navigation task or foraging in a large open space. Crucially, the environment 

used here is considerably larger than those in traditional experiments. This approach 

revealed new statistical properties of large numbers of place cells, providing insight into how 

the high activity locations of these cells – place fields – are distributed in environments. For 

example, place fields are smaller but more numerous near walls, while to total activity across 

all place cells remains constant across all locations in any environment. 

Additionally, a technical solution for conducting large scale experiments with automated 

behavioural tasks is presented. This package makes it possible for more researchers to 

study brain activity in more naturalistic spaces and conditions. The findings in this thesis 

highlight the value in studying spatial cognition in naturalistic conditions.  
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1 Introduction 

1.1 Perspective on the study of spatial representations in the brain 

1.1.1 Spatial cognition 

All life exists in the three-dimensional physical space. Acquisition, organization, and 

utilization of information about this space is advantageous for survival. These capabilities – 

collectively considered as spatial cognition – can be observed across vertebrate species, 

including sharks, birds, rodents and humans. Through the study of spatial cognition, we can 

build a better understanding of cognition in general. 

Navigation – planning an efficient route and moving through space – is a hallmark of spatial 

cognition. Planning a route is only possible with sufficient spatial information, acquired 

through an exploration of the environment. During exploration, the key features of the 

environment are memorized. Because an animal does this from an egocentric perspective 

– mapping positions in reference to self – it must continuously localise itself relative to its 

surrounding. This process called self-localisation is essential for navigation (Mittelstaedt and 

Mittelstaedt, 1980), even just because knowledge of one’s location is necessary to define 

the beginning of the route. It is not possible to plan a trajectory between points in space if 

their location is unknown. Location can be inferred by matching incoming sensory 

information with remembered environmental features. Self-motion signals, such as 

acceleration, can be integrated to facilitate self-localisation further. 

The way humans communicate spatial information can give insight into how it may be 

structured in memory. For example, it can be a sequence of distances and turns or a map 

of the environment. The former can be useful as directions for moving between two 

locations, while the latter allows for flexible planning of routes between any locations within 

the environment. A map-like structure of spatial memory has a more general application in 

spatial cognition. 

Any given spatial environment can be considered at different levels of detail – as a single 

large environment or a set of smaller linked environments. That distinction is similar to 

having a map of a whole country compared to having detailed maps of all the major cities in 

the country coupled with a low-resolution highway map. It could be more efficient to store 

sparse spatial information of vast open spaces and higher resolution maps of areas near 

landmarks. Different types of maps are optimal for different purposes. 
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This thesis focuses on the structure of spatial memories and how they are used for self-

localisation and navigation. As it appears, animals organise their spatial memories of large 

open spaces differently to small ones. A different strategy of organizing spatial information 

allows them to localise themselves effectively in more challenging environments. These and 

other findings reported in this thesis improve our understanding of the mechanisms 

supporting spatial cognition. 

1.1.2 Discovery of spatial representations in the brain 

The study of spatial cognition in philosophical form dates back to at least ancient Greece 

and Aristotle (Jammer, 1954). Since then, philosophical discussions have persisted on the 

existence of space and its nature in the mind. O’Keefe and Nadel (1978) provide an excellent 

discussion of the philosophical arguments on space by Newton, Leibniz, Berkeley, Kant and 

many later authors leading up to the middle of the 20th century. They conclude that the mind 

must incorporate a unitary spatial framework that is essential for spatial cognition observed 

in animals. 

Before the 1970s, some of the most convincing arguments for a unitary spatial framework 

were based on the rodent behaviour studies conducted by Edward C. Tolman and his 

colleagues. In one of his famous studies, rats demonstrated a preference to use the most 

optimally oriented new path to a goal after the obstruction of a well-learned convoluted path 

(Figure 1.1) (Tolman et al., 1946). This finding and many other studies where rodents 

presented abilities inexplicable by stimulus-response models of animal psychology led 

Tolman to conclude that such behaviour depends on a cognitive map (Tolman, 1948). Based 

on the description by O’Keefe and Nadel (1978), the cognitive map is an information 

structure from which spatial information is extracted for the conception of unified space, 

retrieval of information on places and construction of routes. 
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Figure 1.1 Rats taking shortcuts. A | The maze in training configuration. Rats learned to run to 
the goal location for a reward after being positioned at the start location. B | The maze in the test 
configuration. The original path is obstructed and multiple alternative paths are provided, radiating 
at different angles from the central portion of the maze. C | On first exposure to the maze in the 
test configuration, a disproportionate amount of rats chose to run down the path that was the best 
match to a direct path from the central portion of the maze to the goal location. Figure adapted 
from (Tolman et al., 1946). 

It is essential to distinguish the cognitive map from systems based purely on egocentric 

spatial representations (O’Keefe and Nadel, 1978). There is no evidence of animals being 

unable to perform actions dependent solely on egocentric spatial information, such as 

reaching (Kandel et al., 2013), because of an impaired cognitive map. The cognitive map 

provides an allocentric representation of the world – mapping of locations relative to each 

other, instead of the observer’s viewpoint. Some tasks can be solved using both allocentric 

(cognitive map-based) as well as egocentric (mapping relative to self) spatial information, 

and the method employed by an animal can be unpredictable (Nadel and Hardt, 2004). This 

thesis focuses on allocentric spatial information structures. 

In Tolman’s time, it was already broadly accepted that the brain contains physiological 

processes essential for complex behaviour and, therefore, he postulated that the brain 

should also contain the physiological processes that create the cognitive map (Tolman, 

1948). However, there was no evidence of such neural activity. This situation changed in 

the late 1960s, as John O’Keefe recorded neural activity in the brain area called the 

hippocampus and was intrigued by movement-related spiking activity because the area was 

known primarily for its role in memory (O’Keefe, 2014). Such consensus was based on the 

case of an epilepsy patient, Henry Molaison, who experienced severe episodic memory 

impairment after surgical resection of the hippocampus and surrounding areas performed to 

control his seizures (Scoville and Milner, 1957). Determined to uncover how that movement-

related spiking of hippocampal cells is involved with memory, John O’Keefe continued to 

study these cells in the hippocampus for months, soon concluding that some of these cells 
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represent the animal’s location (O’Keefe, 2014). The pyramidal cells in the hippocampal 

areas CA1 and CA3 whose spiking activity represents the animal’s location – place cells – 

were the first evidence of neural processes related to the cognitive map (O’Keefe and 

Dostrovsky, 1971). 

Functional evidence for the role of the hippocampus in spatial learning was soon 

demonstrated by a selective deficit in spatial learning in rats with lesioned hippocampal 

pathways (O’Keefe et al., 1975). Similar lesions also caused impairment in a multiple-arm 

maze task requiring spatial working memory to avoid visited arms (Olton and Paras, 1979). 

The reference memory part of this task – avoidance of arms which were never rewarded – 

was not impaired if the lesion was performed after having learned the rule (Olton and Paras, 

1979). However, the ability to learn the task was impaired if the hippocampus was lesioned 

beforehand (Jarrard, 1978). Using the Morris water maze task (Morris, 1981), Richard Morris 

showed that spatial learning is impaired by bilateral hippocampal lesions (Morris et al., 

1982), as well as bilateral lesions of most other regions of the hippocampal formation 

(Morris, 2007). Therefore, place cell activity is unlikely to be a simple correlate of spatial 

location, but rather, it is an essential element in the functioning of the cognitive map. 

1.2 Anatomy of the hippocampal formation 

1.2.1 Nomenclature and overview 

The hippocampal formation comprises several interconnected regions of the brain, located 

in the medial temporal lobe in humans (Amaral and Lavenex, 2007). These regions being: 

entorhinal cortex (EC), parasubiculum, presubiculum, subiculum, dentate gyrus, CA3, CA2 

and CA1. The term hippocampus is used in this thesis to refer to the hippocampus proper, 

that comprises just three of these interconnected regions: CA3, CA2 and CA1 (Amaral and 

Lavenex, 2007). The nomenclature has developed over time. However, this thesis remains 

consistent with Amaral and Lavenex (2007). 

The anatomy of the hippocampal formation is well conserved across mammalian species. 

In humans, it is in the medial part of the temporal lobe, while in rodents, the structure is 

located more posterior-dorsally and extends through much of the dorso-ventral extent of the 

brain (Figure 1.2A). The organisation of the hippocampus in these species is similar, with 

the dentate gyrus partly surrounding the CA3 region, which lies adjacent to CA2 and the 

latter next to CA1 (Figure 1.2B). There are also functional similarities of the hippocampal 

formation in rodents and humans; for example, hippocampal involvement in spatial tasks 

(Maguire et al., 1998) and evidence of place cells in humans (Ekstrom et al., 2003). Because 
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of these similarities and past success in the development of human memory models using 

rodents (Clark and Squire, 2013), this thesis relies on evidence from rodent studies, unless 

otherwise stated. 

 

Figure 1.2 Overall structure of hippocampal formation across species. A | Schematic 
illustrations of the position and orientation of hippocampus and entorhinal cortex (EC) in humans 
(left) and rodent (right). B | Drawings of Nissl-stained cross-sections of human (left) and rodent 
(right) hippocampus. CA3, CA2, CA1, fields of the hippocampus; DG, dentate gyrus. Scale bars 
are 1 mm. Figure adapted from (Strange et al., 2014). 

 

1.2.2 Connectivity of regions in the hippocampal formation 

The hippocampal formation is a highly interconnected structure, traditionally viewed as 

having a series of unidirectional connections, called the “trisynaptic circuit” (Amaral and 

Lavenex, 2007). However, closer inspection has revealed much more elaborate connectivity 

patterns (Amaral and Lavenex, 2007). The anatomical evidence of extensive connectivity in 

the hippocampal formation and dependence of CA1 place cell properties on the functionality 
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of other regions (Brun et al., 2008a; Schlesiger et al., 2015) highlights the importance of the 

complete hippocampal formation in the study of spatial cognition. Therefore, despite the 

data presented in this thesis being focused on place cells, other regions of the hippocampal 

formation are introduced as well. 

The transverse section of the hippocampus in the rat remains broadly similar along the 

longitudinal axis – the axis spanning from septal nuclei around the thalamus in a C-shaped 

curve (Amaral and Lavenex, 2007). Although, as can be seen from Figure 1.2A, not all 

structures extend the whole length of the longitudinal axis. The connectivity within the 

hippocampal formation is most extensive along the transverse axis (orthogonal to the 

longitudinal axis) and localised as a gradient along the longitudinal axis (Amaral and 

Lavenex, 2007). Connectivity between regions of the hippocampal formation is mediated by 

excitatory connections (Amaral and Lavenex, 2007). The axons connecting regions of the 

hippocampal formation, as well as extrinsic connections, are organised in large regions of 

white matter enveloping the hippocampus, including the fimbria and alveus (Amaral and 

Lavenex, 2007). Both of these lie on the basal side of the hippocampus. The basal side is 

dorsolateral to the hippocampus in the septal region and on the ventrolateral side at the 

other end of the C-shaped brain area. Generally, all intrahippocampal formation pathways 

are both ipsilateral and contralateral, giving rise to a large number of commissural 

projections (Amaral and Lavenex, 2007). 

The entorhinal cortex receives input from a greater proportion of the neocortex than any 

other region of the hippocampal formation, and through many forward projections, it is also 

the main path of cortical inputs to the hippocampus proper (Amaral and Lavenex, 2007). EC 

projects to the dentate gyrus and CA3 via the perforant path (Figure 1.3). The dentate gyrus, 

in turn, projects to CA3 via the mossy fibres, forming an indirect route of cortical information 

to the hippocampus. EC also projects to CA1 directly via the perforant path, but in the septal 

portions of the hippocampus – usually, the focus in studies on place cells – EC projections 

to the CA1 arrive predominantly via alveus (Deller et al., 1996). The only other cortical input 

to the hippocampus is from the perirhinal cortex, which has reciprocal connectivity with distal 

CA1 – the part next to subiculum (Amaral and Lavenex, 2007). Hippocampus receives 

projections from numerous sub-cortical regions, such as the amygdaloid complex, the 

septum, hypothalamic projections to CA2, nucleus reuniens projections to CA1 and 

monoaminergic input from the brain stem (Amaral and Lavenex, 2007). 
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Figure 1.3 Predominant excitatory 
connections between regions of 
the hippocampal formation. The 
entorhinal cortex (EC) projects to all 
regions (dentate gyrus, CA3, CA1, 
subiculum) and receives input from 
CA1 and subiculum (Sub). Many of 
the minor projections, including 
those with presubiculum (Pre) and 
parasubiculum (Para) have been 
omitted for clarity. Figure adapted 
from (Amaral and Lavenex, 2007). 

Projections of neurons in the hippocampus mostly target other regions within the 

hippocampal formation (Figure 1.3) (Amaral and Lavenex, 2007). CA3 neurons have 

excitatory projections to other CA3 neurons as well as projections to CA2 and CA1 via 

Schaffer collaterals. While 70% of CA3 collaterals target CA1, and 27.6% form recurrent 

corrections within CA3, fewer than 3% also project back to the dentate gyrus (Wittner et al., 

2007). CA2 also projects to CA1 (Amaral and Lavenex, 2007). The associational network of 

CA3 does not exist in CA1, instead CA1 projects to the subiculum and EC (Amaral and 

Lavenex, 2007). Together with subicular projections to EC (Amaral and Lavenex, 2007), this 

completes the largely unidirectional pathway through the hippocampus. Although recent 

evidence suggests that there may be some projections from subiculum to CA1 (Sun et al., 

2014, 2018), this remains the only other example of reciprocal connectivity (in addition to 

minor CA3 projections to the dentate gyrus) along the otherwise unidirectional hippocampal 

pathway. 

All subregions of the hippocampus have some connectivity with subcortical areas. Both CA3 

and CA1 received input from the amygdaloid complex, but only temporal CA1 projects back 

to it (Cappaert et al., 2015). Dentate gyrus and CA2 have been found to receive inputs from 

the supramammillary area (Segal and Landis, 1974; Haglund et al., 1984). Noradrenergic 

cells from the Locus Coeruleus project to dentate gyrus and CA3, as does the subcoeruleus 

nucleus, which also projects to CA1 (Cappaert et al., 2015). Raphe nucleus serotonergic 

projections also target dentate gyrus, CA3 and CA1. The dentate gyrus is the only 

hippocampal subfield known to receive input from the ventral tegmental area (Cappaert et 

al., 2015). Subcortical projections from CA1 are much more extensive than the other 

hippocampal subfields, although still fewer than those arising from the subiculum (Cappaert 

et al., 2015). Projections arising from the septal CA1 reach the nucleus of the diagonal band 
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of Broca and the nucleus accumbens (Cappaert et al., 2015), while septal regions project to 

the anterior olfactory nucleus, hypothalamus, thalamus, lateral and medial preoptic areas 

and more medial parts of the nucleus accumbens (Cappaert et al., 2015). 

The medial septum is a particularly interesting subcortical area connected with the 

hippocampus because of its role in regulating rhythmic activity in the hippocampus (detailed 

in section 1.4 below). Projections from the medial septum reach the hippocampal formation 

via several pathways, including the fimbria – a C-shaped nerve bundle reaching from the 

hippocampus to the Mammillary body (Cappaert et al., 2015). The medial septum 

projections have been shown to target the dentate gyrus (Swanson, 1977), CA3 (Yoshida 

and Oka, 1995), and to a lesser extent, CA1 (Nyakas et al., 1987). These projections are 

both cholinergic and GABAergic (Cappaert et al., 2015). CA3 and CA1 also project back to 

the medial septum (Cappaert et al., 2015). The projections from CA1 have also been shown 

to be GABAergic (Jinno et al., 2007). The rhythmic activity of the GABAergic and cholinergic 

neurons in the medial septum that is thought to be important in the generation of oscillatory 

activity throughout the hippocampal formation (O’Keefe, 2007). 

The most notable cortical projections from the hippocampus are the CA1 projection to the 

retrosplenial cortex (Cappaert et al., 2015), the ventral CA1 projections to the medial 

prefrontal cortex (Thierry et al., 2000), infralimbic cortex (Cappaert et al., 2015) and the 

amygdaloid cortex (Amaral and Lavenex, 2007). Majority of the neocortical projections from 

the hippocampal formation arise from EC and subiculum, which are also reciprocally 

connected (Amaral and Lavenex, 2007). Subicular projections account for the majority of 

the axons in the Fornix (Swanson and Cowan, 1975). Majority of the EC extrahippocampal 

projections are to higher-order associational areas, rather than unimodal or sensory-motor 

regions (Amaral and Lavenex, 2007). Together, subiculum and EC project to most brain 

areas that have projections to the hippocampal formation (Amaral and Lavenex, 2007). 

Within each region of the hippocampal formation, there is further segregation along the 

transverse axis, which has implications for hippocampal processing (Gigg, 2006). Along the 

transverse axis, each region from the dentate gyrus, through CA3, CA2 and CA1 to 

subiculum can be considered to have proximal and distal portions, which are closer to the 

dentate gyrus or further from it, respectively. EC is also subdivided to medial and lateral 

entorhinal cortex (MEC and LEC, respectively). The connectivity between these subdivisions 

is segregated through much of the hippocampal formation. The proximal CA3 projections 

within CA3 are limited to the proximal CA3, while medial and distal CA3 intrinsic connections 

remain similarly localised (Li et al., 1994). The Schaffer collaterals of proximal CA3 project 
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to distal CA1, while distal CA3 projects to proximal CA1 and similar proximo-distal 

connectivity pattern continues between CA1 and subiculum (Gigg, 2006). In short, through 

CA3, CA1 and subiculum, the proximal and distal portions are segregated in an alternating 

fashion. 

Furthermore, both MEC and LEC project throughout the entire extent of the dentate gyrus 

and CA3 in the transverse axis; however, the connectivity becomes more segregated from 

CA3 onwards. MEC is reciprocally connected to proximal CA1 and distal subiculum, while 

LEC connections are with distal CA1 and proximal subiculum (Gigg, 2006). Together with 

distinctive extrahippocampal targets (Gigg, 2006; Amaral and Lavenex, 2007), there is a 

clear segregation of anatomical pathways along the proximo-distal axis of the hippocampus 

and subiculum, together with MEC and LEC. These segregated pathways only converge in 

the dentate gyrus and CA3. It must be noted that the segregation is not absolute between 

each proximo-distal segment, but rather, there is a strong gradient in connectivity 

(Tamamaki and Nojyo, 1995). 

In summary, the hippocampal formation can be considered to be a system with EC as the 

primary input region, a series of unidirectionally connected regions through the dentate 

gyrus, CA3, CA2, CA1 pathway forming a loop back to EC and the subiculum, that are 

reciprocally connected and project back out to the rest of the brain. This summary is a 

simplification omitting much detail that the reader can find in The Hippocampus Book 

(Amaral and Lavenex, 2007); however, it should provide sufficient perspective for the 

interpretation of the findings in this thesis. 

1.2.3 Cytoarchitecture in the hippocampal formation 

Having outlined the regions in the hippocampal formation and their connectivity, it is also 

essential to consider the organisation within each region. Projections between regions of the 

hippocampal formation often arise or terminate in specific cell layers or positions on dendritic 

trees. The hippocampal formation contains a diverse set of interneurons that have well-

known roles in orchestrating the firing patterns of the more thoroughly studied principal 

neurons (Freund and Buzsáki, 1998). However, this thesis is focused only on the activity of 

pyramidal neurons. Therefore, the anatomical description of the cytoarchitecture of these 

regions is centred on the principal neurons giving rise to outward projections of each region. 

The entorhinal cortex is commonly described as a 6-layer structure, while only layers II, III, 

V and VI contain densely packed cell bodies of variable cell types, including pyramidal cells 

(Amaral and Lavenex, 2007; Canto et al., 2008). The superficial EC layers (I, II and III) and 
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deep EC layers (IV, V and VI) have distinctive connectivity with the hippocampal formation 

and the rest of the brain (Amaral and Lavenex, 2007). Projections from CA1 and subiculum 

arrive at the deep layers of EC. The projections from EC to the dentate gyrus and CA3 arise 

from layer II, and projections to CA1 and subiculum arise from layer III of EC. Although there 

are minor projections from deep layers of EC to the dentate gyrus (Steward and Scoville, 

1976), the main loop of projections through the hippocampal formation also includes 

projections from deep to superficial layers of the EC (Witter et al., 2017). 

The cytoarchitecture in CA3, CA2, CA1 and subiculum is described with respect to different 

layers between the deeper (basal) and superficial (apical) surfaces of the folded 

hippocampus. The basal surface is the one where the fimbria and alveus are located, 

adjacent to the ventricle, where cells migrate away from during development (Frotscher and 

Seress, 2007). These regions are similar in that the most prominent cell bodies lie in a single 

layer that extends throughout the region along the septotemporal and proximodistal axes. 

The subiculum is an exception where these cell bodies are diffusely distributed in a much 

thicker layer (Figure 1.4) (Amaral and Lavenex, 2007). The cell bodies prominent in 

histological sections (Figure 1.4A) belong to pyramidal neurons in all other regions, except 

the dentate gyrus, where they are granule cells. 

 

Figure 1.4 Cytoarchitecture of the hippocampus. A | Drawing of the hippocampal neurons of a 
kitten by Golgi. Adapted from (Bentivoglio and Swanson, 2001). B | Diagram illustrating the position 
of cell bodies in the strata of the dentate gyrus (DG), CA3, CA2, CA1 and the subiculum (SUB) of 
the rat dorsal hippocampus. pyr, stratum pyramidale; or, stratum oriens; sl, stratum lucidum; rad, 
stratum radiatum; slm, stratum lacunosum-moleculare; dmol, deep molecular layer; smol, 
superficial molecular layer; gcl, granule cell layer of DG; ml, molecular layer of DG. Reproduced 
from ST’s Master thesis. 

The projections from EC to the dentate gyrus terminate in the molecular layer, closest to the 

basal surface (Amaral and Lavenex, 2007). While granule cell dendrites extend to the 

molecular layer, their cell bodies lie in the granule cell layer (Amaral and Lavenex, 2007). 
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The unmyelinated axons of the granule cells combine as the mossy fibres projecting to CA3. 

Each granule cell innervates multiple CA3 pyramidal cells across the whole proximo-distal 

extent of CA3 (Amaral and Lavenex, 2007). These connections are localised to stratum 

oriens and stratum lucidum, while only to the latter in the more distal parts of CA3 (Amaral 

and Lavenex, 2007). Mossy fibres and the stratum lucidum, located apical to the pyramidal 

layer, are limited to CA3 and do not extend to CA2 or CA1 (Amaral and Lavenex, 2007). 

The layer between the pyramidal cell bodies and the basal surface is called stratum oriens, 

and this extends through CA3, CA2 and CA1. Stratum radiatum and stratum lacunosum-

moleculare (slm) are the layers superficial to stratum lucidum in CA3 and the pyramidal layer 

in CA2 and CA1. Pyramidal cell dendrites in CA3, CA2 and CA1 extend throughout all the 

layers from stratum oriens to slm (Amaral and Lavenex, 2007). In CA3, CA2 and CA1, it is 

the stratum radiatum, where axons originating from CA3 pyramidal cells terminate (Amaral 

and Lavenex, 2007). EC projections arrive in the slm. While in CA1 the MEC and LEC 

projections terminated at different portions along the proximo-distal axis, in CA3 the LEC 

projections terminate instead in more superficial portions of the slm than MEC (Amaral and 

Lavenex, 2007). This clear segregation of afferents in the hippocampal regions between the 

strata and pyramidal cell dendritic tree orientation orthogonal to the strata has made it 

particularly suitable for functional analysis based on the local field potential (Schomburg et 

al., 2014; Herreras, 2016). 

The pyramidal layer in the subiculum is much thicker as pyramidal cells are more spread out 

between the deep and superficial surfaces. There is no distinctive stratum oriens, but EC 

layer III inputs still arrive in the most superficial layer, called the superficial molecular layer 

(Amaral and Lavenex, 2007). The CA1 afferents in the subiculum terminate in the pyramidal 

layer and the deep molecular layer, the layers that lie sequentially next to the deep surface 

(Amaral and Lavenex, 2007). 

In addition to the highly informative local field potentials in the hippocampus, the densely 

packed pyramidal cells have been extremely well suited for tetrode recordings. The dorsal 

part of CA1 in the rat, commonly targeted for place cell recordings, is positioned such that 

the CA1 pyramidal layer is perpendicular to the path of tetrodes entered ventrally from the 

dorsal surface of the brain. Such a position makes CA1 pyramidal layer a huge target, 

making it highly likely – relative to many other brain areas – that tetrodes lowered towards 

CA1 will at some point reach the pyramidal layer. The main challenge in positioning tetrodes 

for recording place cells in CA1 is to advance the tetrodes slowly enough, so as not to 

accidentally pass through the pyramidal layer, which is less than 50 µm thick (Paxinos and 



25 
 

Watson, 2007). The cytoarchitecture is supportive of this as well because the local field 

potential presents distinctive patterns throughout CA1 and the densely packed layer of 

pyramidal cells means that correct tetrode placement is unmistakable. This suitability for 

electrophysiological recordings must have played a significant role in attracting many 

researchers to study the hippocampus after the discovery of place cells. 

1.3 Cell types encoding spatial information 

1.3.1 Overview 

Since the discovery of place cells (O’Keefe and Dostrovsky, 1971), many other cell types 

have been found in the hippocampal formation and associated structures whose spiking 

activity (firing) is a function of the animal’s position (Spruston and McBain, 2007; Barry and 

Burgess, 2014). The general method used in the discovery of place cells is still the most 

common approach in the study of spatially relevant neural activity. An animal’s neural activity 

is recorded while simultaneously tracking its location in the environment, and the analysis 

correlates the firing rate of individual cells (units) with a spatial variable, for example, the 

location of the animal in the environment (Figure 1.5A). A slightly different approach is to 

focus on other signals than the spiking activity. Around the time when place cells were 

discovered, it was also found that the amplitude of the local field potential oscillations in the 

theta frequency band (6-12 Hz) are associated with movement (Vanderwolf, 1969). The 

findings from single-unit studies are introduced below, followed by investigations of the local 

field potential and the relationship between the two. 



26 
 

 

Figure 1.5 Hippocampal units with spatial correlates. A | Place cells fire when an animal is in 
a specific location in the environment. B | Two examples of head direction cells that fire when the 
animal’s head is pointing in a specific allocentric direction. C | Boundary vector cells fire at proximity 
to a boundary in an allocentric direction. D | Grid cell firing pattern forms a triangular grid across 
the environment, which can be characterised by spatial scale (distance between firing fields), 
orientation (angle of lines connecting adjacent firing fields) and phase offset (position of the 
repeating pattern relative to the origin of spatial reference frame). Adapted from (Barry and 
Burgess, 2014). 

1.3.2 Place cells 

A place cell fires when the animal is at a specific location (Figure 1.5A), which is usually 

different for each cell recorded in a given animal (O’Keefe, 1976). The location, where a 

given place cell has a stable meaningful (e.g. greater than 1 Hz) firing rate, is called the 

place field of that cell – effectively a spatial receptive field. Cells firing at specific locations 

in the environment have been discovered in many parts of the hippocampal formation 

(O’Keefe, 2007), but CA1 place cells have remained the ones most clearly representing 

specific locations in the environment. 

Rather than firing in response to a specific view of the environment, place cell firing appears 

to depend on multiple cues giving rise to a tuning curve in the allocentric spatial reference 

frame. The cells are robust to the removal of any particular visual cue, and they even 

persisted in darkness (O’Keefe, 1976). In open-field environments, the firing is also 

independent of the animal’s orientation (O’Keefe, 1976), however, in constrained 

environments, the firing can be dependent on movement direction (O’Keefe, 2007). In an 

experiment, where the same rectangular environment was extended along axes parallel to 

the walls, place fields remained in similar locations, but became distorted – some fields 

extended along with the environment (O’ Keefe and Burgess, 1996). The place cell firing 

relationship to environmental cues appears to be learned. This learning process is rapid – 

although initial activity does not match well to the eventual stable map of the environment, 
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the stable representation is formed within the first few minutes of experiencing a new 

environment (Wilson and McNaughton, 1993; Frank et al., 2004). Place cells integrate 

information from multiple sensory modalities and, although their firing can be altered by 

changing the available cues, it is not determined by any single low-level cue (e.g. cue card 

or light source). 

A single place cell can have place fields in multiple environments, but not all place cells have 

a place field in a given environment (O’Keefe and Conway, 1978). Thompson and Best 

(1989) observed that only 13% of pyramidal neurons had a place field in a 0.25 m2 box. The 

relative field locations between place cells also change between environments (Alme et al., 

2014). Therefore, in any given environment, only a subset of all place cells is activated, and 

these subsets are different between environments. The overlap of place cell populations 

activated in any two environments, and the similarity of their place field locations depends 

on the similarity of the environments (O’Keefe, 2007). Immediately after the introduction of 

a new environment similar to one previously experienced, place fields of place cells can be 

similar between the two environments, in which case, further experience in the new 

environment leads to changes in the place fields to differentiate the environments – called 

place cell remapping (Bostock et al., 1991; Lever et al., 2002; Wills et al., 2005; O’Keefe, 

2007). Therefore, the place cells recruited to be active in an environment and their place 

field locations are dependent on a combination of many cues and can change through 

experience. 

The cues that determine the firing of place cells in a given environment depend on their 

assumed stability (Biegler and Morris, 1993), portability and salience (Scaplen et al., 2014), 

as well as relevance to behaviour. Moving of highly salient cues, such as a home-box or a 

reward site, can predictably shift place field locations of a subset of place cells as the cues 

are repositioned within the environment (Gothard et al., 1996b, 1996a). In other words, place 

cells can map to multiple independent spatial reference frames in a single environment. 

Place cell firing fields can be stable for weeks (Muller et al., 1987), although a majority remap 

each day (Ziv et al., 2013). The ability to represent the same locations reliably for long 

periods by some cells would require their spatial reference frames to be anchored preferably 

to cues that are either very stable or highly important to the animal. Anchoring the spatial 

reference frames to behaviourally useful cues can increase the utility of the place cell map. 

Indeed, the task relevance of distal cues is positively correlated with increased anchoring of 

place fields (Zinyuk et al., 2000). The place cell mapping to the environment is stable but 

can remap to support task demands. 
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Because place fields persist in darkness and are normal in congenitally blind rats (Save et 

al., 1998), place cell firing must also be influenced by other than visual cues. Tactile 

sensations and self-motion information can influence place cell firing (O’Keefe, 2007). 

Gothard et al. (1996a) recorded place cells in rats running from a home location to the end 

of an elevated linear track and back. By manipulating the position of the home location, they 

demonstrated that many place fields were anchored to the past locations of the animal – 

only possible based on path integration. Also, rotating the animal relative to a symmetrical 

environment unbeknownst to it also rotates the place cell mapping (Jeffery et al., 1997). 

Place cell firing rate in a place field is positively correlated with running speed (McNaughton 

et al., 1983). Path integration signals are available to place cells from other cell types in the 

hippocampal formation, such as head direction cells and grid cells that will be covered later. 

The distribution of place fields in an environment is not necessarily uniform. In one of the 

earliest analyses, Muller et al. (1987) found the distribution of place fields to be homogenous. 

However, their experimental environment was small (76 cm diameter), and they had a small 

sample of units (34 place cells) across multiple animals. More recently, Hetherington and 

Shapiro (1997) observed a higher density of place field centres near walls and cues by the 

wall. Place cells are more likely to remap to changes in cue locations if the cues are close 

to the walls of an enclosure than in the middle (Cressant et al., 1997). Furthermore, Hollup 

et al. (2001) observed a much higher concentration of place fields at the unmarked goal 

location in their navigation task. These findings suggest that place field distribution may be 

biased to over-represent locations that are more important, such as goal locations, or those 

rich in spatial cues. 

Beyond the geometric determinants of place cell firing, contextual information also plays a 

role (Jeffery et al., 2004). First discussed by Nadel and Willner (1980), non-geometric 

information, such as the presence of an odour or an ambient sound, could be encoded by 

the same systems that represent space. Hippocampal lesions have been shown to impair 

conditioning to various contextual elements (Holland and Bouton, 1999) and partial or 

complete remapping of place cells can be caused by changes to the colour of the floor 

(Jeffery and Anderson, 2003), and presence of different odours (Anderson and Jeffery, 

2003). Similar effects in response to novelty were mentioned above (Bostock et al., 1991). 

The remapping can manifest in changes to place field presence or locations, but also, 

between sufficiently similar conditions, changes can be limited to the firing rate of place cells 

at the unchanged place field locations – called rate remapping (Leutgeb et al., 2005). A 

somewhat related observation is that place cells can remap depending on the specific route 

through the maze that the animal is currently using (Markus et al., 1995), including when the 
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trajectories through the place field are identical (Wood et al., 2000), and even if the start and 

goal locations are the same (Grieves et al., 2016b). In short, place cells can encode an 

animal’s position on a specific route, instead of their location in the environment. These 

findings highlight another dimension in the analysis of place cell activity – place cells can 

express multiple maps of an environment, interchangeably, depending on information other 

than geometric cues. 

In summary, the location where a place cell fires in each environment – its place field – is 

unpredictable, as it is usually a function of multiple unknown cues. However, salient or 

behaviorally relevant cues, such as environmental walls or goal locations, often serve as 

anchor points for the spatial reference frame of a subset of place cells and place fields can 

also be observed to be more numerous nearby these cues. Place cells can remap to 

changes in locally available spatial cues, as well as contextual and non-spatial information. 

More determinants and correlates of place cell firing will be described below, but first, it is 

essential to introduce other cell types of the hippocampal formation that encode spatial 

information. 

1.3.3 Head direction cells 

Head-direction cells were first observed in the dorsal presubiculum (also known as the 

postsubiculum) of rats (Ranck, 1984; Taube et al., 1990a) and have since been found in 

many brain structures associated with the hippocampal formation, including, the 

retrosplenial cortex (Chen et al., 1994), the thalamus (Taube, 1995), lateral mammillary 

nucleus (Stackman and Taube, 1998) and EC (Sargolini et al., 2006). These cells fire based 

on the allocentric orientation of the animal’s head (Figure 1.5B) independently of the 

animal’s location. Similarly to place cells, head direction cell representations are fixed to a 

spatial reference frame, which can be anchored to a complex set of cues, but also highly 

salient individual cues (Taube et al., 1990b; Goodridge et al., 1998). A fascinating aspect of 

head direction cells is that the relative angles between peak firing rate directions of co-

recorded units are constant – all head direction cell tuning curves shift the same amount in 

response to cue manipulations (Taube et al., 1990b; Knierim et al., 1995). In the absence of 

visual cues, their firing remains less stable, but still informative, likely based on cues from 

other modalities, including self-motion (Blair and Sharp, 1996; Goodridge et al., 1998). 

Place cell firing seems to be dependent on head direction cells. In experiments where an 

animal has been disoriented such that both place cell and head direction cell systems 

rotated, the two maintain their angular relationship (Knierim et al., 1995). Lesions of the 

hippocampus do not disrupt the head direction cell signal (Golob and Taube, 1997). 
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However, temporary inactivation, as well as lesions of the vestibular system that abolish 

head direction cell signal, also disrupt the place cell signal (Stackman et al., 2002; Russell 

et al., 2003). These results suggest that the place cell system is dependent on the function 

of the vestibular system; however, the vestibular system is necessary for the proper 

functioning of other systems in the hippocampal formation beyond the head direction cells 

(Jacob et al., 2014). Because the vestibular system is the source of many more dimensions 

of self-motion than rotation in the horizontal plane, it has been challenging to selectively 

abolish the head direction system without impairing other self-motion signals. Lesions of 

anterodorsal thalamic nuclei and especially lesions of the dorsal presubiculum disrupted the 

place cell map stability, leading to unpredictable changes in response to rotation of a 

prominent visual cue and general instability when that cue was removed (Calton et al., 

2003). Surprisingly, such impairment of the head direction system caused place cell firing to 

be more strongly modulated by movement direction (Calton et al., 2003). This surprising 

result could be due to reduced coherence within the place cell system, but also because of 

increased directionality in the remaining determinants of place cell firing. In any case, the 

stability of the place cell representation of space is supported by the angular self-motion 

inputs from head direction cells. 

1.3.4 Boundary vector cells 

Based on the extent to which environmental geometry was found to determine place cell 

firing (O’ Keefe and Burgess, 1996), cue distance vectors were implemented in a robot 

modelling rodent behaviour (Burgess et al., 1997) and formalised in the boundary vector cell 

model of place cell firing (Hartley et al., 2000). This model was later refined by Barry et al. 

(2006). The main idea of the boundary vector cell model is that place cell firing is a 

thresholded sum of inputs from boundary vector cells – each signalling the presence of a 

boundary at a specific distance and allocentric direction from the animal. Cells with such 

properties have since been found in the hippocampal formation. 

Boundary vector cells were observed in the subiculum (Barry et al., 2006; Lever et al., 2009) 

and very similar border cells in MEC and parasubiculum (Solstad et al., 2008). Similar factors 

determine the firing fields of both cell types. Their receptive fields are elongated parallel to 

borders of the environment in a specific allocentric direction (e.g. north) and at a fixed 

distance from this boundary (Figure 1.5C). In other words, these cells fire when the animal 

is at a fixed distance from a wall measured in a specific allocentric direction from the animal. 

The main difference between these cell types recorded in MEC and the subiculum is that 

the cells in the latter can have receptive fields further from the wall (Lever et al., 2009). 
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These cells seem to be an integral part of the spatial representation system in the 

hippocampal formation. The border cells were observed to shift with the rotation of a cue 

card coherently with co-recorded head direction cells and grid cells (introduced in the next 

section) (Solstad et al., 2008). There is evidence that EC border cells may indeed have 

functional projections onto place cells (Zhang et al., 2013), and subicular projections to CA1 

suggest that this may be the case with boundary vector cells as well (Sun et al., 2014, 2018). 

Both boundary vector cells and border cells seem to be a source of allocentric spatial 

information supporting place cell activity. 

1.3.5 Grid cells 

Single unit activity in MEC of freely moving animals in an open-field environment was first 

recorded in the early 1990s (Quirk et al., 1992). They found cells that fired in a specific 

location in all environments, with a very similar firing field – in contrast to place cells that 

have different firing fields and not in all environments. MEC units were studied on several 

more occasions, but in mazes or on a linear track (Mizumori et al., 1992; Jeffery et al., 1995; 

Frank et al., 2000). Fyhn et al. (2004) recorded many cells in MEC that showed multiple 

stable firing fields. In a study published the following year, similar recordings were performed 

in an environment large enough that a grid-like firing field pattern could be observed – these 

cells were called grid cells (Hafting et al., 2005). The firing fields of grid cells – grid fields – 

tile any two-dimensional environment with a hexagonally arranged stable grid pattern 

(Figure 1.5D) (Hafting et al., 2005). Although most numerous in MEC layer II (Barry and 

Burgess, 2014), grid cells have been found in all layers of MEC as well as in presubiculum 

and parasubiculum (Rowland et al., 2016). Grid cells have also been shown to encode 

location in a hexagonal pattern in humans (Doeller et al., 2010; Jacobs et al., 2013). As with 

other cell types in the hippocampal formation that encode spatial information, following the 

discovery of grid cells, their properties have been thoroughly researched (Rowland et al., 

2016). 

Grid cells co-localised in MEC have the same scale and the same orientation; only the phase 

of their grid pattern varies (see Figure 1.5D for the definition of scale, orientation and phase 

of grid cells)(Fyhn et al., 2007). This relationship between adjacent grid cells and the spacing 

of their grid fields is similar across different environments (Fyhn et al., 2007). Grid patterns 

can rotate along with the rotation of a salient cue (Hafting et al., 2005). The rotation of the 

grid pattern in such cases is also coherent with head direction cells, as is the case with the 

place cell map (Hargreaves et al., 2007). Interestingly, a large proportion of grid cells, a 

majority in layers III and V of MEC have the conjunctive grid and head direction properties 
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(Sargolini et al., 2006). Similarly to place cells, impairment of the head direction system – by 

lesion of the anterior thalamic nuclei – disrupts the grid firing pattern (Winter et al., 2015). 

The commonality of place cell and grid cell systems to remain coherent with the head 

direction cells supports the theory of the hippocampal spatial information systems working 

together. Because of the coherence within a co-localised population of grid cells (as in head 

direction cells) and the consistent pattern of grid fields over large open spaces, grid cell input 

is the source of highly processed self-motion information to place cells (Rowland et al., 

2016). 

Indeed, lesioning MEC disrupts the spatial activity of place cells, although it does not abolish 

it altogether (Van Cauter et al., 2008; Hales et al., 2014). However, temporary inactivation 

of the hippocampus abolishes the grid pattern in grid cells, which then assume the properties 

of head direction cells (Bonnevie et al., 2013). Based on some models, this is explained by 

the loss of general excitatory drive provided by the hippocampus (Bonnevie et al., 2013). 

Furthermore, during neonatal development in rat pups, grid cell patterns emerge later than 

the stable activity of place cells (Langston et al., 2010; Wills et al., 2010). In summary, the 

hexagonal pattern of grid cell firing fields is dependent on place cell input, while place cells 

can still maintain their spatial tuning in the absence of grid cell input, although with reduced 

stability. 

The spacing between grid fields and field sizes increase from dorsal to ventral end of MEC 

(Brun et al., 2008b), mirroring the increase in place field size along the dorso-ventral extent 

of the hippocampus (Jung et al., 1994; Kjelstrup et al., 2008). The change in grid spacing is 

not continuous but discretised (Stensola et al., 2012) – it increases with a fixed ratio between 

grid modules (Barry et al., 2007; Stensola et al., 2012; Krupic et al., 2015). The ratio of 1.4 

to 1.7 found experimentally, could be optimal for encoding location (Fiete et al., 2008; Towse 

et al., 2014). 

While the hexagonal pattern of grid cells is generally consistent, in trapezoidal environments 

with acute angles, the grid pattern is distorted (Krupic et al., 2015). Even in large square 

environments, shearing-induced distortions can be observed along the walls of the 

environment, independently across grid modules (Stensola et al., 2015). In environments 

with multiple sub-compartments, grid cells form independent maps for each compartment 

that fuse at pathways between the compartments (Derdikman et al., 2009). Even in the case 

of identical connected compartments, where grid patterns are the same in each 

compartment initially and therefore incoherent across compartments, grid cells develop a 

continuous representation across the whole environment after extensive experience 
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navigating between the compartments (Carpenter et al., 2015). In summary, grid cell 

patterns can initially appear to be coherent only in sub-sections of an environment, but 

through further experience, continuous grid patterns are formed across larger areas. 

1.3.6 Other cells encoding spatial information 

Just before the discovery of grid cells, theta-modulated place-by-direction cells (TPDs) were 

observed in the presubiculum (Cacucci et al., 2004). These cells had a stable firing field in 

every environment, and the firing rate was also strongly modulated by head direction. The 

environment in which these cells were studied was small, and later experiments have 

demonstrated the presence of grid cells also in presubiculum and parasubiculum (Boccara 

et al., 2010). It is therefore likely that the TPDs were, in fact, conjunctive grid cells. 

Cells across the hippocampal formation modulate their firing depending on the animal’s 

movement speed, including, place cells (McNaughton et al., 1983), cells in presubiculum 

(Sharp, 1996), and conjunctive grid cells (Sargolini et al., 2006). However, cells that seem 

to encode only speed and no other spatial variable – speed cells – have been found in MEC 

(Kropff et al., 2015).  

Band cells observed in MEC have firing fields that form repeating parallel bands extending 

across the environment orthogonal to a movement direction (Krupic et al., 2012). Their firing 

patterns are very similar to a theoretical grid cell that had the fields along one of the grid 

axes fused. Summation of input from three band cells with bands angled at 60° from each 

other would result in the hexagonal grid cell firing pattern (Krupic et al., 2012). Band cells 

were also predicted in some computational models as inputs to grid cells (Burgess et al., 

2007; Burgess, 2008). 

Object-related cells have been described in recordings from LEC (Deshmukh and Knierim, 

2011; Tsao et al., 2013), the hippocampus (CA3 and CA1) (Deshmukh and Knierim, 2013) 

and most recently object-vector cells in MEC (Høydal et al., 2019). All these object-related 

cells have a stable firing field about an object inside the environment, and the field moves 

along with the object or disappears if the object is moved or removed, respectively. The 

object cells in LEC and the hippocampus fire in the general proximity of an object. MEC 

object cells fire only at a specific allocentric direction from an object and can have fields 

further from the object. These cells are a lot like boundary vector cells, only that their firing 

is determined by a broad range of objects within the environment and not any walls of the 

enclosure. 
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All these object-related cells are in well-studied brain regions but have only been observed 

recently, as open-field experiments have largely used empty environments, where external 

walls and visual cue cards are the only objects. Increasing the complexity of the environment 

makes it more difficult the isolate the specific cues that cause any cell to fire, requiring more 

experimental manipulations, which makes the experiments much more laborious. 

Nevertheless, such studies are essential as the real world is filled with objects, and in an 

environment devoid of these the spatial properties of neurons in the hippocampal formation 

may not be entirely natural. 

1.3.7 Encoding of non-spatial dimensions by place cells and grid cells 

Place cells and grid cells have been found to encode information beyond the spatial domain. 

The fact that place cells encode contextual information has already been mentioned and, 

indeed, Henry Molaison’s amnesia after the removal of his hippocampus was general, not 

just spatial (Scoville and Milner, 1957). The hippocampus in humans is selectively activated 

during a non-spatial relational memory task (Preston et al., 2004; Shohamy and Wagner, 

2008). Collin et al. (2015) showed that episodic memories are organised along the 

dorsoventral axis of the hippocampus similarly as spatial representations – from more 

specific to more general narratives. It has also been shown that human hippocampal activity 

correlates with social spaces (Tavares et al., 2015) and the human EC can map task-

relevant two-dimensional parameter space (Constantinescu et al., 2016). Studies in rodents 

have shown that place cells otherwise encoding spatial location can also encode non-spatial 

dimensions. During stationary waiting periods as well as on a treadmill, place cells can 

encode time, independently of path integration signals (MacDonald et al., 2011; Kraus et al., 

2013). Aronov et al. (2017) showed that rats trained to manipulate a sound frequency in a 

stationary task had place cells and grid cells that responded to a narrow range of frequencies 

experienced during the task, effectively mapping the sound frequency domain. Based on 

these findings, a narrative is developing, that the hippocampal formation is a general-

purpose system, with spatial representations being just one of the encoded domains (Mok 

and Love, 2018). While this may be the case, the fundamental mechanisms involved in 

encoding non-spatial and spatial variables in the hippocampal formation are likely 

overlapping. In rodents, given the constant representation of space during movement, the 

study of spatial representation in the hippocampal formation should be a valid route to 

understanding its fundamental computational properties. 
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1.4 Local field potential in the hippocampal formation 

Patterns in the local field potential (LFP) – extracellular field potential fluctuations slower 

than spike waveforms (1-500 Hz) – have only been briefly mentioned so far; however, there 

is extensive research focused solely on these signals (O’Keefe, 2007; Lisman and Jensen, 

2013; Buzsáki, 2015). There are many different LFP patterns in the hippocampal formation, 

many of them being rhythmic oscillations, and these different patterns are often coupled or 

otherwise related (O’Keefe, 2007). The LFP signal is a complex mixture of the electrical 

activity of thousands of nearby neurons, dominated mostly by currents reflecting synaptic 

activity (Bédard and Destexhe, 2012). Because unsynchronised and opposite currents 

cancel out, large patterns in LFP most likely reflect synchronous activity of populations of 

neurons. As described above, the cytoarchitecture of the hippocampus makes the LFP 

prominent in this brain area (Herreras, 2016). It is not entirely clear whether LFP has 

functional importance to network activity (Herreras, 2016). However, at the very least, it can 

be a useful signal of the general state of the local neural population. 

Although first reported in the 1930s (Jung and Kornmüller, 1938), the study of theta 

frequency band (6-12 Hz) oscillations in the hippocampal formation with respect to spatial 

behaviour started from Vanderwolf’s observation of the relationships between theta 

oscillations and animal’s movement (Vanderwolf, 1969). Since then, two types of theta 

oscillations have been identified – attention or arousal theta and movement-related theta, 

which are dependent on different inputs to the hippocampus (O’Keefe, 2007). Movement-

related theta is dependent on inputs from EC (Bland and Oddie, 2001), while arousal theta 

is dependent on cholinergic (Kramis et al., 1975) and GABAergic input from the medial 

septum (Petsche et al., 1962; Vertes and Kocsis, 1997). The peak frequency and amplitude 

of theta oscillations can vary, and both increase with running speed (Rivas et al., 1996; 

Sławińska and Kasicki, 1998). During movement, the theta oscillations are highly 

synchronised across regions of the hippocampal formation (Bullock et al., 1990) and have 

many notable associations with other neural activity. Hippocampal theta cells tend to fire 

only at specific phases of the theta cycle (Ranck, 1973) and theta oscillations also modulate 

the firing of grid cells (Jeewajee et al., 2008). Both place cells and grid cells exhibit theta 

phase precession – they fire at earlier points in the phase of theta oscillations each cycle as 

the animal runs through the cell’s firing field (O’Keefe and Recce, 1993; Hafting et al., 2008). 

The timing of spikes relative to the theta phase contributes additional information about the 

animal’s location to that encoded by the firing rate (Huxter et al., 2003). In addition to these 
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ways of encoding spatial information, theta oscillations are also coupled to other LFP 

patterns. 

Gamma oscillations are in the range of 20-100 Hz, and they occur in EC, dentate gyrus as 

well as the hippocampus (O’Keefe, 2007). The amplitude of gamma oscillations is 

modulated by the phase of theta oscillations (Bragin et al., 1995) and during phase 

precession, place cell spikes appear to be organised by gamma cycles (Lisman, 2005). 

Gamma band oscillations are further divided into narrower frequency bands – slow (30-80 

Hz) and fast (60-120 Hz) gamma, as well as recently identified high-frequency epsilon band 

oscillations (>100 Hz) (Figure 1.6A). Slow and fast gamma have been found to couple with 

gamma activity in CA3 and MEC layer III, respectively, and the origins of these oscillations 

are co-localised with the respective efferents in CA1 (Colgin et al., 2009; Schomburg et al., 

2014). The epsilon band is thought to be linked to CA1 pyramidal cell spiking (Schomburg 

et al., 2014). The coupling between activity in the gamma bands in CA1 and the input regions 

CA3 and MEC layer III has been found to correlate with assumed periods of memory retrieval 

and formation, respectively (Schomburg et al., 2014). The findings on gamma and theta 

oscillations highlight the importance of cyclic nature and coordination of the communication 

between regions of the hippocampal formation (Lisman and Jensen, 2013). 

 

Figure 1.6 Patterns in local field potential. A | Drawing of CA1 pyramidal neuron with a traces 
of gamma oscillations overlaid at the anatomical strata of their sources. The slow (red), fast (green) 
and epsilon (blue) gamma oscillations are temporally aligned to the LFP trace of one theta 
oscillation (black). Adapted from (Schomburg et al., 2014). B | Simultaneously recorded traces 
during a ripple/sharp-wave event from pyramidal layer (top) and stratum radiatum (bottom), 
wideband and low-pass (50 Hz) filtered, respectively. The vertical voltage mark is 0.5 mV for top 
trace and 1.0 mV for bottom trace. Adapted from (Buzsáki et al., 1992). 

During periods of immobility (e.g. quiet sitting) and slow-wave sleep, large deflections in the 

CA1 LFP can be observed (Figure 1.6B). This LFP pattern, called the sharp-wave, has the 

highest amplitude in stratum radiatum. The sharp-waves occur synchronously across the 

entire extent of the hippocampus (Chrobak and Buzsáki, 1996), and they are considered to 
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result from synchronous firing of CA3 pyramidal cells (Csicsvari et al., 2000). The sharp-

waves usually co-occur with high-frequency patters at the pyramidal layer (Figure 1.6B), 

called ripples (O’Keefe and Nadel, 1978; Buzsáki et al., 1992). The ripple oscillations are 

considered to result from synchronized postsynaptic potentials of interneurons in response 

to substantial input from CA3 (O’Keefe, 2007). These sharp-wave ripple events (SWRs) 

could be involved in internal processing in the hippocampal formation, such as consolidation 

of memories, and transfer of information to the cortex (Buzsáki, 2015). Indeed, disruption of 

hippocampal activity during SWRs impairs spatial learning (Girardeau et al., 2009; Ego-

Stengel and Wilson, 2010). The place cells that are activated during SWRs while the animal 

is asleep have been found to encode trajectories through a previously experienced 

environment in a temporally compressed form (Skaggs and McNaughton, 1996; Nádasdy et 

al., 1999; Lee and Wilson, 2002). These compressed sequences – replay events – are 

similar to those that occur as a result of phase precession during theta cycles (Dragoi and 

Buzsáki, 2006; Diba and Buzsáki, 2007). Replay events, in conjunction with SWRs, also 

occur during wakefulness, when the animal is immobile (Foster and Wilson, 2006). This 

phenomenon will be discussed in more detail below in relation to navigation. In summary, 

just like theta and gamma oscillations, SWRs have strong associations to single neuron 

activity and are a useful signal of network states. 

1.5 Computational models of spatial representations 

1.5.1 Overview 

Computational modelling – simulation of a system in the form of computations – is used to 

formalise descriptions of brain processes to reduce ambiguity, especially in the complicated 

cases of cooperative populations of neurons (Burgess, 2007). These models can be used 

to predict neural dynamics in unobserved conditions, thereby guiding future experiments. 

An excellent example of this is the discovery of boundary vector cells, which followed 

theoretical predictions based on a model of place cells. Computational models can also 

provide a means to quantify and compare experimental findings. Such models that allow 

quantification of spatial encoding quality of place cell populations are described below, 

followed by models formalising other experimentally observed properties of place cells, head 

direction cells and grid cells. 

1.5.2 Population-level encoding of spatial information 

Studies on the single-unit activity in the hippocampus have provided invaluable insight into 

what information is encoded in this brain area, as described above. However, just as we 
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have discussed the importance of considering the hippocampal formation as a complete 

system, instead of regions in isolation, it essential to consider single units as a population, 

instead of independent units (Kuperstein et al., 1986; Ahissar et al., 1992). The strong 

synchronicity in the hippocampal activity compared to the rest of the brain, evident from the 

prominence of LFP patterns, suggests the population coherence is functionally vital to local 

or downstream processing of spatial information (Buzsáki et al., 1992; Chrobak and Buzsáki, 

1996). 

The location information from an individual place cell is limited to signalling that the animal 

is somewhere within its place field. Individual place cells have peak firing rates of 1-30 Hz 

with a fairly smooth decline to 0 Hz at the edge of the place field (Muller et al., 1987). 

However, place fields recorded in ventral CA3 have been reported to extend up to 10 m on 

a linear track (Kjelstrup et al., 2008). While this is an extreme example, even for a 1 m wide 

place field with a low peak rate, the potential location of the animal within the place field is 

ambiguous at any given moment. The difference in observing 2 or 3 spikes per second from 

such a place cell translates to a broad range of distances from the peak. This effect is even 

more significant with a smaller time window of spike integration in the downstream neurons. 

The spike signal properties as a point process limit the theoretical accuracy of spike rate 

read-out (Poggio and Viernstein, 1964) and place cells firing rate is even more variable 

(Fenton and Muller, 1998). In addition to the difficulty of extracting the distance from field 

peak location based on the spikes of a single place cell, in an open field environment, the 

potential locations are all around the place field centre and can be as far apart as the place 

field is wide. Therefore, any process downstream of the hippocampus extracting the animal’s 

location from place cell firing must combine information from a large population of place cells 

to be effective. 

Another reason for studying the location encoding properties of place cells at the population 

level – simultaneously considering the activity of each neuron in a large population of 

neurons – is that any given cell does not have just one place field. It was apparent early on 

that a single place cell can have a place field in multiple environments (O’Keefe, 1976). 

However, more recently place cell representations of larger environments have been 

studied, and it is now clear that in sufficiently large environments place cells have multiple 

place fields (Fenton et al., 2008; Kjelstrup et al., 2008; Park et al., 2011; Rich et al., 2014). 

Even though a different subset of place cells is recruited in each environment (Leutgeb et 

al., 2004; Alme et al., 2014), not all of them are active at a single time point. Most likely, all 

place cells active at any given moment could be observed to exhibit multiple place fields if 

sufficiently many different environments or a single huge environment is considered. A 
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downstream region could only infer the animal’s location by combining information from 

multiple place cells. The simplest mechanism would infer the location to be where the place 

fields of all active cells overlap. A more advanced system could also take into consideration 

the firing rate and exclude areas based on place fields of inactive cells. In essence, this is 

the working principle of Bayesian decoding algorithm discussed below. 

Because of the ambiguity of location information based on one place cell, the systems 

relying on place cell output must combine information from large populations of place cells. 

Therefore, to understand the functional encoding properties of the place cell system, it is 

crucial to study it also on the population level. This way, it is possible to learn which features 

of the neural activity are functionally relevant for the downstream neurons. This approach 

comes with additional challenges in the data acquisition as well as analysis. In order to 

inspect the population level activity, it is necessary to have a representative sample of the 

population; therefore, a large number of place cells needs to be recorded simultaneously. 

Analytical methods capable of extracting meaning from the activity of large populations of 

neurons tend to be less tractable, making interpretation of findings more difficult. In addition 

to that, because any measure is based on the whole population of neurons recorded from a 

single animal, confirming statistical significance can require a higher number of animals, 

compared to the analysis of individual cells, where multiple data points (e.g. results for each 

cell) can be combined across animals. With great tenacity, these challenges can be 

overcome, and this approach has already provided great insight into hippocampal spatial 

representations. 

Wilson and McNaughton (1993) used the instantaneous firing rate of a sufficiently large 

population of simultaneously recorded place cells to reconstruct the animal's location at each 

time point. Their method was to pick the location where the instantaneous firing rate of co-

recorded units was best matched to the trial averaged firing rates of the same units. Different 

methods for reconstructing – decoding – the animal’s location from instantaneous firing rate 

have been developed, Bayesian methods being particularly useful (Zhang et al., 1998). More 

recently, deep learning-based methods have proven to be even more accurate at decoding 

location from place cell spikes (Tampuu et al., 2019). Frey et al. (2019) used a deep learning 

method to accurately decode location, movement direction and other behavioural variables 

from wide-band neural activity, without spike sorting. Deep learning-based methods, 

particularly the kind that does not require prior spike sorting, could provide insight into 

associations between neural activity and behaviour that may go unnoticed with traditional, 

more constrained methods (Frey et al., 2019). 
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The decoding methods, described above, effectively model the systems dependent on the 

activity that they are decoding – in this case, brain areas downstream of the hippocampus. 

Above-chance decoding is useful to determine if a downstream area has access to specific 

information from the neural activity. More interestingly, the decoding algorithms allow 

measurement of the neural representation quality at different time points and conditions. 

These measurements can capture population-level effects that are beyond the averages of 

independent measures per neuron (e.g. mean firing rate). They are especially useful for 

understanding the neural representations if the decoding model is a reasonable estimate of 

the downstream brain processes, which the biologically plausible Bayesian decoder is likely 

to be (Zhang et al., 1998). The work presented in this thesis relates the properties of 

individual place cells to the population-level measures of their ability to encode location. 

1.5.3 Geometric cue-based models 

The first models to describe place cell firing were based on the integration of distance and 

direction from visual cues. Zipster’s (1985) model represents place cell activity as a sum of 

several landmark detectors, and it captures some responses of place cells to manipulations 

of cues. Sharp (1991) and O’Keefe (1991) did independent work to improve on this by using 

both distance and egocentric direction of cues in landmark detectors, and in the case of 

Sharp’s model, also included a competitive learning rule in the place cells. These changes 

improved the robustness of the model to cue manipulations, produced more accurate results 

regarding changes to the size of the environment and yielded more refined place fields. 

The strong geometric determinants to place field shape and location evidenced in the study 

by O’Keefe and Burgess (1996) led them to develop the boundary vector cell model 

(Burgess et al., 1997). This model was developed further by Hartley et al. (2000). It 

expressed place cell activity as a weighted sum of hypothetical boundary vector cells that 

signal distance from a boundary in an allocentric direction from the animal. As mentioned 

above, precisely these kinds of cells have since been found in the subiculum (Barry et al., 

2006; Lever et al., 2009) and MEC (Solstad et al., 2008). Barry and Burgess (2007) improved 

the model further to include a learning rule that can account for remapping of place cells 

through experience. Boundary vector cell model is supported by evidence that border cells 

from EC may be influencing place cell firing (Zhang et al., 2013), and there are subicular 

afferents in CA1 (Sun et al., 2014, 2018), suggesting boundary vector cells from subiculum 

may have direct connections to place cells as well. The boundary vector cell model accounts 

for a lot of place cell spatial information encoding properties, but it does not explicitly explain 

the ability of place cells to fire purely based on path integration. 
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1.5.4 Continuous attractor models 

Continuous attractor models of neural systems encoding a single variable have three 

essential components (Burgess, 2007). First, the population of principal cells encoding the 

variable has recurrent connections in this population that scale with the similarity of the 

preferred value. With global inhibition, any input to the principal cells results in the activity 

converging to a set of principal cells with similar preferred values, and decreasing activity 

with increasing deviation from the mean preferred value. Second, there are projections to 

principal cells from sensory inputs that incorporate Hebbian learning rule (Hebb, 1949), 

which results in stronger connections between the principal cells with specific preferred 

value and matching sensory cues. Sufficiently strong sensory input can reset the state of 

the principal cells based on previously learned associations. Third, the model is completed 

by the sets of shifter cell that are each activated proportional to self-motion in a particular 

direction, and they are each connected to a subset of principal cells with similar preferred 

value. The projections from shifter cells to principal cells are stronger for those with the 

preferred values that are offset from the mean preferred value in the direction that the shifter 

cells respond to self-motion. As a result, self-motion in a specific direction will activate shifter 

cells that then shift the activity bump in the principal cell population in the correct direction, 

proportional to the input to shifter cells. While these three general components are 

consistent, the models applied to specific systems are more refined, for example, including 

recurrent connections between shifter cells and principal cells. 

Head direction cells are simplest to express as a continuous attractor system because they 

represent a circular one-dimensional variable and, as mentioned before, maintain the 

relative angles within the head direction cell population in all conditions (Taube et al., 1990b; 

Knierim et al., 1995). The continuous attractor model of head direction cells substantially 

matches the general model described above, with two populations of shifter cells – one 

signalling angular velocity to the left and the other signalling it to the right (Skaggs et al., 

1995; Zhang, 1996). 

Samsonovich and McNaughton (1997) presented a continuous attractor model of place 

cells, where they solved the challenge of remapping of relative place field positions with the 

theory of pre-configured charts representing each outcome of remapping. Similarly to the 

head direction cell model, sensory inputs based on landmarks can be associated with place 

cells encoding a specific location. Unlike the head direction cell model, the attractor model 

of place cells needs to have many more shifter cells to match as many directions on the two-

dimensional plane as possible. Kali and Dayan (2000) developed the model further, making 
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the solution for remapping more dynamic, although this came with additional challenges 

(Burgess, 2007). Unlike the shifter cells in the head direction model (Taube, 1995), there 

are no suitable candidates for these in the continuous attractor network model of place cells 

(Barry and Burgess, 2014). Also, individual place fields can shift independently from others 

(O’Keefe and Conway, 1978), which would require far too many different charts, each 

requiring different wiring with shifter cells. 

The work described on the place cell models preceded the discovery of grid cells, which 

reduces the necessity for the support of path integration by the place cell population (Barry 

and Burgess, 2014). Continuous attractor models of grid cells explain the activity of an 

individual grid module, where grid scale and orientation is fixed, and grid cells vary by the 

phase of the grid pattern. The solution can, therefore, be similar to the attractor model of 

place cells – shifter cells move the activity bump along the correct direction and to grid cells 

with correct phase (Fuhs and Touretzky, 2006; McNaughton et al., 2006). Conjunctive grid 

cells from the deep layers of EC (Sargolini et al., 2006) are excellent candidates for shifter 

cells (Barry and Burgess, 2014). 

1.5.5 Oscillatory interference models 

Oscillatory interference models were inspired by the findings that the firing of place cells 

relative to theta phase varies as a function of animals position in the trajectory through the 

place field (O’Keefe and Recce, 1993). The model explained the firing of place cells as a 

function of two oscillators – one at a constant frequency around theta rhythm and the other 

with a slightly higher frequency, dependent on animals movement speed (Lengyel et al., 

2003; O’Keefe and Burgess, 2005). With multiple variable frequency oscillators, each 

responding to a different movement direction, the model can explain the activity of a place 

cell with a single field based on self-motion inputs. 

This approach is, however, far better suited to explain the activity of grid cells, because of 

the natural way how periodic firing arises (O’Keefe and Burgess, 2005; Burgess et al., 2007). 

In this case, the activity of a single grid cell is explained by a somatic oscillator, which has 

also been demonstrated experimentally (Domnisoru et al., 2013; Schmidt-Hieber and 

Häusser, 2013), and three different inputs with directional preferences at 120° angles, with 

oscillation frequency dependent on speed. Candidates for such input cells have been found 

in the medial septum (Welday et al., 2011) and inactivation of the medial septum disrupts 

the grid firing pattern along with theta oscillations in MEC (Brandon et al., 2011; Koenig et 

al., 2011). Unlike the attractor model, the oscillatory interference model directly accounts for 

the theta phase precession of grid cells (Hafting et al., 2008). However, the experimentally 
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observed oscillations are noisier than assumed by the models (Giocomo and Hasselmo, 

2008; Fiete, 2010). Furthermore, the attractor model can better explain the intracellular 

recordings of grid cells, showing smooth depolarisation towards action potential threshold, 

which is not what the oscillatory interference model predicts (Schmidt-Hieber and Häusser, 

2013). 

1.5.6 Building on these models 

The hippocampal formation is highly interconnected, and the major pathway through the 

hippocampus forms a loop with EC. As discussed above, grid cells require input from the 

hippocampus and are developmentally preceded by place cells, while place cell activity is 

far less stable without input from MEC. The models explained above could be excellent 

descriptions of one part of a given system. For example, place cell firing is simultaneously 

determined by cues as assumed by the boundary vector cell model and path integration 

input from grid cells (Bush et al., 2014). It has been shown that in a familiar environment, 

Hebbian learning between place cell and grid cell representations allows combining both 

environmental and self-motion information, respectively, from these systems (Burgess and 

O’Keefe, 2011). Grid cell firing could be modulated by both oscillatory interference and 

attractor dynamics. Hybrid models incorporating attractor dynamics and oscillatory 

interference have been proposed to explain grid cell properties (Hasselmo and Brandon, 

2012; Navratilova et al., 2012; Bush and Burgess, 2014). These can, of course, account for 

more experimental findings than models based on either approach alone. 

The recurrent connections in CA3 have motivated continued development of place cell 

population models based on attractor dynamics. Conflicting experimental findings in support 

of single-point attractor models (Wills et al., 2005) and continuous plane attractor models 

(Colgin et al., 2010) suggest that these could reflect the influence of CA3 recurrent 

connections and grid cell input on place cell activity (Knierim and Zhang, 2012). Hedrick and 

Zhang (2016) proposed a detailed model – the megamap – a quasi-continuous attractor 

network that incorporates the properties of both point attractors and continuous attractors. 

This model is particularly relevant, as it accounts individual place cells having multiple place 

fields, unlike any other model of place cell activity. At previously visited locations, the correct 

place cells are reactivated based on the experience-dependent weights between place cells 

with adjacent place fields in some part of the environment and learned associations between 

place cells and sensory inputs. The megamap depends on an unspecified mechanism of 

determining which place cell forms a field at any novel locations, as these fields are assigned 

to random cells. This feature results in the prediction that there that inter-field distances 
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between any two place cells should be random. Several predictions of this model are 

evaluated in this thesis based on the experimental data. 

1.6 Ethological spatial representations 

1.6.1 Overview 

The research on spatial representations in the hippocampal formation described above has 

provided incredible insight into how different sub-systems of the cognitive map contribute to 

encoding animal’s location. Experiments in highly controlled laboratory environments have 

been extremely effective at uncovering the properties of the many different cell types in the 

hippocampal formation and what influences their activity. Based on this knowledge, it is 

possible to study how systems function in naturalistic environments and how they support 

abilities beyond self-localisation, such as navigation. 

Studying brain processes supporting behaviour more complex than self-localisation in richer 

environments and tasks is a different challenge. They are more likely to require broader 

networks of neurons, including those beyond the hippocampal formation (Bush et al., 2015; 

Poulter et al., 2018). However, the hippocampal representations are involved with such 

processes. Many properties beyond encoding of self-location by place cells were already 

mentioned above, such as encoding of contextual information. Place cell maps are shaped 

by behavioural demands, such as shifting of place fields towards goals and enhanced by 

motivational factors (Kentros et al., 2004; McNamara et al., 2014). As predicted by the 

cognitive map theory (O’Keefe and Nadel, 1978), spatially informed explorative behaviour 

necessary for building a cognitive map of an environment is driven by hippocampal signalling 

of novelty (Poulter et al., 2018). With recent advances in technology and supported by half 

a century of research on hippocampal spatial representations, experiments in more complex 

environments and studies of navigation have started to uncover how the hippocampal 

formation functions in these conditions. 

1.6.2 Complex environments 

Studies in complex environments have already been useful in improving the understanding 

of the neural mechanisms supporting self-localisation. It has been found that place cell 

representations are unlikely to distinguish adjacent identical environments through path 

integration (Spiers et al., 2015) unless these environments have relative angular 

displacements – suggesting head direction cell input is vital for identifying environments 

based on path integration (Grieves et al., 2016a). Grid cells are speculated to form 
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representations of larger spaces based on fragmented local maps (Derdikman et al., 2009; 

Derdikman and Moser, 2011). Indeed, grid cell pattern in large or complex spaces is shown 

to exhibit local distortions (Krupic et al., 2015, 2018; Stensola et al., 2015). However, 

Carpenter et al. (2015) showed that with sufficient experience of two adjacent identical 

environments, the grid cell representations, although initially identical, formed a global grid 

pattern across the two environments. These studies highlight the value of examining spatial 

representations in complex environments. 

Until recently, there has been almost no information on spatial representations of three-

dimensional spaces – position in the horizontal plane together with vertical position (Jeffery 

et al., 2015). The earliest experiment based on the tilting of the otherwise two-dimensional 

track showed that place cells were sensitive to the manipulation, often remapping, but could 

not display any three-dimensional tuning properties (Knierim and McNaughton, 2001). Later 

experiments where rats were climbing either along pegs on a wall or a vertical mesh showed 

that vertical space was encoded by both place cells and grid cells, but the grid pattern did 

not appear on the wall, likely because of impaired path integration as speed encoding was 

altered (Hayman et al., 2011; Casali et al., 2019). The recordings of place cells in a three-

dimensional mesh by Grieves et al. (2019), made possible by a recently developed wireless 

electrophysiological recording system, demonstrated that place cells can represent all 

dimensions of such an environment. The same methods have also allowed the exploration 

of spatial representations in flying bats. Yartsev and Ulanovsky (2013) showed that bat place 

cells represented the entire volumetric space of a room with almost uniform distribution and 

interestingly, without theta rhythmicity so consistent in rat data. They have also 

demonstrated three-dimensional head-direction coding in the bat (Ulanovsky, 2015). These 

studies are invaluable in validating that the neural correlates of self-location known in the 

hippocampal formation can support the perception of a continuous three-dimensional space, 

as experienced by humans. 

1.6.3 Large spaces 

The environments used for studying place cells are tiny compared to the natural habitat of 

the animals. For example, Rattus norvegicus, one of the most popular model organisms in 

neuroscience (Ellenbroek and Youn, 2016), has been found to regularly traverse areas from 

a few hundred meters to a couple of kilometres (Taylor, 1978). Similarly, Pacific rats in the 

Hawaiian rainforest have home ranges averaging at three hectares (30 000 m2) (Harper and 

Bunbury, 2015). The size of a laboratory environment for the study of spatial representations 

has traditionally been less than 1 m2 and only recently has it become more common to use 
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environments of up to 4 m2. One of the significant early benefits from this was the discovery 

of grid cells (Hafting et al., 2005), which were not identified as such in several preceding 

studies in part because the environment was too small to observe their properties, as 

discussed before (Cacucci et al., 2004; Fyhn et al., 2004). The study of spatial 

representations in large environments has the potential to lead to many more discoveries. 

Natural environments are not just larger and richer compared to laboratory environments. 

They can also be considered at different scales – vista spaces, that can be visually perceived 

from a single location, and environmental spaces, comprising of multiple vista spaces that 

can not be simultaneously viewed from any position (Wolbers and Wiener, 2014). Self-

localisation on an environmental scale, as defined above, could have a different neural basis 

(Geva-Sagiv et al., 2015). The complete environment may be represented as a mosaic of 

smaller spaces (Derdikman and Moser, 2011). In a laboratory environment, rats 

spontaneously spend more time in a specific location, usually one of the corners of a 

rectangular environment (Eilam and Golani, 1989). This ‘home location’ is speculated to 

function as the main anchoring point of the allocentric map of the environment and assist 

the error-correction and re-calibration of internal representations (Poulter et al., 2018). In a 

large environment, fragmented maps could each be independently anchored to satellite 

home locations (Poulter et al., 2018). Transitions between fragmented maps as the animal 

moves between them could be highly informative. The mechanisms responsible for 

transitioning between otherwise contiguous cognitive maps are still elusive (Moser et al., 

2017). 

Because the number of place cells is constrained, so must be their capacity to identify 

different locations. Individual place cells can have place fields in multiple environments 

(O’Keefe and Conway, 1978), which dramatically increases this limit. In fact, given a large 

enough environment, individual place cells can be observed to have multiple place fields in 

that environment (Fenton et al., 2008; Kjelstrup et al., 2008). Kjelstrup et al. (2008) reported 

ventral CA3 place cells with place fields up to 10 m long along their linear track, but place 

fields of same cells tend to be larger in bigger environments (Fenton et al., 2008). The 

maximum size of place fields is a constraint on the encoding capacity of the place cell 

population, just as the population size. Recordings of same place cells in multiple different 

size environments could estimate how large the place fields can get. 

Rich et al. (2014) recorded place cells along a linear track that was incrementally extended 

to a 48 m long environment. They observed that the number of place fields each cell had 

was different among the cells. The distribution of cells with a specific number of place fields 
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in their full-size environment was possible to model as a gamma distribution. Having set the 

parameters of a gamma distribution in this way, they sampled it for frequencies of Poisson 

processes that modelled field formation in environments of different size. This model of field 

formation matched their measures of how many place cells had a field in an environment of 

a given size. Extrapolation using this model showed that because some cells have a low 

propensity to form fields, even on a track 500 m long, only ~90% of the cells would have a 

place field. Although, it is yet to be established whether the propensity to form fields is 

consistent for each unit across different environments. Rich et al. (2014) concluded that 

because some cells have a low propensity to form fields, the place cell population can 

distinguish between multiple large environments. 

Rich et al. (2014) and Alme et al. (2014) both studied the ability of the place cell population 

to identify different environments. Their notion of identifying environments based on which 

set of place cells are active in the environment (have a place field) makes sense if this 

information can be accessed in a single instance. Experimenters can do this in their analysis 

by checking which cells have a place field in an environment based on the ratemaps of all 

cells. However, place fields do not extend across the whole environment and, therefore, only 

a subset of place cells with a field in the environment are active at any location. Furthermore, 

sets of active place cells (having a field in an environment) not being identical between two 

environments does not preclude the possibility of identical subsets encoding for a location 

in both environments. Instead, it may be more relevant to consider the ability to identify a 

single location from any other location across environments. 

In summary, large environments allow studying the properties of spatial representations that 

otherwise remain elusive. Constructing environments with sub-compartments inevitably 

requires the environments to be larger, which could be part of the reason why there are still 

only very few studies using this approach. However, they are essential for understanding 

how the hippocampal formation supports environments large enough to comprise of 

fragmented maps. Recordings in large environments allow studying the limits of spatial 

representation in terms of scale. The work presented in this thesis was aimed at solving 

some of these challenges. 

1.6.4 Navigation and place cell replay 

The cognitive map is thought to support vector-based navigation – getting to a goal location 

without reliance on intermediate cues, such as using a novel trajectory (O’Keefe and Nadel, 

1978). The way information is stored in place cells, as evident from how they encode 

animal’s location, makes it difficult to conceptualise how they can be used for constructing 
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a vector for navigating to a specific location (Bush et al., 2015). As discussed above, the 

place fields of different cells do not appear to have consistent relative positions across 

multiple environments, meaning that any translational vectors would need to be relearned 

for each environment (Bush et al., 2015). Grid cells, however, with their consistent 

representation of all environments, enable calculating a vector between start and end 

locations based on multiple biologically plausible models (Bush et al., 2015; Poulter et al., 

2018). The guidance following the computation of trajectory vectors could be supported by 

multiple regions of the hippocampal formation (Poulter et al., 2018). Given the highly location 

specific and also task-specific information encoded by place cells, it is likely that they would 

also be involved in the recall of goal locations and the evaluation of candidate trajectories. 

There is some evidence that place cells are involved in navigation (Ólafsdóttir et al., 2018; 

Poulter et al., 2018; Pfeiffer, 2020). The assumption that the place cell population is 

consistently representing the animal’s location means that they can not be representing goal 

locations and, therefore, could not be used for navigational planning (Morris, 1991). 

However, during immobility, the hippocampus is frequently involved in processes other than 

encoding location. As described above, during stationary awake periods (e.g. quiet 

wakefulness, consummatory epochs) and sleep, there are short epochs of ~100 ms where 

local field potential has very high amplitude oscillations in the ripple band (~200 Hz), 

simultaneously with a sharp wave (Buzsáki et al., 1992). These sharp wave ripples (SWRs) 

co-occur with high firing rate periods of place cells, which during sleep match the same 

subsets as those that were co-activated (therefore having overlapping place fields) in a 

previously experienced environment (Pavlides and Winson, 1989; Wilson and McNaughton, 

1994). Furthermore, the activity of place cells during SWRs in sleep matches the sequence 

of their activation during behaviour (Skaggs and McNaughton, 1996; Lee and Wilson, 2002). 

This phenomenon is now called replay. 

Replay has become a subject of intense investigation, especially since it was found to occur 

in awake animals, during consummatory behaviour (Foster and Wilson, 2006), and at 

decision points during navigation (Kudrimoti et al., 1999; Diba and Buzsáki, 2007). In terms 

of the rapid activation of place cells encoding a trajectory, similar events called ‘theta 

sweeps’ can be observed during theta oscillations, where the trajectory can extend far along 

the future path (Foster and Wilson, 2007; Johnson and Redish, 2007). Theta sweeps have 

recently been shown to robustly represent alternative future trajectories as place cells 

encoding positions past an upcoming decision point are cycled during phase precession 

(Kay et al., 2020). However, SWR associated replay occurs in the absence of theta 

oscillations. Replay also occurs at choice points, interestingly, with trajectories not always 



49 
 

overlapping with animal’s current location (Karlsson and Frank, 2009). The connectivity 

supporting replay of a specific trajectory pre-exists or is rapidly formed as it requires just a 

few minutes of experience in a standard environment for related replay to be observed 

(Foster and Wilson, 2006). The replayed trajectories can be very long – Davidson et al. 

(2009) observed up to 10 m long trajectories by combining sequences that were replayed in 

quick succession. Based on these and other findings, SWR associated replay often occurs 

during moments of immobility when place cells encode long trajectories through a previously 

experienced environment. 

The association of CA1 place cell replay with other areas of the hippocampal formation is 

not yet clear. SWRs, as discussed above, are associated with input from CA3. Additionally, 

synchronisation of slow gamma oscillations between CA3 and CA1 increases the quality of 

the replay content (Carr et al., 2012). However, CA1 and CA3 ripple oscillations are not 

coherent, and CA1 spike sequences can be induced with optogenetic activation of CA1 

independently of CA3 (Stark et al., 2015). Inactivation of MEC layer III – the other input to 

CA1 – does not affect replay during sleep, but inactivation during quiet awake state does 

reduce the occurrence and spatial extent of replays (Yamamoto and Tonegawa, 2017). 

Although replay still occurs after lesions of MEC, experience-dependent refinement of 

ripples is reduced (Chenani et al., 2019). While CA1 place cell replay is affected by both 

CA3 and MEC input, neither is solely responsible for inducing this activity in CA1. 

Some studies have already looked at grid cell replay, which can occur independently of 

place cell replay (O’Neill et al., 2017). Nevertheless, as would be expected of the 

connectivity with CA1, SWRs in CA1 are associated with LFP signals in MEC layer III and 

VI (Mizuseki et al., 2009). Ólafsdóttir et al. (2016) recorded grid cells in deep layers of MEC 

simultaneously with place cells and found that grid cell replay during rest is coordinated with 

CA1 replay. They showed that grid cell replay was ~10 ms delayed relative to place cell 

replay, which is likely because CA1 place cells project directly to deep layers of MEC. 

Wilson and McNaughton (1994) hypothesised that hippocampal reactivation of past 

experiences during sleep serves an important role in memory consolidation, owing to lack 

of interference with sensory processing and suitability for inducing spike time-dependent 

synaptic plasticity (Buzsáki, 1986). There is ample evidence to support this theory, 

especially if it is considered to be always associated with SWRs which are more tractable 

with existing experimental methods. Truncation of SWRs at decision points in a spatial 

working memory task, where replay has previously been shown to be prevalent (Karlsson 

and Frank, 2009), significantly impaired the animal’s performance (Jadhav et al., 2012). The 
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prominence of goal locations in replay events predicts the performance in a spatial 

navigation task (Ego-Stengel and Wilson, 2010; O’Neill et al., 2010). Post-training disruption 

of SWRs impairs performance in a hippocampus-dependent spatial memory task (Girardeau 

et al., 2009; Ego-Stengel and Wilson, 2010) and spatial task-related remapping of place 

cells is inhibited by selective silencing of SWRs when these cells recruited (Roux et al., 

2017). These learning processes may involve brain areas beyond the hippocampal 

formation. During SWRs, the activity of CA1 and prefrontal cortex is more coordinated 

(Jadhav et al., 2016), particularly when learning a task in a novel environment (Tang et al., 

2017). Replay content is also more likely to include novel experiences than familiar ones 

(Foster and Wilson, 2006). Rewarded outcomes are more likely to be followed by a replay 

event than equivalent situations where no reward is received (Singer and Frank, 2009). In 

fact, the probability of reverse replay events occurring at a rewarded location is correlated 

with the size of the reward (Ambrose et al., 2016). In summary, investigations on the role of 

replay in learning and memory consolidation have made good progress. With the 

development of more fine-grained intervention techniques, the evidence of its role in learning 

and memory is likely to be consolidated. This thesis, however, is more focused on the role 

of awake replay in navigation. 

Numerous studies have also investigated the similarities between replay in the hippocampus 

and extra-hippocampal areas, such as the ventral striatum (Pennartz et al., 2004; Lansink 

et al., 2009), in the motor, somatosensory, and parietal cortex (Hoffman and McNaughton, 

2002), the visual cortex (Ji and Wilson, 2007), the prefrontal cortex (Jadhav et al., 2016), 

and the auditory cortex (Rothschild et al., 2017). Studies on the association of hippocampal 

replay and activity in other brain areas are crucial for understanding its role in memory 

because individual memory engrams are likely to exist in representations spanning multiple 

brain regions (Josselyn and Tonegawa, 2020). 

Interestingly, reactivated trajectories can represent locations previously not experienced. 

Gupta et al. (2010) showed that SWR associated activity can include sequences along 

trajectories not explicitly experienced. Place cells activated in SWR events encoding 

locations experienced only later in the future (Dragoi and Tonegawa, 2011; Ólafsdóttir et al., 

2015) are thought to represent a rigid – strongly pre-wired – subset of CA1 pyramidal 

neurons (Grosmark and Buzsáki, 2016). This type of SWR associated activity encoding 

locations prior to the related experience is called preplay. It is unclear whether such events 

serve any functional role in preparing the network for novel experiences or if they reflect a 

random part of the current hippocampal network configuration in response to unspecific 
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input. Certainly, it is not possible to predict which of the many preplayed sequences will 

actually relate to the following novel experience (Dragoi and Tonegawa, 2013). 

Regarding the role of replay in navigation, there is currently only one publication examining 

replay in an open field environment. In mazes, potential replay trajectories are highly 

constrained, making them easier to detect with a fewer number of simultaneously recorded 

place cells (Ólafsdóttir et al., 2018). However, the difference in hippocampal representation 

depending on movement direction on linear tracks is compounded with replay trajectories 

occurring in forward and reverse order (Foster and Wilson, 2006), causing interpretations of 

the reactivated trajectory to be unclear (Xu et al., 2019). Additionally, aside from choice 

points, trajectories local to the animal are constrained to be either forward or backwards, 

while in open field trajectories at any position can encode many alternative paths. In their 

open-field experiment, Pfeiffer and Foster (2013) found that the sequences predicted the 

direction of the future path, even if the path did not lie directly ahead of the animal. These 

replays were particularly common just before navigation towards a fixed goal in the 

environment after reaching another randomly located reward location. These findings 

suggest that replay is involved in navigational planning. This view is further supported by the 

fact that greater coordinated place cell activity during SWRs (Singer et al., 2013) and the 

task-relevance of replay content (Ólafsdóttir et al., 2017) predicted the correct decisions of 

the animal at choice points. The exact method by which replay contributes to planning is not 

the straightforward prediction of a future path, as unwanted trajectories are also robustly 

reactivated (Carey et al., 2019). Imagining trajectories of both positive and negative outcome 

could be used to assess the value of each route and to choose the optimal one. As another 

example, trajectory length is correlated with the duration of the replay event (Davidson et 

al., 2009), which means replay could be used to assess the efficiency of routes (Foster, 

2017). Foster (2017) suggests that replay events may be used to represent a model of the 

world, allowing the assessment of potential trajectories for their length and traversability. 

Research on the neural mechanisms of navigation is just beginning, but some progress has 

already been made. Grid cells are likely to be used for computation of movement vectors to 

form trajectories. However, SWR associated replay events where CA1 place cells encode 

time-compressed trajectories are likely involved in navigational planning and online goal 

learning in addition to offline spatial learning (Poulter et al., 2018; Pfeiffer, 2020). 
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2 Automated system for scalable data acquisition 

in spatial tasks 

2.1 Introduction 

Studying spatial representations in naturalistic conditions is an essential part of learning 

more about spatial cognition (Geva-Sagiv et al., 2015; Moser et al., 2017; Dudchenko and 

Wallace, 2018), as was discussed in the preceding chapter. The naturalistic conditions 

include environments that approximate the scale and cue abundance of the animal’s natural 

habitat, as well as paradigms promoting naturally dynamic behaviour. Several technical 

challenges have limited this approach to experimentation. This thesis chapter presents a 

solution to these issues as they were overcome to permit the work described in the following 

chapters. 

The animal’s location is the primary behavioural measure recorded synchronously with 

neural activity, in the study of spatial representations. Traditionally, it has been acquired with 

a single camera positioned above the animal’s environment at its midpoint. The captured 

images are then processed to detect the location of the animal, using LEDs attached to the 

neural recording system on the animal’s head. Alternative solutions have been developed, 

for example, measuring the shifting centre of mass as the animal moves on a suspended 

platform (Gapenne et al., 1990). However, the camera image-based approach has remained 

dominant (O’Keefe, 2007), possibly, because of the ease at which environments can be 

constructed and scaled. 

Tracking an animal’s behaviour becomes increasingly difficult with more complex or 

extensive environments. Parts of the environment can become obscured from camera view 

in environments that include internal boundaries. In large environments, the extremities of 

the environment can reach beyond the field of view (FOV) of a centrally located camera. 

Both of these issues can be ameliorated by positioning the camera higher, but the height of 

experimental rooms and camera-resolution limit this approach. Another solution of using 

wide-angle lenses introduces image distortions and errors in positioning due to the angled 

line of sight at the extremities of the environment. A straightforward solution to these 

challenges is to use multiple cameras, each recording the animal’s behaviour at a different 

location. Ultimately, it may be necessary to acquire videos from multiple points of view to 

capture the animal’s position in three dimensions and to track the animal in environments 
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with multiple levels. Multi-camera tracking systems will inevitably be necessary to conduct 

essential experiments in the study of spatial cognition. 

The rapid increase in the number of neuroscientists studying spatial representations in the 

brain in the last three decades has afforded the development of commercially available 

products for performing electrophysiological recordings as well as tracking animals’ 

behaviour. While some products exist for simultaneous tracking using multiple cameras, 

they are not sufficiently scalable, being limited by the image processing capacity of a 

centralised system. Furthermore, commercially available experimental equipment is 

notorious for restricting its potential application with proprietary hardware and software that 

are inaccessible to the end-users, thereby inhibiting customisation and integration with other 

systems. The required commercial solutions are lacking, and open-source solutions are 

necessary to allow the flexibility required for the support of the rapidly developing 

experimental paradigms. 

Traditionally experiments in the study of spatial cognition have been conducted manually by 

the experimenters. Depending on the experiment, they may need to scatter rewards around 

the environment to encourage foraging or position the reward at goal locations as part of a 

navigational task. In many paradigms, the animal is manually repositioned between trials. 

Manual delivery of reward can induce bias, that is difficult to control for, as is the case with 

frequent handling of the animal during an experiment. 

As experiments increase in complexity, they will inevitably need to be longer. For example, 

in an environment that is rich in cues, compared to a sparsely populated one, more 

manipulations are required to elucidate how the cues affect the spatial representations in 

the brain. Larger environments also require longer recordings to ensure sufficient spatial 

sampling for single unit analysis – variability in single-unit activity requires multiple 

observations to estimate spatial tuning curves. The long duration of an experiment is likely 

to increase issues with experimenter introduced bias and variability, in addition to costing 

valuable time of skilled researchers. 

Removing the experimenter from the equation is an effective solution to reduce uncontrolled 

variance in the results. That requires automating the experiments. Automation has been 

used in behavioural testing for decades (Thompson and Wilson, 1982) and it has been 

tremendously successful in reducing variability and increasing the efficiency of in-vitro 

experiments (Kodandaramaiah et al., 2013). Recent technological developments have also 

made it possible to automate in vivo experiments, for example, patch clamping in head-fixed 

mice (Kodandaramaiah et al., 2016). Automated tasks with real-time tracking have also been 
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implemented for small scale (home cage) experiments with rats (Poddar et al., 2013; 

Dhawale et al., 2017). However, this system does not include a scalable multi-camera 

tracking essential for large scale experiments. Because of the time consuming and complex 

nature of future experiments in the study of spatial cognition, their automation would be of 

great benefit. 

Existing open-source projects solve some of these challenges, but none aim to provide 

automation of scalable open-field experiments together with multi-camera tracking. Bonsai 

(Lopes et al., 2015) is one of the earliest software packages to simplify the integration of 

sensors and actuators, making it far easier for researchers to create automated tasks. 

Bonsai is particularly accessible because of its graphical user interface (GUI) based 

programming environment. It has become a popular tool already (Gebhardt et al., 2019; 

Reinhold et al., 2019) and has excellent potential as it was designed with expandability in 

mind, allowing the community to implement additional features with ease. However, the 

camera image processing is centralised, meaning its scalability is limited. Saxena et al. 

(2018) published a fully scalable video acquisition system recently after the work described 

in this thesis was well on its way. They used the Raspberry Pi platform. Each Raspberry Pi 

has a camera it uses to record video independently along with a global TTL pulse signal, 

which allows synchronising and combining the videos offline after the experiment. However, 

the lack of real-time tracking is a major short-coming of this system for application in 

automated experiments. Real-time tracking is essential for a task system that involves any 

behaviour dependent actuators. Highly standardised experiments, such as T-maze tasks, 

have been fully automated (Zhang et al., 2018) and commercially available products are an 

effective way to get started with such experiments. However, the commercial solutions are 

expensive, come with limitations as described above, and are limited to small enclosures or 

mazes. There is a clear need for an automated open-field spatial task system. 

2.2 Solution 

This section provides a high-level description of a data acquisition system (DACQ) that 

would solve many of the challenges described above in conducting experiments in the study 

of spatial cognition. In tackling more than one challenge, DACQ must balance between 

multiple vital features that are in parts inversely related. 

First and foremost, DACQ must be easily scalable and customizable, which is its primary 

value compared to commercially available systems. Scalability is essential for DACQ to 

support experiments on any scale without significant modification or increased cost. 

Because employing a new recording system is time-consuming and expensive, DACQ 
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should be applicable for a wide variety of experiments, so that it could be used across many 

projects once set up in a laboratory. Both of these features are at odds with simplicity and 

ease of use. Scalable and flexible solutions are more challenging for end-users to adopt 

than more constrained systems.  

The other aim of DACQ is to automate the execution of behavioural tasks central to 

experiments investigating spatial representations. Therefore, it must be capable of tracking 

the animal in real-time and have actuators through which it can interact with the animal. An 

interactive task could be handled by a centralised program or multiple independent actuators 

each paired with their sensors. Whichever approach is used, the task must be highly 

customizable for DACQ to find use in many laboratories. The system controlling the 

behavioural task is in itself the solution to automating the experiment. Similarly to the 

flexibility of the recording system in general, more customizable tasks are less approachable 

for the user, and also more prone to errors. 

DACQ should aim to serve researchers on both extremes of technical expertise. Existing 

solutions, such as Bonsai, provide highly accessible interfaces, allowing users without 

programming experience to set up their custom experiments. However, the system does not 

satisfy the high-end requirements out of the box, while the high-level interface can be limiting 

the customizability by a user with technical expertise. DACQ should satisfy the scalability 

requirements and include a flexible behavioural task so that anyone could set it up and use 

it with ease. However, each element, such as interfacing with a data format or the task 

program, should be designed in a way that researchers experienced in programming could 

comfortably integrate any custom interface or an alternative task program into DACQ. 

2.3 Implementation 

2.3.1 Overview 

The automated system for scalable data acquisition in spatial tasks 

(SpatialAutoDACQ)(Tanni, 2020) is a Python package that runs on the PC used for 

simultaneous electrophysiological recording (Recording PC). It also includes instructions to 

assemble Raspberry Pi based accessory modules (e.g. cameras and reward systems). 

Setting up SpatialAutoDACQ does not require any programming experience and instructions 

are very detailed. Soldering and wiring are required to set up the tracking and reward 

systems. The latter also requires 3D printing facilities. SpatialAutoDACQ is developed 

entirely in Python, a high-level programming language, and has a modular design, to ensure 

researchers could most easily implement their task programs or develop the existing system 
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further. SpatialAutoDACQ makes extensive use of Raspberry Pis, which make it highly 

affordable in comparison to the cost of any commercial product. Communication between 

all devices is mediated by SSH protocol and ZeroMQ. 

2.3.2 Data synchronisation with electrophysiological recording 

SpatialAutoDACQ synchronises and stores video and task data in conjunction with 

electrophysiological data acquired by a stand-alone system. Currently, an implementation 

exists to integrate with Open Ephys GUI (Community, 2017; Siegle et al., 2017) and 

implementations for other systems can be created as long as they can detect TTL pulses. 

The latter is essential because synchronisation between the cameras and the 

electrophysiological recording is achieved using the global clock approach – one Raspberry 

Pi emits regular TTL pulses logged with a local timestamp by all other systems. The global 

clock approach allows adding any number of cameras using just a single TTL pulse channel 

on all devices. Task-related events and actuator signals, such as reward delivery, are sent 

to the electrophysiological recording system to be logged together with a timestamp. 

2.3.3 Multi-camera real-time animal tracking and high-resolution video 

recording 

SpatialAutoDACQ works with any number of Raspberry Pis, serving as cameras 

(RPiCamera). Each RPiCamera records up to 1080p video at 30 Hz and processes the 

recorded frames in real-time. Only the coordinates of the animal, as detected by each 

RPiCamera, are sent to the Recording PC, where this data is combined to infer animal’s 

location based on multiple sources. This distributed computing approach makes the system 

genuinely scalable, as adding more cameras has negligible impact on Recording PC 

processing demands. 

Combining data from multiple RPiCameras depends on calibrating them to the same 

reference frame. A graphical user interface (GUI) for adjusting camera settings facilitates 

this process by providing a live view to the video feed from each RPiCamera (Figure 2.1). 

The RPiCameras can be calibrated simultaneously or independently. To calibrate cameras 

simultaneously to a single pattern, the experimenter can position the printed calibration 

pattern to a location in the environment, where FOVs of all RPiCameras overlap (Figure 

2.1). Alternatively, if all RPiCameras do not have overlapping areas in their FOV, the pattern 

can be positioned separately in front of each RPiCamera, together with the correct offset 

from the origin of the global frame of reference. As a result of the calibration, each 

RPiCamera outputs the animal’s position as a location in the global reference frame, instead 
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of a pixel identity. These values can then easily be combined to infer the animal’s location 

using the camera closest to the animal at any point in time. An additional benefit of 

calibration is the reduction in distortions from the edges of FOV, which can be even more 

effective if the calibration pattern is placed at the height of the tracked LEDs. During a 

recording, the animal’s position and its spatial sampling histogram is updated real-time and 

displayed on the screen of the Recording PC. 

 

Figure 2.1 Screenshot of the SpatialAutoDACQ camera settings GUI. Any number of cameras 
can be included with their calibration parameters (relevant section marked with a green box). The 
live feed from the cameras is useful for adjusting camera positions before calibration (turquoise 
box). Each live feed also includes an overlay of the calibration pattern for immediate confirmation. 

The true position of the animal is computed by combining data from all cameras. This is 

challenging, as the animal can at times move outside the FOV of individual cameras, causing 

these cameras to transmit the location of the next brightest point in their FOV as an incorrect 

LED location. The current solution continuously (at 30 Hz) checks the most recent data from 

each camera and uses only the data that points to a location within a specified radius of the 

animal’s last known location. In the experiments described in this thesis, this radius was 40 

cm. Only the data from cameras that match the previous location of the animal are 

considered. If multiple cameras match this criterion, then the position is used from the 

camera that is physically closest to the location of the animal, based on data from all valid 

cameras. At the beginning of the recording or when the cameras fail to track the animal 
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sufficiently close to its last known location, the current location of the animal becomes 

unknown, and on next iteration, the past location will be unknown. In this case, the location 

of the animal is identified if at least two cameras signal the same location with a maximal 

disparity of half the distance criteria used to match data to last known location (this is 

referring to the 40 cm criteria mentioned above). The animal’s location is set to the mean of 

two such cameras with the smallest disparity in their data. This method is used to estimate 

the animal’s position in real-time during the recording and applied separately after the 

recording to ensure perfect temporal alignment in the position and electrophysiological data 

used for analysis. The method has proven to be effective at tracking an animal’s location 

across multiple cameras in all recordings described in this thesis, which are up to 2 hours 

long and involve a rapid movement of an animal across FOVs of multiple cameras. 

Many options are available in the camera settings GUI to optimise the tracking for a given 

experimental setup. The RPiCameras can be used to track a single LED or double LEDs, 

based on brightness separation. Settings for the distance between the LEDs and their angle 

relative to the animal’s head can also be adjusted. In addition to tracking LEDs, RPiCameras 

can also perform motion tracking, which allows using SpatialAutoDACQ for behavioural 

experiments without implantation of any devices. Each RPiCamera provides excellent video 

data and real-time tracking at a low cost of a single Raspberry Pi and the associated Camera 

Module (in total less than £60). SpatialAutoDACQ includes detailed instructions on how to 

assemble RPiCameras and how to set up networking between RPiCameras and the 

RecordingPC. 

2.3.4 Scattered reward delivery system to promote foraging 

Most experimental paradigms in the study of spatial representations involve a foraging 

phase, to acquire sufficient sampling for inferring spatial tuning curves of neurons. For this 

purpose, we developed a semi-wireless automated pellet feeder (PelletFeeder)(Figure 2.2). 

The instructions for the assembly and usage of PelletFeeder are included in the 

SpatialAutoDACQ documentation. PelletFeeder is designed to work with commercially 

available 20 mg pellets (Dustless Precision Pellets® Rodent, Purified, Bio-Serv, USA). 

These pellets are sufficiently large and motivating for rats to find and, as part of the work 

presented in this thesis, they have been used to achieve excellent spatial coverage in a ~9 

m2 environment in two hours. PelletFeeder is based on the Raspberry Pi Zero W platform, 

works on mains power and interacts with the Recording PC over WiFi using SSH and 

ZeroMQ. Wireless connection to the Recording PC makes it easy to add any number of 
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PelletFeeders to the experimental environment, as required to provide sufficient scattering 

of pellets. 

 

Figure 2.2 Images of PelletFeeder. A | Distant view of the complete PelletFeeder together with a 
pellet detector (*) and guide tube (**) for dropped pellets. B | Top view of the PelletFeeder shows 
the pellet reserve. C | Side view of the PelletFeeder. D | The Raspberry Pi Zero W can be seen on 
the reverse side of the PelletFeeder with wiring to the servo motor and the infrared break-beam in 
the pellet detector. 

PelletFeeder releases a specified amount of pellets on command from Recording PC. It can 

hold more than 500 pellets and the only required maintenance is spraying it with an air duster 

each time the pellets are refilled. The pellet release is powered by a stepper motor that 

rotates an element with a hole fitting a single pellet between the pellet holder and the pellet 

detector. In most instances, a pellet drops into the hole from the pellet holder and is released 

into the detector. Passing pellets are detected using an infrared break-beam sensor and in 

the case of a pellet not being detected the release is attempted again until a pellet is 

successfully released. With the support of the pellet detector and optimised design to only 

drop one pellet at the time, the PelletFeeder can drop thousands of pellets without a single 

failure. 

2.3.5 Wireless fluid reward delivery system for navigational tasks 

Navigational tasks generally depend on localised rewards; for example, milk drops released 

from holes in the floor of the environment (Pfeiffer and Foster, 2013). A flexible and scalable 
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experimentation system needs to include a localised reward mechanism that can be easily 

duplicated and positioned in the environment. We developed a wireless fluid reward delivery 

system (MilkFeeder) for this purpose. The instructions for the assembly and usage of 

MilkFeeder are included in the SpatialAutoDACQ documentation. MilkFeeder is a wirelessly 

controlled, LiPo battery-powered and securely encased module that can be placed inside 

the environment (Figure 2.3). Depending on the battery, it can remain operational for up to 

8 hours. A Raspberry Pi Zero W controls a solenoid pinch valve, which can release milk to 

the exterior of the module for a rodent to consume, in quantity proportional to the duration 

of its opening. The liquid reservoir of MilkFeeder has 15 ml capacity. It is elevated relative 

to the reward deposit area outside the module and therefore induces the liquid to flow in 

response to the valve opening. MilkFeeder also includes two external LEDs (Figure 2.3A) 

and an internal speaker (Figure 2.3B) for localised light and audio signals, respectively. 

These can be useful in training or also testing phases of some navigational tasks. Current 

implementations feature specification of the intensity of LEDs and frequencies of modulated 

narrowband white noise audio signals. However, the Raspberry Pi has full control over both 

the LEDs and the speaker, meaning any signal could be implemented on this platform. 

 

Figure 2.3 Images of MilkFeeder. A | MilkFeeder complete with the cover and both LEDs turned 
on. The blue LEDs are visible on the top of the cover and at the reward deposit location (*). B | 
MilkFeeder without the cover. Raspberry Pi Zero W controls the solenoid pinch valve (**), which 
allows liquid to pass through if opened. The elevated liquid reservoir (***) induces the flow to the 
deposit location (*) when the solenoid valve (**) is opened. MilkFeeder includes a speaker (****) 
for localised sound generation, and a LiPo battery is visible underneath the speaker. £2 coin is 
included for scale. 

2.3.6 Flexible automated spatial task 

At the core of automating experiments is the spatial task program. SpatialAutoDACQ 

currently includes a flexible task program that can utilize all the above features of 

SpatialAutoDACQ. The task program can be used to execute a wide range of behavioural 
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tasks, including optimised foraging task and navigational tasks. This task program provides 

an easy way to get started with experimental work as soon as SpatialAutoDACQ is set up 

and has many parameters to adjust to create different navigational tasks using MilkFeeders 

as goal locations. Written purely in Python, researchers can use this task program as a 

template to create their task programs, which can be selected for each experiment using 

SpatialAutoDACQ GUI. 

The tasks that can be run using the task program included with SpatialAutoDACQ highlight 

its main features. Any number of PelletFeeders can be added to the task, including their 

location in the environment. The PelletFeeders are activated with weighted randomness, 

favouring those closest to areas least visited by the animal, maximising uniformity in 

positional sampling. This optimisation is only possible thanks to the availability of real-time 

tracking data. The tracking data is also used to restrict the release of pellets only to moments 

when the animal is mobile, thereby discouraging inactivity. Crucially, the output from Open 

Ephys GUI signalling chewing artefacts – high amplitude in 400-600 Hz range on a CA1 

electrode – is used to detect consumption of past pellets. No new pellets are dropped unless 

chewing is detected since the previous pellet drop. In this form, the task program automates 

and optimises the foraging phase of any experiment. 

The task program can also execute navigational tasks using any number of MilkFeeders as 

goal locations. In general, tasks work on the principle of alternation between foraging and 

cue-based navigational trials. It is also possible to run a task without PelletFeeders, with no 

delays between navigational task trials, or without any cues. However, in most paradigms, 

including the foraging phases is necessary and alternation with cue-based navigation trials 

is used. The navigational trial start conditions can be specified with many parameters, 

including distance from MilkFeeders, mobility, heading direction relative to the goal location 

and time since the previous trial. Additional parameters include rules for changes in goal 

locations as well as light and audio signals associated with trials. SpatialAutoDACQ can play 

audio signals from speakers on MilkFeeders, providing localised sound sources, or those 

connected to the Recording PC, to create ambient sound. The sound frequency components 

signalling the navigational trial can be specified separately for each goal location, allowing 

discrimination tasks based on differences in the tone of an auditory cue. Altogether the 

flexibility of the task program has proven to be useful for developing and applying novel 

open-field navigational tasks, as outlined below. 
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2.4 Results 

SpatialAutoDACQ was used to conduct all the experiments reported in this thesis, and it has 

been in continuous use since then by other researchers. This section provides a short 

description of an experiment conducted with SpatialAutoDACQ and some examples of 

results to illustrate its utility. 

The experimental environment was a 3.5 x 2.5 m rectangular arena with 60 cm high walls 

(Figure 2.4A). It included identical cameras and light fittings in each of the four corners, 12 

PelletFeeders distributed to cover all parts of the environment, and several visual cues on 

the boundary, both on the walls as well as more prominent elevated cues. The task involved 

foraging for pellets and intermittently performing navigation, triggered by a non-spatial 

auditory cue, to one of two MilkFeeders, positioned on opposite ends of the environment. 

During early training, both localised light and an ambient sound were used to signal the 

navigational trials. The rat achieved near-perfect performance in 4-5 training sessions of 60 

minutes and from this point onwards, the light signal was used only each time the goal 

location changed, until the first successful trial to the new goal. 

Two slight variations of the same navigational task were used to allow incremental learning 

of the more challenging version. For the first two weeks, the training sessions were 60 

minutes long and took place in a smaller, 1.4 x 1.4 m environment, until the animal learned 

the easier version of the task. In the easier version of the task, the goal location was 

unchanged within sessions but changed between sessions (session-change task). In the 

other version of the task, the goal was switched during the session between blocks of 30 

trials (block-change task). Once the rat had achieved near-perfect performance in the 

session-change task within the smaller environment, it was introduced to the large 

environment, and in just a couple of 120 min sessions, the animal reached similarly high 

performance in the large environment. At this point, a few sessions were recorded explicitly 

for data analysis, followed by training in the block-change task. In just one week of training 

in the block-change task, the animal achieved excellent performance, responding to the 

sound by going to the correct MilkFeeder with above-chance accuracy within a few trials 

after each time the goal changed (Figure 2.4B). 

Over 200 place cells were simultaneously recorded as the animal performed the navigational 

task, many with multiple place fields distributed across the environment (Figure 2.4C). The 

large numbers of co-recorded place cells allowed the reconstruction of encoded trajectories 

during SWR associated replay events (Figure 2.4D). Detailed analysis of navigational task 

data acquired with SpatialAutoDACQ is in a chapter of this thesis further below. These 
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results demonstrate the utility of SpatialAutoDACQ in acquiring novel datasets for the study 

of spatial cognition while reducing experimental variability and workload through automation. 

 

Figure 2.4 Examples of results from experiments using SpatialAutoDACQ. A | Drawing of the 
experimental environment used in the navigational task. Most of the PelletFeeders and visual cues 
are omitted for clarity. B | Performance plot of a trained animal in the block-change task shows that 
it consistently goes to the correct goal location within a few trials after each time the goal location 
is changed. C | The spatial ratemap of a place cell recorded from CA1 during a navigational task 
experiment has multiple place fields across the large environment. D | An example of a 2 m long 
trajectory replayed during the navigational task experiment. Bayesian posteriors summed with 
different contributions to RGB range based on their relative timing. Animal’s location during this 
replay event is marked in green. 

2.5 Discussion 

The data acquisition system presented in this chapter solves several key challenges of 

studying spatial representations in larger and more complex environments than the current 

standard. SpatialAutoDACQ achieves this with tracking and reward systems, which are 

scalable and also allow the automation of a wide range of open-field navigational task 

experiments. It serves as a solution that works immediately for the most common use cases 

in the study of spatial representations while it is easy for technically advanced users to 

implement additional features or to change existing systems. 
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SpatialAutoDACQ achieves scalability through the use of distributed computing principles 

and efficient connectivity with peripheral devices, using ZeroMQ. This approach ensures 

that increasing the number of peripheral devices is not limited by processing power of the 

Recording PC and avoids bottlenecks in communication with said devices. The primary use 

of distributed computing is to off-load the real-time processing of camera images to 

peripheral devices on the Raspberry Pi platform. The low-cost coupled with the high 

performance of the Raspberry Pi platform, as well as its associated camera module, has 

previously been found useful for a multi-camera recording system (Saxena et al., 2018). 

However, their solution was limited to recording the video and post-hoc processing of data 

from multiple cameras. SpatialAutoDACQ is the first publicly available system that supports 

scalable real-time animal tracking. 

The task program provided with SpatialAutoDACQ can serve the needs of most 

experimenters interested in spatial navigation in open-field environments. By tailoring the 

many parameters in the task settings GUI, the same program can be used to execute many 

different navigational tasks. As previously mentioned, Bonsai is an already existing system 

for integrating devices, such as cameras and physical actuators (Lopes et al., 2015). 

However, Bonsai does not provide reward systems, such as PelletFeeder or MilkFeeder, 

and it does not support scalable animal tracking, because it is designed around centralised 

processing. More recently, Saunders and Wehr (2019) published an early version of a 

system designed to automate tasks, called Autopilot, relying solely on the Raspberry Pi 

platform. Similarly to Bonsai, Autopilot does not provide integrated complete reward 

systems, and it does not have any video-based animal tracking solutions. Both Bonsai and 

Autopilot would require the researcher to build a navigational task from the ground up, while 

the task program in SpatialAutoDACQ can already serve most needs. However, once a task 

has been designed in either Bonsai or Autopilot, it could be shared between other users, 

which is also the case with SpatialAutoDACQ. In fact, with developmental efforts from the 

research community, both Bonsai and Autopilot could obtain the features that currently make 

SpatialAutoDACQ distinctive. SpatialAutoDACQ is an open-source project and the key 

elements – distributed real-time tracking system, MilkFeeder, PelletFeeder and components 

of the task program – could be integrated into Bonsai and Autopilot. However, right now 

SpatialAutoDACQ is the most comprehensive solution for large open-field navigational task 

experiments. 

The benefits of automation and multi-camera tracking have been mentioned above on 

several occasions. In summary, a solution with these features, such as SpatialAutoDACQ, 

is valuable for three key reasons. First, the automation of experiments reduces uncontrolled 
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variability caused by the experimenter in long and complicated experiments. Second, 

automation of the experiment saves valuable time of researchers. Third, both automation 

and scalability open up possibilities for novel experimental paradigms involving longer 

experiments and more naturalistic environments. Long recordings are valuable for the use 

of new data-driven analysis techniques, such as machine learning. Multi-camera recordings 

are also useful for new methods, such as 3D pose estimation using DeepLabCut (Nath et 

al., 2019). Data collected using SpatialAutoDACQ can be used directly for this process, as 

the cameras are always calibrated to the same reference frame. 

In summary, SpatialAutoDACQ provides a valuable solution for data acquisition for 

experiments investigating the spatial representations of naturalistic environments. It opens 

up opportunities for new experimental paradigms and supports the usage of modern 

analytical tools. Other solutions exist for integrating the components that comprise 

SpatialAutoDACQ, but SpatialAutoDACQ is currently the only complete solution to serve the 

needs of studies on large scale navigation. 
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3 General data acquisition and analysis methods 

3.1 Animals and tetrode implantation 

Five male Lister Hooded rats were used for this study. All procedures were approved by the 

UK Home Office, subject to the restrictions and provisions contained in the Animals Scientific 

Procedures Act of 1986. All rats (333-386 g/13-17 weeks old at implantation) were implanted 

with two microdrives targeted to the right and left CA1 (ML: 2.5 mm, AP: 3.8 mm posterior 

to bregma, DV: 1.6 mm from dura). The tetrodes were implanted through ~1 mm trephine 

craniotomies over target sites, and they were fixed to the exposed skull with dental cement 

(Super-Bond C&B) and six bone screws. A gold pin used as ground and reference was 

soldered to one of the orbital bone screws before its implantation. The craniotomies and 

elements of the microdrives were protected from dental cement using Vaseline. 

The hair around the incision site was removed, and the skin was sterilised with Betadine. 

The animal was placed on a heating pad for the duration of the surgery to maintain body 

temperature. Viscotears Liquid Gel was used to protect the animal’s eyes. General 

anaesthesia during the operation was maintained with an isoflurane-oxygen mix of 1.5-3% 

at 3 l/min. Carprieve (1:10) and Baytril were injected subcutaneously (0.1 ml/100 g) before 

the surgery for analgesia and to minimize chances of infection, respectively. Baytril was also 

included in post-operative treatment in their water for one week. An analgesic, Metacam 

Oral Suspension suspended in jelly, was administered for three days post-surgery. 

After surgery, rats were housed individually in Perspex cages (70cm long x 45cm wide x 

30cm high) on a 12 hr light/dark cycle. Screening and experiments took place during the 

dark phase of the cycle. After one week of recovery, rats were maintained at 90-95% of free-

feeding weight with ad libitum access to water. 

3.2 Electrophysiological and behavioural recordings 

Each single-screw microdrive (Axona Ltd.) was assembled with two 32 channel Omnetics 

connectors (A79026-001), 16 tetrodes of twisted wires (either 17 µm H HL coated platinum-

iridium, 90% and 10% respectively, or 12.7 µm HM-L coated Stablohm 650; California Fine 

Wire), and platinum-plated to reduce impedance to below 150 kΩ at 1 kHz (NanoZ). 

Electrophysiological recordings were acquired using Open Ephys recording system (Siegle 

et al., 2017) and a 64-channel amplifier board per drive (Intan RHD2164). The recorded 

signal was referenced to an orbital bone screw - also the ground for the amplifier boards. 
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The Open Ephys Acquisition Board was grounded to an aluminium foil sheet positioned 

underneath the vinyl flooring throughout the entire extent of the experimental room. 

Electrophysiological signals were recorded from 128 channels at 30 kHz. Data used in LFP 

analysis was downsampled to 3 kHz with zero phase shift anti-aliasing filter. Spikes were 

detected as negative threshold crossings of more than 50 µV in the 30 kHz signal after 

bandpass filtering between 600 and 6000 Hz. For each spike, waveforms were stored at 30 

kHz for 1.2 ms window surrounding the threshold crossing. The waveforms are displayed 

and discussed in their inverted form, where the largest deflection from baseline is a positive 

peak. 

Two infra-red LEDs of different luminance were attached to one of the amplifier boards, with 

the dimmer secondary LED positioned over the nose of the animal and the brighter primary 

LED positioned 5 cm posteriorly. The latter was used to pinpoint the animal’s location. 

Positional tracking was performed with the SpatialAutoDACQ system described above. The 

output position data from SpatialAutoDACQ is the location of each LED transformed from 

pixel value to a coordinate in reference to the calibration pattern, sampled at 30 Hz. The 

calibration pattern was scaled in centimetres, positioned horizontally on the level of the LED 

(10 cm above the floor), and aligned to a corner of the environment. Therefore, the resulting 

positions were distances in centimetres from that corner of the environment along the axes 

parallel to walls. 

Screenings for a suitable place cell yield were performed from one week after surgery in a 

1.4 x 1.4 m environment, different from those used in any of the experiments. The tetrodes 

were gradually advanced in 62.5 µm steps until ripple oscillations could be observed, and 

pyramidal cells with stable firing fields could be identified. The screening was often based 

on the same sessions where the animal was being trained to perform a navigation task 

described in further below in chapter 4. 

3.3 Histology 

Anatomical locations of recordings were verified using histology. Rats were anaesthetised 

with isoflurane and given intraperitoneal injection of Euthanal (sodium pentobarbital) 

overdose (0.5 ml / 100 g) after which they were transcardially perfused with saline, followed 

by a 10% Formalin solution. Brains were removed and stored in 10% Formalin and 30% 

sucrose solution for 3-4 days before sectioning. Subsequently, 50 µm frozen coronal 

sections were cut using a cryostat, mounted on gelatine coated or positively charged glass 

slides, stained with cresyl violet and cleared with clearing agent (Histo-Clear II), before 
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covering with DPX and coverslips. Sections were then inspected using an Olympus 

microscope, and tetrode tracks reaching into CA1 pyramidal cell layer were verified. 

3.4 Experimental environments 

Screenings, training and experiments all took place in the same experimental room and 

using environments constructed of the same materials. The environment had black vinyl 

flooring; it was constructed of 60 cm high modular boundaries (MDF) coloured matt black, 

surrounded by black curtains on the sides and above (Figure 5.1B). Each environment was 

illuminated by an elevated (2 m) diffuse daylight lamp from each corner of the environment 

that was adjacent to a corner of the experimental room (multiple lights in larger 

environments), with each lamp producing between 30-50 Lux/m. All experiments involved 

scattered 20 mg chocolate-flavoured pellets (LBS Biotechnology, UK) dropped into the 

environment by SpatialAutoDACQ to encourage foraging. 

3.5 Cell identification 

Spikes were assigned unit identities with automated clustering software (KlustaKwik) (Kadir 

et al., 2014) based on spike waveforms. The results from the automated clustering were 

curated using an offline data analysis suite (Tint, Axona Ltd., St. Albans, UK) to further 

separate under-clustered units and merge over-clustered units. The decision on breaking 

up clusters was informed by the variability of waveform properties in the cluster and taken 

in cases where cluster separation resulted in fewer refractory errors in the auto-correlograms 

of each new cluster. Similarly, clusters were merged if the waveform properties were 

overlapping and merging did not increase refractory errors. Given the low firing rate of place 

cells compared to interneurons or noise, the clusters of these place cells were generally 

under-clustered. Therefore, manual curation mostly involved splitting place cell clusters and 

merging interneuron clusters. Clusters that had a high rate of refractory errors were merged 

into a noise cluster. 

All recordings from a given animal that were performed on the same day were clustered 

simultaneously, concatenating the spike waveform data. Therefore, the same set of units 

were identified across all such recordings. This approach made it possible to analyse the 

properties of the same place cell population in multiple conditions. 

L-ratio (Schmitzer-Torbert and Redish, 2004) and Isolation Distance (Harris et al., 2001) 

were calculated through Mahalanobis distance to verify that sorting quality has not affected 

the results. The features used for this analysis were the same as those used for automated 

and manual clustering: amplitude, time-to-peak, time-to-trough, peak-to-trough, half-width, 
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trough-ratio, and the first three PCA components of waveforms. These measures were 

computed on waveforms combining all clusters, including noise, and pooling across all 

recordings – the same way as was done for spike sorting. 

Place cells were identified computationally after the clustering procedure. The following 

criteria were used to identify place cells: 

• Waveform peak-to-trough duration of over 0.45 ms. 

• Waveform peak half-width of over 0.1 ms. 

• The ratio between amplitude and trough voltage values (trough-ratio) of over 0.175. 

• Spatial correlation of odd and even minute ratemaps of over 0.5 in at least one 

recording. 

• Spatial correlation of first and last half ratemaps of over 0.25 in at least one recording. 

• At least one field in one of the recordings (field detection method described below). 

• Mean firing rate across all recordings lower than 4 Hz. 

Place cells were further filtered for duplicates recorded on separate tetrodes. Duplicate units 

were considered to be unit pairs that passed the following criteria mostly based on cross-

correlograms with 2 ms bins and a maximum lag of 25 ms: 

• At least 200 spikes at 0-lag. 

• Lower than 0.5 ms sigma of a gaussian fitted to the cross-correlogram. 

• Mean correlation of ratemaps higher than 0.5 across recordings where both units 

have at least 200 spikes. 

If duplicate units were detected, the one with more total spikes was set as noise, to maximise 

signal to noise ratio. This approach was based on the observation that the unit in the 

duplicated pair that had more spikes was usually less well isolated from noise or other units. 

3.6 Computing ratemaps and detecting fields 

For calculating a ratemap for each unit, the position data was binned into 4 cm square bins, 

and the number of position samples in each bin was divided by the sampling rate, producing 

the dwell time for each spatial bin. Spike timestamps were paired with simultaneous position 

samples and assigned to corresponding spatial bins, thereby producing spike counts for 

each spatial bin. Only the position samples and spike timestamps from periods where the 

animal was moving at more than 10 cm/s were used to produce these dwell time and spike 

count maps. Both dwell times and spike counts were smoothed with a gaussian kernel 

(standard deviation of 2 spatial bins) while setting unsampled bin values and those outside 
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the environment to 0. The resulting smoothed spike counts were divided by smoothed dwell 

times, producing spatial ratemaps. This method effectively achieved the equivalent of a post-

division smoothing kernel that alters its shape at different locations in a way that ignores 

data from unsampled bins and outside the environment. 

Place fields were detected in spatial ratemaps to analyse place cell properties at the level 

of individual place fields. Here, a place field is defined as a contiguous area in a ratemap, 

where the firing rate decays continuously from a single prominent peak, and the observed 

firing rates are well correlated across multiple visits to the same location. In the examples 

shown in Figure 5.2C, individual place fields can be seen so close to each other that the 

firing rate threshold traditionally used for place field detection (1 Hz) would not be able to 

detect these as separate place fields. This effect is exacerbated by the spatial smoothing 

step in computing spatial ratemaps. However, based on the definition above, these areas 

should be considered as separate place fields. 

An iterative thresholding method was used to find spatial bins that constituted a single place 

field in a ratemap. As a first step, the ratemap was thresholded at 1 Hz, and contiguous 

groups of bins (ignoring diagonal connections) were identified as candidate fields. The 

regions including at least 10 spatial bins and a peak value of at least 2 Hz were considered 

as valid candidate fields. The ratemap of each valid candidate field was then thresholded 

again with a 0.05 Hz higher threshold (1.05 Hz), and the same method of finding contiguous 

regions and their validation was applied. This was done iteratively, resulting in continuously 

smaller regions, each with a higher threshold and associated with their parent field 

candidates with a lower threshold, some having more than one child field candidate. 

The resulting lists were then parsed in reverse order, starting with the smallest candidate 

fields with highest thresholds. Candidate fields that were too large (greater than half the bins 

of the ratemap) or not sufficiently stable over repeated visits to the region (spatial correlation 

of odd and even minute ratemaps below 0.25) were ignored. As the increasingly lower 

threshold candidate fields overlapping with each other were assessed, the lowest threshold 

valid candidate field in a sequence of overlapping candidate fields was detected as a place 

field. The overlapping candidate fields with a higher threshold were ignored. If more than 

one child candidate field of a larger candidate field with a lower threshold was valid, the large 

single candidate field was ignored, and the smaller valid candidate fields with a higher 

threshold were detected as separate place fields. In this manner, multiple place fields were 

detected in individual ratemaps of single units, as illustrated in Figure 3.1. 
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Figure 3.1 Field detection method based on iterative thresholding identifies multiple place 
fields in a single ratemap. The spatial ratemap of a place cell is shown on the left. This is the 
same cell as in Figure 5.2C. With the threshold at 1 Hz, only one place field (green) is detected. 
While increasing the threshold at 0.05 Hz increments, two place fields (blue and orange) are 
identified with 1.25 Hz threshold. These both pass the place field criteria. By increasing the 
threshold further, two smaller place fields (red and pink) are detected with 4.75 Hz threshold, both 
overlapping with the larger orange place field. At least one of the smaller place fields (red and pink) 
did not pass the place field criteria. Therefore, both of them (red and pink) were ignored because 
a larger place field, detected with a lower threshold, and overlapping with them, did pass the place 
field criteria. As a result, the blue and orange regions were detected as place fields by the iterative 
thresholding algorithm. 

3.7 Position reconstruction 

Position reconstruction – decoding – was used to estimate the location encoded in the 

activity of a place cell population at specific timepoints. The probability of the animal being 

at each location in the environment is computed based on the similarity between the ongoing 

firing rates of place cells in a time-window (e.g. 1 second) and their spatial ratemaps. The 

decoded location is then identified as the one with the highest likelihood. The spatial 

ratemaps for this purpose were computed using periods where the animal was moving faster 

than 10 cm/s, excluding the time-point that was being decoded – cross-validation with a 3-

minute window. The method of matching the ongoing population activity to spatial ratemaps 

has been used previously (Mathis et al., 2012; Towse et al., 2014) and is based on the 

original formulation by Zhang et al. (1998). 

Specifically, the population activity of 𝑁 units 𝐾 = (𝑘1, … , 𝑘𝑁, ) was computed, where 𝑘𝑖 is 

the spike rate of the i-th unit in a temporal bin (e.g. 1 second). Expected population activity 

𝑎 at location 𝑥, belonging to the set of all spatial ratemap bin centres 𝑋, was based on the 

values of all units in the spatial ratemap corresponding to that location bin 𝑎(𝑥) = (𝑓𝑖, … , 𝑓𝑁), 

such that 𝑎𝑖(𝑥) = 𝑓𝑖, refers to the value in the spatial ratemap of unit 𝑖 at location 𝑥. These 

representations of neural activity were used to compute the conditional probability of 

observing 𝐾, at location 𝑥 as: 
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 𝑃(𝐾|𝑥) =∏
𝑎𝑖(𝑥)

𝑘𝑖

𝑘𝑖!
𝑒−𝑎𝑖(𝑥)

𝑁

𝑖

 (1) 

This method allows assessing the probability of any spatial bin being decoded independently 

of the number of bins considered and their spatial arrangement. It is agnostic to the animal’s 

real location and past decoded locations, as it considers all locations to have equal prior 

probability – it has a flat prior. The location encoded in the population activity 𝑥(𝐾) was then 

computed as the centre of the spatial bin with the highest conditional probability: 

 𝑥(𝐾) = max
𝑥∈𝑋

𝑃(𝐾|𝑥) (2) 

This maximum likelihood method is used for decoding the current position of the animal, as 

well as decoding of locations represented in replay trajectories. 

3.8 Statistical methods 

In most cases Kruskal-Wallis test (KW) was used to test for differences between groups, 

which was followed by Mann-Whitney U (MW) test for individual pair-wise comparisons. 

These tests were two-sided, unless otherwise stated, and computed using the 

implementation in the popular Python statistics package Scipy (Virtanen et al., 2020). 
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4 Place cell replay in a novel open field navigation 

task 

4.1 Introduction 

Hippocampal online replay has been found to predict future actions (Pfeiffer and Foster, 

2013; Singer et al., 2013; Ólafsdóttir et al., 2017; Wu et al., 2017; Xu et al., 2019). Replay 

events are thought to be involved in navigational planning as well as goal learning (Poulter 

et al., 2018; Pfeiffer, 2020). Involvement in navigational planning makes place cell replay 

one of the most higher-level and forward-looking brain processes so far characterised. 

Understanding the determinants of replay would support studying its role in navigation. 

In all past studies relating hippocampal replay to future actions, the animal was performing 

a self-paced task. Such paradigms provide little control over the animal’s behaviour and, 

therefore, the exact conditions that trigger a replay event remain ambiguous. A cue-triggered 

navigational task could provide the experimenter with some control over the timing of 

decision-making processes and thereby the timing of replay events. Manipulating the timing 

of replay events would open opportunities to further determine the conditions in which they 

can occur. This approach would be particularly valuable in a paradigm where the cue-

triggered navigation is interleaved with other behaviours. 

A novel behavioural paradigm for the study of hippocampal replay could also improve our 

understanding of how replay content relates to behaviour. All past studies, except that by 

Pfeiffer and Foster (2013) have been conducted using linear mazes, rather than open field 

environments. In linear mazes, hippocampal maps are different depending on movement 

direction, making it difficult to distinguish between past and future trajectories in the ends of 

baited arms. Furthermore, much of the real-world environments experienced by a rat are not 

one-dimensional. Therefore studies in these conditions may only explain this edge case 

scenario. 

It is not yet entirely clear whether SWR associated place cell replay serves to simulate 

trajectories to future goals (Carey et al., 2019). In the study by Xu et al. (2019), forward 

trajectories in reactivations at a decision point were predictive of correct choices. Still, they 

did not distinguish these events from theta sequences (Wikenheiser and Redish, 2015). In 

the open field study, the replay trajectory was highly correlated with the animal’s future path 

(Pfeiffer and Foster, 2013). The replay trajectory was predictive of the next movement 



74 
 

direction regardless if the animal returned to the familiar home goal in that instance, as was 

the case in most trials. However, even as the predictive replay events in that study were 

most likely to include the next goal location, they were also preceded by a reward. Therefore, 

it is unclear whether these replay events were constructing a trajectory linking the animal’s 

location to the next goal or the location of the previous reward to the next goal. 

This study aims to provide a novel open field cue-triggered navigation task necessary to 

control the timing of navigation supported by replay events. In addition, some of the 

ambiguities in replay content and determinants described above are clarified. 

4.2 Methods 

4.2.1 Animals, procedures and data acquisition 

The procedures used for the two animals in this study were described in the General 

Methods section (3.1). All tetrodes were verified to have been in CA1 using histological 

techniques described in the General Methods section (3.3). The recordings and experiments 

were performed, and the screening was conducted using SpatialAutoDACQ as described in 

the General Methods section (3.2). The screening process overlapped with the navigational 

task training as described below and was completed before moving to the experimentation 

phase. 

4.2.2 Experimental paradigm 

The session-change milk task is a task paradigm that interleaves foraging periods with 

navigation trials signalled by a non-spatial auditory cue. There are two identical MilkFeeders 

in the environment, only one of which is rewarded in a single session. Each session is a 60-

minute long continuous recording where the animal was performing foraging and goal-

oriented navigation interchangeably. Most of the session is comprised of foraging periods, 

where the animal is looking for chocolate flavoured pellets scattered in the environment with 

SpatialAutoDACQ. The foraging periods are interleaved with navigation task trials. Each trial 

is signalled by an auditory cue, persisting from the start until the end of the trial. The auditory 

signal is white noise filtered between 11.75-12.25 kHz and modulated at 8 Hz, delivered 

from multiple speakers distributed above the experimental environment – ambient sound. 

The animal is then required to go to one of the two goals at the MilkFeeders in order to 

receive a reward. The reward was approximately 0.5 ml of milk solution (SMA Wysoy Soya 

Infant Formula) deposited from the MilkFeeder at the goal if the animal gets to it before the 

end of the trial and stays there for at least 1 second. The milk reward is then delivered over 
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a one-second period. Another foraging phase follows both successful and unsuccessful 

trials until the conditions are met for the navigational trial to start again. The starting 

frequency of trials is highly variable, based on conditions detailed below. On average, the 

animal performs one trial for every minute of the session, and each session was 60 minutes 

long. The trials are usually just 2-3 seconds long, as the animal runs to the goal immediately 

as the auditory cue comes on. Further details of task parameters are provided below. 

The materials of the experimental environment and pellet delivery system are detailed in the 

General Methods section (3.4). The MilkFeeders were identical, both turned on and 

prepared with the milk solution to avoid any additional cues for identifying the correct feeder 

beyond their location. The first stages of training took place in a 1.4 x 1.4 m environment 

used for screening while the final training and the experiment were conducted in a 350 x 

250 cm rectangular environment. 

In the small environment, the two MilkFeeders were placed in opposite corners, facing 

opposite directions away from walls. This environment had two A2 size (42 x 59 cm) black 

and white cues with different patterns elevated above adjacent walls and two smaller cue 

cards hanging from the top edge of the walls. 

In the large environment, the MilkFeeders were positioned on the midline between the two 

short walls, at 50 cm from either wall with milk ports facing the wall (Figure 4.1A). Twelve 

PelletFeeders were positioned above this environment to scatter pellets uniformly across its 

entire extent. Two A0 (84 x 119 cm) and two A2 size cue cards were elevated above 

opposite walls such that the view from the centre towards either MilkFeeder was identical, 

except for different patterns on the black and white cue cards (Figure 4.1C). In addition, two 

different smaller cues made of A4 papers (11 × 16 cm) were hanging from two opposite 

corners. A square-shaped box made of the same material as the external boundaries, 20 x 

20 cm in size and 60 cm high, with patterned A4 papers hanging from the top edge on each 

side, was positioned in the centre of the environment. It served as an additional cue and to 

support uniform foraging as rats tend to avoid large open spaces. 
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Figure 4.1 Open field non-spatial cue-triggered navigational task experimental paradigm. A 
| Schematic of the experimental environment. The two MilkFeeders (black squares) are located at 
symmetric positions, 50 cm from the wall on the west and east side of the environment. There is a 
20 x 20 cm square and 60 cm high box in the centre of the environment, resting on the floor. The 
shaded regions in the middle of the north and south walls indicate the locations where the trial can 
start. The shaded regions near MilkFeeders indicate the locations the animal needs to be at near 
the activated to complete a trial successfully. The purple dashed line illustrates a typical trajectory 
of the animal during a trial. B | Diagram of the experimental paradigm illustrates the alternation of 
the MilkFeeder (F1 and F2) locations and goal location (Goal) over four sessions of a single 
recording day. C | Photograph of the experimental environment. 

The training protocol involved three phases, where the animal was learning the task in 60-

minute long sessions on successive days. Each training phase lasted a week or a few days. 

The environment and task parameters varied between phases, and these are detailed 

below. The first training phase was in a smaller environment than the experiment, and the 

task was less challenging. Later phases were increasingly more challenging. This phasic 

training with incrementally increasing difficulty was used to expedite the training process. 

The duration of the training protocol depended on the animal’s performance, but generally 

lasted around two weeks of training every day. 

The first training phase aims to teach the animal to get a reward from the MilkFeeders after 

being introduced to the foraging task during screening. The goal location – the MilkFeeder 

which is rewarded – is swapped each session between the two possible locations. During 

this phase, taking place in the screening environment, the minimum inter-trial interval is 

30±10 seconds (uniform distribution) (Table 4.1). Additionally, it must be at least 20±5 

seconds since the last pellet drop for the next navigational trial to start. Further conditions 

for the trial to start are that the animal must have moved at least 30 cm in the last 2 seconds, 

it must not be moving towards the goal feeder (45° margin), and it must be at least 40 cm 

from both MilkFeeders. Once the trial start is signalled, the animal has up to 12 seconds, to 

get to within 20 cm of the goal MilkFeeder and stay there for 1 second. If a trial is successful, 

milk is released from the that MilkFeeder. Until the first successful trial, going to the incorrect 

MilkFeeder has no effect. After the first successful trial, going to the incorrect MilkFeeder 
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ends the trial. In case of an unsuccessful trial, there is a 10-second period where the task 

does not progress – no pellets are dropped, and no trials are started. In the first training 

phase, a blue LED light on the top of the goal MilkFeeder is also turned on during each trial, 

to facilitate learning. 

 Phase 1 Phase 2 Phase 3 

Environment 140 x 140 cm 140 x 140 cm 350 x 250 cm 

Intertrial interval 30±10 s 20±5 s 20±5 s 

Time since the last pellet 20±5 s 20±5 s 20±5 s 

Movement in last 2 s 30 cm 30 cm 30 cm 

Minimal distance to a MilkFeeder at trial start 40 cm 60 cm 135 cm 

Required distance to goal to complete the trial 20 cm 10 cm 15 cm 

Maximum trial duration 12 s 6 s 10 s 

Negative feedback at incorrect MilkFeeder No Yes Yes 

LED on at goal MilkFeeder Yes No No 

Table 4.1 Parameters of the navigation task at different training phases. The experiment was 
conducted using the same parameters as phase 3. 

The second training phase is commenced once an animal is successful in at least 75% of 

trials and completes at least 30 trials per session in two consecutive sessions. This point 

was reached within 4-5 days when training twice a day, in 60-minute long sessions. The 

second training phase is identical to the first, except for the following changes (Table 4.1). 

Crucially, the LED on the goal MilkFeeder is only turned on during trials until the first 

successful trial. After this, the auditory stimulus is the only cue signalling a trial. A two-

second long white noise sound is played locally from the incorrect MilkFeeder if the animal 

goes to that feeder during a trial, instead of going to the correct feeder. This rule is only 

active after the first successful trial in each session. The minimum intertrial interval is 

reduced to 20±5 seconds, the trial start condition of minimum distance from nearest 

MilkFeeder is increased to 60 cm, the required proximity to the goal MilkFeeder is reduced 

to 10 cm, and the maximum trial duration is set to 6 seconds. It took approximately one 

week, training twice a day in 60 min long sessions, for an animal to reach above 75% 

performance, based on trials after the first 20 trials of each session, and to complete at least 

40 trials per session. Once this level of performance was maintained for two consecutive 

sessions, the animal was moved to the next phase of training. 

The third training phase takes place in the main experimental environment (Figure 4.1A), 

where the task rules are the same as in the second training phase, except for the following 

changes (Table 1). The minimum distance required from both MilkFeeders for a trial to start 
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is 135 cm. Therefore, for the trial to start, the animal has to be near the mid-point of the 

environment, between the two MilkFeeders, and by the long walls (Figure 4.1A). The 

required proximity to the goal MilkFeeder is 15 cm, and the maximum trial duration is 10 

seconds. Training in this phase was continued for a few days until the animal was able to 

complete at least 60 trials in a 60-minute session, with higher than 80% success rate and 

fewer than 20% of timeout trials, after the first 30 trials. Once these criteria were reached, 

the main experiment was conducted. 

The experiment comprised of four sessions completed in a single day, each 60 minutes long, 

with approximately 60 trials performed by the animal (Figure 4.1B). All task parameters were 

the same as in the third training phase. Between each session, there was a 60-minute break 

when the animal was returned to its home-cage. The two MilkFeeders used were assigned 

to the two locations randomly, and their positions were swapped after the second session 

of the day (Figure 4.1B). The goal location in the first session was chosen randomly, and it 

was swapped in each session (Figure 4.1B). The experiment was conducted on a few 

consecutive days, and the data presented here is from the second or third day, depending 

on the animal. The datasets were chosen based on the best performance of the animal. 

4.2.3 Cell identification, classification and ratemap computation 

Single units were identified based on waveforms concatenated across the four recordings 

in each animal, using the methods outlined in the General Methods section (3.5). The 

isolated units were categorised, as described in the General Methods section (3.5). 

Ratemaps were computed, and place fields detected as described in the General Methods 

section (3.6). 

4.2.4 Ripple and replay analysis 

The multi-unit activity was computed as the total firing rate of all place cells, binned in 1 ms 

bins and smoothed with a Gaussian kernel, with 5 ms sigma. Theta amplitude was computed 

as the magnitude of the Hilbert transform of bandpass filtered LFP (7-11 Hz, Butterworth 

digital filter with order 2), averaged across all tetrodes and smoothed with a Gaussian (0.2-

second sigma). Delta band oscillation amplitude was computed in the same way filtering for 

frequency band between 2-4 Hz, without temporal smoothing. The theta-delta log-ratio was 

computed as the natural logarithm of the amplitude ratio in these frequency bands, 

separately for the entire recording and running periods (> 10 cm/s). Theta-delta log-ratio 

threshold of 1 SD below the mean ratio during running periods was used during replay event 

detection as described below (Jackson et al., 2006). 
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Ripple amplitude was computed after common average referencing the LFP separately for 

tetrodes on both drives. The amplitude was computed as the magnitude of the Hilbert 

transform of bandpass filtered referenced LFP (150-250 Hz, Butterworth digital filter with 

order 4), averaged across all tetrodes and smoothed with a Gaussian kernel (15 ms sigma). 

Only periods where the animal was moving at less than 10 cm/s were considered. Ripple 

events were detected, using a two-step thresholding method, by extending events where 

the ripple amplitude was 1.5 standard deviations (SD) above the mean for at least 40 ms to 

timepoints where the amplitude fell lower than 0.5 SD above the mean. 

Replay events were detected by combining information from the above signals. Only periods 

where the animal was moving slower than 10 cm/s were considered. Similar two-step 

thresholding method as for ripple events was also used to identify high-synchrony events 

(HSEs) based on multi-unit activity with primary and secondary thresholds of 0.5 and 0, 

respectively. Only events with a duration above 85 ms were considered, and only if at least 

15 place cells fired during the event. The replay events were required to at least partially 

overlap with a ripple event, and the theta-delta log-ratio had to be below the threshold 

described above. Analyses of replay content were restricted to events where the decoded 

trajectory had at least one position more than 50 cm from the animal’s current location and 

at least one pair of positions more than 50 cm apart. 

Replay trajectories were decoded using the position reconstruction method described in the 

General Methods section (3.7) based on place cell activity. The spatial ratemaps used for 

replay decoding were computed by combining data across all four recordings, excluding 

navigational trials as well as periods where the animal was moving slower than 10 cm/s. The 

results were computed separately with non-overlapping and overlapping temporal windows. 

In case of non-overlapping windows, the average spike rate was computed for adjacent in 

21 ms periods. The overlapping windows method was based on spike rates computed for 1 

ms bins and smoothed with a Gaussian kernel (15 ms sigma). In this case, the smoothed 

spike rates at increments of 15 ms were used for position reconstruction. 

4.2.5 Detection of pellet consumption and the beginning of the run 

towards a goal 

Pellet consumption was detected as a very high threshold crossing in a 400-600 Hz filtered 

signal from one of the channels, as described in the Flexible automated spatial task section 

(2.3.6). The exact threshold for this was optimised during each recording. The minimum 

interval between any event was set to 200 ms. The detected threshold crossings were post-
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processed, computing the average count for overlapping 1-seconds windows every 0.1-

second interval, and detecting chewing events as centres of time windows where the value 

is greater than three times the standard deviation. In cases where more than one chewing 

event was detected in a 10-second interval, only the first event was included. 

The beginning of the final run during navigation task trials was detected by working 

backwards from the end of the trial. The last moment where the animal was moving at 

greater than 50 cm/s was identified. Next, the moment where deceleration started was found 

and after skipping 500 ms earlier from that, the next earlier moment where the animal was 

not accelerating and was moving slower than 40 cm/s was used as the run start time point. 

In some trials, this method failed to detect a run start time point. Such trials were excluded 

from the analysis relating to the final run start moments. 

4.3 Results 

4.3.1 Animals exhibited excellent performance, unbiased by goal 

arrangements 

The animals learned the correct goal location in each session in approximately 20 trials, 

after which they persistently performed the trials correctly with few errors until the end of 

each session (Figure 4.2). There were periods in every session where the animal was less 

engaged with the task and did not go to either MilkFeeder in response to an auditory cue 

before the end of the trial – timeout trials. However, these were brief, and most of the time, 

the animal was actively participating and completing trials successfully (Figure 4.2). 
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Figure 4.2 Navigation task performance. A | The performance of the first animal in each of the 
four sessions, excluding the trials prior to first successful trial. The percentage of correct trials was 
computed based on trials where the animal reached either MilkFeeder before the end of the trial. 
The timeout trials indicate the percentage of trials where the animal did not go to either MilkFeeder 
before maximum trial length was reached. Both measures are computed for sets of 5 trials including 
and preceding each trial. B | Same as in A, but for the second animal. 

One of the main purposes of interleaving the navigational trials with foraging periods was to 

initiate trials unexpectedly to the animal, causing a rapid switch from foraging to goal-

oriented navigation. However, the animals learned where they need to be at for the 

navigation trials to be initiated (Figure 4.1A). While the rules of the task introduced a lot of 

variability to the starting of trials, the animals learned to visit the trial start locations frequently 

and exhibited stereotyped behaviour at these locations, which often initiated a trial. They 

would spend some time (20-60 seconds) after each trial foraging for pellets and then return 

to one of the trial start locations. Once in the correct part of the environment, they would 

occasionally do brief movements to different directions, eventually matching the conditions 

required for a navigation trial to start (e.g. requirement to move more than 30 cm in the last 

2 seconds). From this point, they would complete the trial rapidly, in 2-3 seconds. Most trials 

involved this stereotypical behaviour. 

However, there were many navigation trials in each session where the animal did not 

anticipate the trial. Often the animal would be foraging or otherwise passing through the trial 

start location at a steady pace when the trial would be initiated, and these trials were also 

completed successfully. Furthermore, there were several examples where the animal 

changed its mind, completely inverting its trajectory during a rapid run towards one feeder, 

to go to the other one. Due to limited data being included in this thesis, it was not feasible to 

perform analyses with respect to different types of behaviour during the navigation task. 
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However, the prominence of trials with un-stereotyped behaviour suggests that neural 

activity patterns specific to task switching, decision making and reversal of decisions could 

all be studied using this task paradigm if many more recording sessions are used. 

Given the frequency of stereotyped behaviour, it is important to establish that animal 

behaviour is not biased by goal location or that of individual MilkFeeders. Indeed, the total 

success rate in sessions was consistently around 80%, far above chance, with no difference 

between conditions where the goal was in the west or east portion of the environment or 

when it coincided with the location of either MilkFeeder (Figure 4.3) (KW: H = 1.16, p = 0.76; 

all Binomial tests: p < 10-21). Across sessions, the animals exhibited no consistent 

preference to start successful trials from the north or south portion of the environment 

(Figure 4.3B) (all Binomial tests: p > 0.12), although a bias to start on either side did exist in 

some individual sessions. There was also no bias for crossing over to the other side or 

returning to the same side after completing a trial successfully (Figure 4.3C) (all Binomial 

tests: p > 0.19). It is, therefore, possible to consider each trial independently of the goal 

location and trial start location. 

 

Figure 4.3 Animal behaviour and performance were unbiased by goal location. A | The overall 
performance in each session with different arrangements of the goal and MilkFeeders. West, the 
goal was at the MilkFeeder located to the west; east, the goal was at the MilkFeeder located to the 
east; 1, the goal was at MilkFeeder with identity 1; 2, the goal was at MilkFeeder with identity 2. B 
| The percentage of successful trials in each session where the animal started a trial from the south 
portion of the environment, computed for different goal and MilkFeeder arrangements. C | The 
percentage of successful trials in each session where the animal crossed over from north to south 
or vice versa after the completion of a trial, computed for different goal and MilkFeeder 
arrangements. The black dashed lines indicate the chance level. 

4.3.2 Replay trajectory properties 

The total number of place cells recorded in a single recording day in each of the animals 

was 256 and 112. The spike sorting was performed by concatenating data from all four 

recording sessions in a single day. Therefore, the total number of place cells in each animal 
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is the number of cells detected to have a place field in at least one of the four recording 

sessions. The environment was not changed between sessions and, therefore, it is assumed 

that remapping of place cells during the recording day was minimal. 

A total of 661 replay events were detected using methods detailed in the Methods section 

(4.2.4). Examples of two replay events are shown in Figure 4.4 and 4.5. The replay event in 

Figure 4.4 occurred as the animal had just received a milk reward from the west MilkFeeder 

(Milk Reward task state), following a successful navigation trial (Milk Trial task state) (Figure 

4.4A). Forty-seven place cells were activated during this event (Figure 4.4 B and C), and the 

decoded trajectory started near the west feeder and progressed towards the north wall 

(Figure 4.4 D and E). This trajectory did not overlap but was in the same general direction 

as the animal’s path once it left the goal location about four seconds after the replay event. 

The decoded trajectory was in the opposite direction from the goal compared to the animal’s 

path before reaching the goal. Figure 4.5, however, shows another replay event in a similar 

situation, but the decoded trajectory starts from the other MilkFeeder – not where the goal 

is – and progresses north towards the wall. These replay events are representative of the 

most common type of events, occurring at the end of successful navigation trials. 
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Figure 4.4 Example of a replay event. A | Neural and behavioural variables aligned to the start 
of the replay event. From the top: running speed, multi-unit activity with replay events shaded in 
green, ripple band oscillation amplitude with ripple events shaded in green, theta-delta log-ratio 
with replay threshold in red, task state at different timepoints around the replay event. B | Spikes 
of activated place cells during the replay event with cells sorted in the order of the first spike. C | 
Spatial ratemaps of the place cells in the same order as in B in row-major order. D | Decoder 
posterior probability matrices of non-overlapping windows in row-major order. Posteriors are 
smoothed using a Gaussian, with a sigma of 2 bins, to facilitate visualisation. The peak location in 
each posterior is marked with a black “x”. E | The posteriors from D combined with linearly varying 
contributions to the RGB colour range. The animal position traces indicate positions 8 seconds 
before and after the replay event. 
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Figure 4.5 Example of a replay event. Same as Figure 4.4, but for a different replay event. 

A sequence of random locations may look like a trajectory. It is therefore important to 

establish that the locations decoded in sequences do indeed follow a trajectory. A very 

stringent test for this is one that checks if the locations in that specific order form a shorter 

path compared to a random order. Using this approach and locations decoded with non-

overlapping temporal windows, found that the correct order of decoded locations produced 

a shorter path than a random order (Figure 4.6A) (MW: U = 6 x 107, p = 10-74). Using 

overlapping temporal windows for decoding of replay events can provide a more accurate 

representation of the encoded trajectory, but requires a different approach to testing if the 

locations indeed form a trajectory. In comparison to trajectories decoded with independently 

circular-shifted replay spike trains the distances between locations decoded with 

overlapping windows and Gaussian smoothing were still shorter than expected by chance 
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(Figure 4.6B) (MW: U = 1.3 x 107, 10-8). Tortuosity was computed as the ratio of the path 

length to the distance between the start and end of the path. Comparing the tortuosity of the 

same sets of trajectories, those computed on real data were significantly more direct (Figure 

4.6C) (MW: U = 8.9 x 104, p = 10-44). Therefore, the decoded replay trajectories were not 

sequences of random locations but instead followed paths in the environment. The rest of 

the analysis is based on replay trajectories decoded using the method with overlapping 

windows and Gaussian smoothing, to ensure maximally accurate decoding. 

 

Figure 4.6 Decoded locations during replay are more trajectory-like than expected by 
chance. A | Cumulative distribution of the Euclidean distance between locations in the replay 
trajectories decoded with non-overlapping windows (data), compared to distances of same 
locations computed after randomising their order in each replay event (shuffle). B | Cumulative 
distribution of the Euclidean distance between locations in the replay trajectories decoded with 
overlapping windows (data), compared to the distances of locations decoded after applying a 
random circular-shift to each replay spike train (shuffle). C | Same as B, but plotting the tortuosity 
of each replay trajectory. 

Around 25% of detected place cells were recruited during individual replay events, although 

it was up to 50% for some events (Figure 4.7, proportion units active). The number of place 

cells involved was positively correlated with the linearised length of the decoded trajectory 

(Figure 4.7) (r = 0.281, p = 10-12), the distance between the start and end of the trajectory 

(Figure 4.7 shortest length) (r = 0.15, p = 2.4 x 10-4), as well as tortuosity of the trajectory 

(Figure 4.7) (r = 0.17, p = 2 x 10-5). Trajectories with a greater distance between the start 

and end points tended to be less tortuous (Figure 4.7) (r = 0.66, p = 10-78). The length of 

trajectories measured as the distance between the first and last location (shortest length) 

was quite uniformly distributed in the range between 50 and 150 cm (Figure 4.7). 



87 
 

 

Figure 4.7 Relationships between replay properties. Pair-wise correlation plots of place cell 
recruitment in replay events and the properties of decoded trajectories. Diagonal plots show the 
distribution of each measure named at the base of the column. The plots above the diagonal show 
the measures named on the left of each row plotted against measures named at the base of each 
column. The plots below the diagonal show the kernel density estimate of the same measures. 
Lines indicate the linear regression lines fitted to data, together with r and p values of the fit. 

4.3.3 Replay does not occur during the trial but correlates with 

movement direction after reward 

Replay trajectories decoded based on events while the animal was in the environment were 

more likely to start near the animal’s current location than expected by chance (Figure 4.8A) 

(KW: H = 2110, p = 0; MW: U = 1.5 x 105, p = 2 x 10-9). They were also more likely to start 

near the animal than to end there (Figure 4.8A) (MW: U = 1.5 x 105, p = 2 x 10-13), while they 

were still just slightly more likely to end near the animal than expected by chance (Figure 
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4.8A) (MW: U = 1.8 x 105, p = 0.025). The replay trajectories were also more likely to start 

closer the goal rewarded in the session than near the other MilkFeeder (Figure 4.8B) (KW: 

H = 2110, p = 0; MW: U = 1.6 x 105, p = 4 x 10-7) or to end near either goal (Figure 4.8B) 

(MW: U > 1.7 x 105, p < 0.0011). The replay trajectories were more likely to start and end 

closer to the nearest trial initiation location (set as the midpoints of the long wall) than any 

of the corners of the environment (Figure 4.8C) (KW: H = 2110, p = 0; MW: U > 1.7 x 105, p 

< 4 x 10-4). Surprisingly, they were also more likely to end near the trial initiation locations 

than to start there (Figure 4.8C) (MW: 1.7 x 105, p = 7.2 x 10-5). There was no significant 

difference between the proximity of the trajectory start and end locations to the closest wall 

(Figure 4.8D). In summary, the most frequent replay trajectories observed in this experiment 

were likely ones that started near the animal, as it was close to the MilkFeeder being 

rewarded in the session and end closer to the trial start location than any corners of the 

environment. 
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Figure 4.8 Replay trajectories are most likely to start near the animal. A | Cumulative 
distributions of the distance between the replay trajectory start location and the animal’s location 
during the event (start - animal), the distance between the trajectory end and animal (end – animal), 
compared to the shuffled versions of same measures (s), where the pairings between replay and 
animal locations are randomised. B | Cumulative distributions of the distance between the replay 
and the correct or incorrect goal locations. C | Cumulative distributions of the distance between the 
replay and the nearest trial initiation location (trial init) and nearest corner of the environment. D | 
Cumulative distributions of replay start and end location distances to the nearest wall. 

In order to establish the conditions at which the replay events occurred, the probability of 

replay events, as well as related variables, were analysed relative to specific time points in 

the task. These included the beginning and end of successful trials, the beginning of the 

final run in successful trials, and the consumption of scattered pellets. Pellet consumption 

and the beginning of the final run during each trial were detected as detailed in the Methods 

section (4.2.5). 

The beginning of the trial was associated with a momentary reduction in movement speed 

(Figure 4.9A), as can also be seen in the dip in speed just prior to the final run towards the 

goal (Figure 4.9B). Theta amplitude appears closely correlated movement speed (Figure 

4.9). The multi-unit activity of place cells does so as well but varies a lot less during the 

course of the trial (Figure 4.9). Ripple band amplitude may be slightly increased at the 

precise moment the trial starts; however, this effect is highly variable (Figure 4.9A). Just as 

the reward delivery is started, ripple band amplitude increases sharply, while the animal 

remains stationary (Figure 4.9C). 
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Figure 4.9 Replay events occur predominantly in response to milk reward, but not during 
pellet consumption. A | The average running speed, z-scored multi-unit activity, z-scored theta 
band amplitude, z-scored ripple band amplitude and the probability of ripple as well as replay 
events plotted for the period between 8 seconds preceding and following the beginning of 
successful trials. B | Same as A, but plotted relative to the beginning of the final running epoch 
towards the goal. C | Same as A, but plotted relative to the end of the trial, just as milk reward 
starts to be released. D | Same as A, but plotted relative to the consumption of a pellet. All plots 
share the legend in A. Error bands indicate 95% confidence intervals of obtaining the same mean 
with bootstrapping. 

The probability of ripple and replay events does not increase during the trial. Neither a 

second before the start of the trial (Figure 4.9A) or during the trial (Figure 4.9 B and C). At 

the end of the trial, as the milk reward delivery is started, the probability of ripple and replay 

events appears to increase sharply (Figure 4.9C), and it remains high for close to 8 seconds. 

This increase in ripple and replay probability does not occur during pellet consumption 

(Figure 4.9D), where the probability is close to baseline levels seen in Figure 4.9A (note the 

difference in the scale of the y-axis). Statistical analysis of these effects is provided further 

below. 

Pellet consumption is immediately followed by movement (Figure 4.9D), unlike milk reward 

consumption at the end of a trial (Figure 4.9C). Therefore, there are clear behavioural 
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differences in these two situations, possibly explaining the lack of replay in the case of pellet 

consumption. However, the ripple and replay probability increases rapidly in less than a 

second from the beginning of the milk reward delivery (Figure 4.9C), which should be 

sufficient time to detect these during the brief pause of movement during pellet consumption 

(Figure 4.9D). While Figure 4.9 describes more precise temporal dynamics of these effects, 

their statistical analysis is provided below. 

The probability of observing at least one ripple event during the 8 seconds after a successful 

trial was close to 100%, higher than any other epoch (Figure 4.10A) (KW: H = 33.6, p = 9 x 

10-7; MW: U = 0, p < 7.9 x 10-4). These include other 8-second periods at random moments 

during the session, moments overlapping pellet consumption, periods before the beginning 

of a trial and also during a trial (variable duration). The probability of observing a ripple event 

during a trial was, in fact, close to 0%, lower than any other epoch (Figure 4.10A) (MW: U < 

64, p < 9.4 x 10-4). While the trials are by their nature shorter than the 8-second fixed-length 

epochs in the comparison, the lack of ripples during a trial is strikingly clear. Ripple events 

were equally probable during pellet consumption and before a trial, but in both cases, lower 

than at random moments in the session (Figure 4.10A) (MW: U > 56, p < 0.014). When 

comparing trials where the animal went to a correct or incorrect feeder, there are significant 

differences in the probability of observing a ripple event (Figure 4.10B). They are more likely 

to occur before correct trials (MW: U = 52, p = 0.038) and a lot more likely after successful 

trials (MW: U = 64, p = 7.4 x 10-4). 
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Figure 4.10 The probability of ripple and replay events is highest at the end of successful 
trials and lowest during the trials. A | Comparison of the probability of observing at least one 
ripple event during random 8-second epochs at random time points (random), surrounding pellet 
consumption (during chewing), just prior to a navigational task trial (before trial), during the trial 
(variable duration) and during 8-seconds after the end of a trial (after trial). The values are 
computed separately for each session and each animal. B | Comparison of the probability of 
observing at least one ripple during the same epochs associated with successful (correct) and 
failed (incorrect) trials. C | Same as A, but comparing the probability of observing at least one 
replay event during these epochs. D | Same as B, but comparing the probability of observing at 
least one replay. 

The probability of observing a replay event in the same conditions as described above 

follows a similar pattern to ripple events (Figure 4.10C). Replay events are far more likely to 

be observed after a trial than before or during a trial or during pellet consumption (Figure 

4.10C) (KW: H = 22.1, p = 2 x 10-4; MW: U > 5 or 0; p < 0.005). The probability of observing 

a replay event during any epoch is considerably lower in one of the animals, also reflected 

in far fewer total replay events detected in that animal. This disparity is very likely due to 

different tendencies in spike sorting of the two researchers that processed the data from 

either animal. A more selective attitude towards inclusion of spikes in clusters when 

processing data for one of the animals resulted in fewer spikes for each unit and lower 

chance of detecting replay events. However, if spike sorting for both datasets was similarly 

inclusive, replay event probability after trials would likely match the ripple event probability 

more closely, and would then be statistically higher than the probability of observing a replay 

event at random moments in the session. Similarly to ripple events, replay events were much 
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more likely to be observed after successful trials compared to trials where the animal went 

to the incorrect MilkFeeder (Figure 4.10D) (MW: U = 59.5, p = 0.004). 

In order to establish how the replay trajectory related to animal’s path, all replay events 

occurring after a successful trial were classified into six mutually exclusive categories based 

on their relation to the animal’s direction on arrival and departure from the MilkFeeder. The 

environment was separated into six regions: the four quadrants of the environment and 

locations less than 50 cm from either MilkFeeder. The quadrant from where the animal 

approached the goal was identified based on its location when it was still 50 cm from the 

goal, just before reaching it. Similarly, the future quadrant, towards which the animal left 

after the trial, was identified based on the location the animal was in once it reached 50 cm 

away from the MilkFeeder. All replay trajectories were analysed separately for these “run to 

goal” and “run away from goal” perspectives, respectively. Each replay trajectory location 

was classified based on the start, end and mean coordinate of the trajectory, depending on 

its position relative to the quadrant matching the animal’s run to or from the goal. Each replay 

trajectory was categorised as being either in the same quadrant as the animal’s run, in the 

opposite quadrant diagonally across the environment, on the same East-West side of the 

environment but in a different quadrant to the run (same e-w) or the same North-South side 

but a different quadrant to the run (same n-s). Additionally, the locations within 50 cm of 

either MilkFeeder were classified as at the goal feeder or other feeder. Data from the animal 

with far fewer replay events were aggregated across all sessions, resulting in the total of 5 

data points across the two animals – one for a single animal and four for sessions of the 

animal with many more replay events. 

The replay trajectory was more likely to start at the goal feeder (Figure 4.11A) than most 

other locations with respect to runs to the goal (KW: H = 19, p = 0.0019; MW with all but 

same East-West quadrant: U > 24.5, p < 0.016) and also runs away from the goal (Figure 

4.11B) (KW: H = 15.5, p = 0.0086; MW with all but same quadrant and same North-South 

quadrant: U = 25, p < 0.0122). The mean location of the replay trajectory was more likely to 

be in the same east-west portion of the environment, but not the same quadrant as runs to 

the goal (Figure 4.11C) (KW: H = 22.3, p = 4.6 x 10-4; MW: U = 23, p = 0.037). However, it 

was most likely to be in the same quadrant as runs away from the goal, based on the mean 

proportion across sessions (Figure 4.11D) (KW: H = 16.6, p = 0.0053). The replay trajectory 

end locations had trends very similar to the mean locations (Figure 4.11 E and F). In 

summary, the trajectories encoded in place cell activity during replay events right after 

successful trials most often start at the goal location and progress in the direction of the 

quadrant of the environment to which the animal will be moving next. 
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Figure 4.11 Replay predicts the animal’s movement direction after successful trials. All plots 
show the distribution of replay trajectory locations relative to the animal’s path on the way to the 
goal or away from goal as shown on the insets. The trajectory locations in each plot are ordered 
by descending proportional counts. The potential trajectory locations are the following: goal feeder, 
less than 50 cm from the MilkFeeder corresponding to the goal location; other feeder, the other 
MilkFeeder; same quadrant, the quadrant of the environment matching animal’s path; diagonal 
quadrant, the quadrant diagonal to the same quadrant; same e-w, a quadrant on the same east-
west portion as the goal location, but not the same quadrant as the animal’s path; same n-s, a 
quadrant in the same north-south portion of the environment as the animal’s path, but not the same 
quadrant. A | The distribution of replay start locations falling into each part of the environment 
based on the animal's trajectory to the goal. B | Same as A, but based on the animal's trajectory 
away from the goal. C | Same as A, but for replay trajectory mean location. D | Same as C, but 
based on the animal’s trajectory away from the goal. E | Same as A, but for replay trajectory end 
location. F | Same as E, but based on the animal’s trajectory away from the goal. 

The decoded replay trajectories are dependent on the spatial ratemaps, which may change 

between different task states. The above results were computed using spatial ratemaps 

constructed using data obtained during the foraging periods, excluding data recorded during 
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navigation. To determine if spatial firing varied between navigation and foraging, the 

ratemaps were directly compared between these periods. The spatial correlation was 

computed between ratemaps generated with data from foraging and navigation task trial 

periods while ensuring similarity in sampling. Specifically, the first and second half foraging 

period data was computed using only the data from spatial bins that were visited during 

navigation task trials. Subsampling was also applied to foraging period data to match the 

number of samples included in spatial ratemaps of the navigation task periods. As expected, 

ratemaps derived from the first and second half of each session were highly correlated 

(mean rho = 0.805, SEM = 0.008), indicating that spatial responses of these cells were stable 

within sessions. The correlation between ratemaps from navigation and foraging periods 

was lower, but still relatively strong (mean rho = 0.6731, SEM = 0.012). This mean 

correlation was also significantly higher than the mean correlation of the same ratemaps 

with shuffled cell pairs (Figure 4.12A) (KW: H = 728, p = 9 x 10-159; MW: U = 132400, p = 10-

116), the latter being uncorrelated (mean rho = -0.039, SEM = 0.013). Figures 4.12A and 

4.12B show the spatial ratemaps of four representative cells from different animals 

computed using foraging period and navigation task trial period data, respectively. As 

indicated by the ratemap correlation analysis (Figure 4.12A), the spatial ratemaps are 

slightly different if computed using the periods outside the navigation task trials compared 

to periods during the trials (Figure 4.12 B and C). However, as indicated by the ratemap 

correlation analysis (Figure 4.12A), these changes in spatial ratemaps do not amount to a 

remapping of place fields, as broad features in the spatial ratemaps persist across the 

behavioural states (Figure 4.12 B and C). 

 

Figure 4.12 Spatial ratemaps 
are less similar between 
foraging and trial periods than 
different halves of the foraging 
period. A | Comparison of spatial 
ratemap correlation computed 
using the first and second half of 
foraging period (no trial), trial 
period ratemaps and foraging 
period ratemaps with permute 
cell pairs. B | Foraging period 
spatial ratemaps of four cells. C | 
Same as B, but for trial periods. 

Nevertheless, it is essential to verify whether the minor changes in spatial ratemaps between 

the behavioural states have an impact on the primary outcome of the replay trajectory 

analysis. For this purpose, the replay trajectory locations were recomputed using spatial 

ratemaps based on navigation task trial periods in the position reconstruction (Figure 4.13). 

Consistent with the results seen before, there was a trend for replay trajectories to 
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preferentially start near the goal feeder, where the animal was receiving the reward, rather 

than near the unrewarded feeder (Figure 4.13 A and B). Although, in this case, the effect 

was not statistically significant (KW: H = 8.47, p = 0.132). Most importantly, the mean 

location of the replay trajectory was more likely to be in the same east-west portion of the 

environment, but not the same quadrant as runs to the goal (Figure 4.13C) (KW: H = 22.4, 

p = 4.3 x 10-4; MW: U = 25, p = 0.012). In summary, the replay trajectories computed using 

spatial ratemaps based on navigation task trials corroborate the findings above computed 

using spatial ratemaps based on foraging periods alone. The trajectories encoded in place 

cell activity during replay events right after successful trials most often start at the goal 

location and progress in the direction of the quadrant of the environment to which the animal 

will be moving next. 



97 
 

 

Figure 4.13 Replay predicts the animal’s movement direction after successful trials, also 
based on the task-specific hippocampal map. The methods used to produce the graphs in this 
figure, and the layout is identical to Figure 4.11 with one exception – the spatial ratemaps used for 
decoding replay trajectories were constructed with data only from navigation task trial periods. 

4.4 Discussion 

4.4.1 Summary of results and significance 

The trajectories replayed by place cells during periods of immobility (Foster and Wilson, 

2006) have been found to predict the subsequent path of the animal (Pfeiffer and Foster, 

2013; Xu et al., 2019). However, past studies observe this effect during a self-paced 

navigation task and leave ambiguity in the determinants of these predictive replay events. 

This study presents a novel cue-triggered navigation task, where the animal’s foraging 
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period is interrupted by a non-spatial auditory cue triggering immediate navigation to the 

correct goal out of two possible options. It is the first study examining hippocampal replay in 

a condition where the experimenter controls the precise timing of navigational behaviour and 

related decision making in an open field environment. During the navigation trials, the 

probability of hippocampal ripple and replay events is significantly reduced. Instead, these 

events occur with very high probability at the end of successful trials, as the animal is 

receiving a reward. The location of replay trajectories at these moments is correlated with 

the direction in which the animal will be leaving the goal location, but not from where it 

arrived. The ripple and replay events are not associated with consumption of scattered 

rewards unrelated to the navigation trials. These findings suggest that hippocampal replay 

during navigation is not necessary to reach the correct goal in this task. However, it is 

predictive of the animal’s movement direction after receiving the reward at the goal and may 

also have an important role in remembering the previously rewarded goal location. 

4.4.2 Ambient sound-triggered goal-oriented navigation task design 

The primary purpose of this study was to develop a spatial navigation task where the 

navigational epoch is interleaved with other behaviour and triggered by a non-spatial cue. 

The animals learned to navigate to a goal location immediately in response to an ambient 

sound cue. It was expected that this paradigm would provide control of the timing of neural 

processes supporting navigation. By manipulating the conditions in which navigation is 

triggered, it would then be possible to establish the neural processes involved in switching 

from other behaviours to goal-oriented navigation and how these lead to making the correct 

decision on the route to the goal. Developing such a task, however, proved challenging for 

reasons discussed below. While the navigation task presented in this report successfully 

produces urgent goal-oriented navigation in response to a non-spatial cue, it does not elicit 

replay events during the trial, as would be expected if they were necessary for goal-oriented 

navigation. Instead, replay events occur with very high probability at the end of every 

successful trial, starting from the moment the reward is being delivered. The potential 

reasons for this outcome are discussed below. 

While only a single navigational task paradigm is presented here, others were evaluated as 

well in the process of optimising for the required behaviour. The original design of this task 

involved a random sequence of goal locations at MilkFeeders, with each location paired with 

a specific sound signalling the animal which MilkFeeder was the goal in any given trial. The 

sound signals then used were an 8 kHz and a 14 kHz tone with different modulating 

frequencies. After weeks of training, not a single animal could learn to perform well in this 
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task purely based on the ambient auditory cue, even if it was simplified by repeating each 

goal in blocks of multiple trials. However, the animals were able to learn a task where a 

single auditory cue was used throughout, but the goal location changed after blocks of 30 

trials. Further work is in process for collecting and analysing data in this block-change task, 

which is likely to be more demanding on reference memory than the session-change task 

presented here (Xu et al., 2019). 

One challenge was to ensure the animals would continue foraging outside navigation task 

trials. With long inter-trial intervals, the animals were more likely to ignore the auditory cue, 

and this also reduced the number of trials that can be performed in a single session. On the 

other hand, increasing the frequency of trials resulted in animals spending more time waiting 

around locations where the trials would be initiated, instead of foraging for pellets. Because 

of this tendency, it was also necessary to limit the locations where the trial could be initiated 

to those far from MilkFeeders, as the animal would otherwise position themselves nearby 

the correct MilkFeeder in anticipation of a trial. Restricting the trial start locations to places 

in the middle of the environment ensured that both MilkFeeders are equidistance from the 

animal at the beginning of each trial. 

The trial start criteria based on distance travelled in the last two seconds and the angular 

direction of movement were also introduced to avoid anticipatory behaviour. This way, 

animals could not wait for the trial to start at the trial initiation locations, facing the goal, 

prepared to run for the reward. It is likely that some anticipatory behaviour will always 

remain, as animals still performed stereotypical movements at the trial initiation locations, 

which frequently resulted in the beginning of a navigational trial. However, a large proportion 

of trials were also initiated at moments where the animals did not seem to expect it, providing 

valuable data necessary for the study of cue-triggered switching between foraging and goal-

oriented navigation. 

A potentially very effective method for solving many of the challenges listed above was 

suggested by Prof John O’Keefe while discussing this thesis work. The trial location could 

be randomised between trials using one of two methods. The next trial could start if the 

animal has traversed some distance since the previous trial, e.g. 10 metres. Alternatively, 

the trial start location could be a random constrained region in the environment, changing 

between trials. The latter method could result in animals effectively foraging for the trial start 

location as the do for pellets – providing increased spatial sampling for the foraging period 

as well as navigation task trajectories. This method could potentially eliminate the need for 

many of the criteria for the trial start as listed above, such as heading direction and 
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movement speed. This method is also straightforward to implement in the automated task 

program, as it has access to real-time animal location information. Future experiments using 

this task paradigm would undoubtedly benefit from incorporating this method. 

4.4.3 Replay events were not detected during navigation 

The lack of replay events during the trial could be because hippocampal replay is not 

necessary for recalling the location of the correct goal and planning a route to get there. 

Alternatively, it may be that the animals used a strategy not based on the hippocampal 

representation – not requiring a cognitive map. The latter could be the case if the animals 

were using a response-driven strategy instead. This type of navigation based on a learned 

sequence of actions, such as turning right at an intersection to reach a goal, is dependent 

on the striatum, and not the hippocampus (Packard and McGaugh, 1996). Tolman (1948) 

concluded that animals are more likely to rely on stimulus response-driven strategy in 

extreme conditions, such as an extremely frustrating challenge or the potential for a highly 

motivating reward, as well as after over-training on a task. Unfortunately, the design for the 

navigation task described in this thesis was both challenging and involved a high number of 

repetitions by the animal. The milk reward also appeared to be highly motivating. 

Additionally, recent work in humans suggests that requirement of a rapid decision results in 

a habitual response – thought to be mediated by the striatum – instead of goal-directed 

response (Hardwick et al., 2019). On the other hand, in a large open-field environment, as 

in the experiment in this thesis, with both goal locations perceptually identical apart from 

distant cues, a stimulus-response strategy would be difficult and complex. Nevertheless, it 

is possible that the animals in this task may have been using a response-driven strategy, 

not one dependent on the hippocampus, which would explain the lack of replay events 

during the trials. 

Studies of ripple and replay events during navigation tasks in linear mazes have also found 

a decrease in the number of events with increasing performance of the animal (Singer et al., 

2013; Kaefer et al., 2020). Although this trend does not seem to apply for predictive 

trajectories at choice points (Shin et al., 2019). Another explanation for lack of replay during 

a trial could be that the animal prepares for the trials before they start. While the probability 

of replay events in 8 seconds prior to a trial was low, ripple event probability was sufficiently 

high to highlight a difference between successful and failed trials. Still, the vast majority of 

successful trials commenced without any replay before or during the trial. Finally, the 

analysis done here is focused on SWR associated replay. It excludes sequences occurring 

during theta cycles that have been found to represent possible future paths (Wikenheiser 
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and Redish, 2015; Kay et al., 2020), which could be used to plan the trajectory to the goal. 

Future work could establish whether these sequences occur during navigation in this task 

and whether their content can predict the trial outcome. 

In contrast to the many studies showing the importance of replay for goal learning (Pfeiffer, 

2020), there is currently no clear evidence that place cell replay during the navigational 

epoch is essential for goal-oriented navigation that is dependent on the cognitive map. It is 

not possible to ensure with absolute certainty that the animal uses a cognitive map-based 

navigation strategy purely with task design if repetitions of the same route are required. 

Unfortunately, the difficulty of detecting replay events and the noisy nature of the encoded 

trajectories means that trial repetitions are required unless a very high number of animals 

are used. Previously, pharmaceutical intervention during probe sessions has been found to 

induce the animal to use either a cognitive map-based or stimulus-response based 

navigation strategy (Packard and McGaugh, 1996). Selective inactivation of either the 

striatum or hippocampus during the initiation of the trial could induce the animal to choose 

either strategy. Given the nature of the task presented here, the inhibition would need to be 

limited to the moment the trial is initiated. Overlapping the inhibition with the end of the trial 

may impair the animal’s performance by interrupting goal learning. Experiments with this 

intervention must be conducted in studies investigating the importance of replay during a 

navigational epoch before concluding whether the replay is actually not essential or the 

hippocampus is not used for planning the route. 

4.4.4 The relationship between replay and behaviour 

Replay events studied in navigational tasks in open field environments can be particularly 

informative because the animal’s behaviour is less constrained compared to linear maze 

environments. The higher number of potential replay trajectory locations and directions gives 

stronger statistical power for interpreting the replay content compared to linear mazes 

(Pfeiffer and Foster, 2013). While the aim of this study was to inspect place cell replay during 

navigation, cued by a non-spatial stimulus, none was observed at moments where the 

animal must have been deciding on the correct goal and planning the trajectory to get there. 

However, replay events at the end of each successful trial were observed with high 

probability. The trajectories encoded in place cell activity during these events were also 

more correlated with the animal’s future movement direction, rather than that during its 

approach to the goal. 

The decoded replay trajectories are dependent on the spatial ratemaps used during 

reconstruction. Past work indicates that place cell spatial ratemaps can partially remap 
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between different types of behaviour; for example, foraging and goal-oriented repeated 

navigation. Some place fields may disappear with new ones forming elsewhere (Markus et 

al., 1995) or the in-field firing rates may be more independent of behavioural variables like 

running speed (Markus et al., 1995; Kobayashi et al., 1997). In this study, partial remapping 

also occurred between foraging and navigation task trials, although general features of 

spatial ratemaps remained broadly constant. In any case, the finding of replay trajectories 

starting at the goal and progressing towards the animal’s future movement direction was 

consistent whether the spatial ratemaps were based on data from foraging periods or 

navigation task periods. 

Pfeiffer and Foster (2013) found that replay sequences most frequently encoded a path 

towards a fixed goal, after receiving a reward at a random location. It is unclear if these 

events were induced by the retrieval of the previous reward or the motivation for the next 

one. They may have been equivalent to the replay events observed at the goals in the study 

presented here. In both cases, the replay could be triggered by past reward, not a future 

one. Additionally, in both studies, the replay was more aligned with the future path than the 

past path. 

Replay after a reward is found to be important for goal learning (Singer and Frank, 2009; 

Ambrose et al., 2016). The timing and content of replay events in these studies, including 

the one presented here, support the view that replay events are driven by the recent reward, 

rather than one in the immediate future. Because replay is associated with ripple events, but 

more difficult to detect, it can be speculated that the true probability of replay at the end of 

the trials in this study was similar to ripple events, close to 100%. Such a strong relationship 

between replay events and trial completion suggests that replay is important for performing 

this task. It is unlikely that the replay was purely associated with the consumption of the 

reward at the end of a successful trial, as no increase in ripple or replay event probability 

was associated with consumption of scattered pellets. While these two rewards may not 

have exactly the same value to the animal, the difference in behavioural relevance of their 

location may be more important. The pellets are scattered randomly; however, the location 

of the milk reward must be remembered as the animal needs to return to that same location 

during the next trial to receive this reward again. The motivation to incorporate the reward 

location to the map of the environment could be essential for these replay events to occur, 

suggesting that they serve to integrate the reward location to the cognitive map of the 

environment. By including recordings from more sessions than was used in this report, it 

would be possible to determine the relationship between the animal’s performance and the 

content of these replay events. Future work could involve selective inactivation of place cells 
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during the periods after trials to establish the importance of replay events in this task where 

they do not occur during navigation.  
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5 Place cell spatial code changes in large open 

spaces 

5.1 Introduction 

Place cell population activity encodes the animal’s location in the environment with 

extremely high accuracy while it is moving through it (Wilson and McNaughton, 1993; 

Skaggs and McNaughton, 1998). As described in the Introduction section (1.3.2), the spatial 

information is explicit in the firing rates of individual place cells in the form of place fields – 

locations in the environment where they are more likely to fire. The properties of place fields 

fundamentally determine the ability of the place cell population to encode location. 

Several studies mentioned in the Introduction section (1.3.2) explored how place fields 

responded to changes in the environment on the level of individual cells. From these studies, 

it is apparent that the place cell population is heterogeneous in what determines the 

locations of place fields. This variability in place cell properties makes it difficult to generalise 

at the population level and, therefore, formulating models of place cells remains a challenge. 

Describing the place field statistics on a population level would provide valuable information 

for computational models. A few studies have already provided some critical pieces of 

information, but a lot is still unclear. For example, place field centroids may be more common 

near the edges and walls of an environment, but not all studies agree (Muller et al., 1987; 

Hetherington and Shapiro, 1997). Similarly, even as initial studies suggested that place 

fields are more common near goals (Hollup et al., 2001), it has later been found to depend 

on the type of navigation task. Another important finding has been that in adult rats, place 

fields are equally stable in all parts of the environment, nearby and further from walls 

(Muessig et al., 2015). Yet, it is not known whether this is the case in larger environments. 

Fenton et al. (2008) found that the mean place field size in a larger environment was higher 

than in smaller ones. However, the analysis did not account for the effects the environmental 

geometry would have on the results. The full distribution of place field sizes is also unknown, 

and so is its dependence on the locations within the environment. The size of place fields 

and the density of place field centroids is related to the overall activity in the hippocampal 

formation, which is fundamentally important to the accuracy of the location information 

encoded by a place cell population, but so far poorly quantified. 
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Place field formation at the population level on a 48 m long linear track can be modelled as 

each unit forming place fields based on an independent Poisson process, where the rate of 

each process can be drawn from a specific Gamma distribution (Rich et al., 2014). This 

model provides a way to estimate how many place cells would have a field on a linear track 

of a specific size. However, on a linear track, the place field centres are uniformly distributed 

(Rich et al., 2014), while previous studies mentioned above suggest that this is not the case 

in open field environments. Therefore, a similarly simple model is unlikely to explain data 

from recordings in an open field environment. 

A recent attractor network based model of place cells – the megamap – describes how cells 

with multiple place fields can provide a substrate for spatial memory in large open spaces 

(Hedrick and Zhang, 2016). It has several assumptions, such as the uniform distribution of 

place fields and a constant place field size, which are evaluated against experimental data 

in this study. 

The findings in this section provide invaluable information to fill the many gaps in the 

literature pointed out above. Large place cell populations were recorded in rats foraging in 

multiple different size environments (up to 9 m2). Some population-level properties remain 

highly consistent across environments, while others, such as place field centroid density, 

change. The results in this thesis chapter highlight the relationship between place cell 

population dynamics and the animal’s location in different size environments. 

5.2 Methods 

5.2.1 Animals, procedures and data acquisition 

The procedures on the five animals used in this study were described in the General 

Methods section (3.1). The recordings were performed and the screening was conducted as 

described in the General Methods section (3.2) using SpatialAutoDACQ. Once a sufficiently 

high place cell yield was determined in the screening environment, the animal was moved 

to the experimental phase outlined below. All tetrodes were verified to have been in CA1 

using histological techniques described in the General Methods section (3.3). 

5.2.2 Experimental paradigm 

Place cells were recorded as each animal foraged in four environments of different size 

(Figure 5.1A). The environment sizes were 87.5 x 125 cm (environment A), 175 x 125 cm 

(environment B), 175 x 250 cm (environment C) and 350 x 250 cm (environment D). The 

materials used to construct the environments and the pellet delivery system used for 
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foraging are detailed in the General Methods section (3.4). All environments were rectangles 

with close to identical shape (axes ratio 1.40 or ~1.42). Environment A was the smallest, 

and the other sequentially larger environments – B, C and D – each doubled in size by 

doubling the length of the shortest axis (Figure 5.1A). There were two sets of cues in the 

environments. The most prominent cue elevated above the wall of the enclosure was 

different in all environments, varying in size and the type of pattern, but always black and 

white. Two different secondary smaller cues were used, an A4 sheet (11 × 16 cm) with a dot 

pattern and a set of three adjacent A4 pages. The number of secondary cues and the size 

of the primary cues varied slightly between environments to scale with their size. In 

environment A, only one of the plain A4 pages was used, while all secondary cues were 

used in other environments. In environments A and B, the primary cue was size A2 (42 x 59 

cm), while in environments C and D, it was size A0 (84 x 119 cm). All recordings took place 

in the same experimental room. Each environment was temporarily assembled for a 

recording and disassembled thereafter. Environments A, B and C were located at non-

overlapping locations in the recording room, while environment D encompassed the 

locations of all other environments (Figure 5.1A). Figure 5.1B shows a photo of environment 

C prepared for an experiment. 
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Figure 5.1 Experimental design with different size open field environments. A | Schematic of 
the four different environments (A, B, C and D) illustrating their relative sizes (noted in centimetres) 
and positions in the experimental room. Environments A, B and C were non-overlapping. They 
were all temporarily assembled inside environment D. During recordings in environment D, which 
extended throughout the experimental room, environments A, B and C were disassembled. B | 
Photograph of environment C showing the cues and other materials assembled for a recording. C 
| Diagram of the experimental paradigm illustrates the randomised sequence of environments B, 
C and D on each recording day and specifies the approximate duration of each phase of the 
experiment. 

During a single recording day, the place cells of an animal were recorded in all four 

environments and twice in environment A (Figure 5.1C). The second recording in 

environment A is henceforth referred to as a recording in environment A’. The duration of 

the recording in the smallest environment (A) was approximately 15 minutes. The recording 

duration doubled along with the size of each environment, up to 120 minutes in the largest 

environment (D). The equal spatial sampling per unit area was important to support analysis, 

and also to avoid differences in the animal’s exposure to conditions from affecting the place 

cell representations. Achieving sufficient spatial sampling in each environment on the same 

day was challenging, even with the help of optimised pellet scattering by SpatialAutoDACQ. 

While the listed recording durations were generally adhered to, individual recordings were 

on some cases extended by up to 25%, if this was crucial for collecting a viable dataset on 

that recording day. Each animal was recorded on three or four days total and the data 
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analysed here is from the day when there was the best spatial sampling in all environments. 

The corresponding day was either the second, third or fourth recording day, depending on 

the animal. 

Each day started and ended with a recording in environment A (A and A’, respectively) to 

verify that the same place cell population is observed throughout the day. In order to support 

the animal is recognising that these environments (A and A’) as the same, a light odour was 

introduced at the beginning of each recording in these environments. This odour was added 

by wiping the floor with a scented general purpose cleaner, which was allowed to dry off just 

before placing the animal in the environment. This cleaner was not used in other 

environments. The order of recordings in environments B, C and D was pseudo-randomly 

generated for each animal, such that the same sequence was never repeated for the same 

animal. The exceptions to this were the first two animals (R2470 and R2474) because it 

initially seemed that exposure to the larger environments in the very beginning might cause 

too much anxiety to the animals, reducing spatial sampling. However, it became apparent 

that the spatial sampling was similar if the sequence of environments B, C and D were 

permuted, supporting the use of this approach in most of the recordings. After a recording 

in each environment, the flooring was wiped with an unscented soap solution to clear any 

potential cues. The animal was kept in a familiar rest box (with water provided) between 

each recording for 15 to 30 minutes, while the preceding and following environments were 

disassembled and reassembled, respectively. 

5.2.3 Place field detection 

Single units were identified based on waveforms concatenated across recordings, using the 

methods outlined in the General Methods section (3.5). This method made it possible to 

study the same units across recordings in different environments. The isolated units were 

categorised, as described in the General Methods section (3.5). The most important criteria 

for place cell identification was the detection of a place field in at least one of the 

environments. The iterative thresholding based place field detection described in the 

General Methods section (3.6) was able to detect multiple place fields in ratemaps of 

individual environments, meaning multiple place fields could be detected per place cell in a 

single environment. Figure 5.2 presents an example of two place cells, with a variable 

number of fields in each environment, along with their waveforms and auto-correlograms. 

The boundaries of place fields are also delineated in Figures 5.2C and 5.2F. The same 

figures also show ellipses fitted to the binary maps of individual place fields using those 
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boundaries, such that the ellipse has the same second moments as the region. The 

centroids of these ellipses are used as place field centroids. 

 

Figure 5.2 Examples of two place cells with a variable number of place fields in each 
environment. A | Waveforms of the first place cell on the tetrode it was detected on. The scale 
bars are 0.5 ms and 100 µV. B | Autocorrelograms of the first place cell, with a maximum lag of 50 
ms (top) and 500 ms (bottom). C | Spatial ratemaps of the first place cell in all four environments, 
including the first and last recording in the smallest environment – A and A’, respectively. Different 
fields in each ratemap are delineated with lines of a different colour. Ellipses fitted to each field are 
shown in dashed black lines. All ratemaps have the same colour map, shown right of environment 
D ratemap. The colour scale range in each ratemap is from 0 to the peak rate specified in the top 
right corner of the ratemap. Unvisited spatial bins are white. D, E and F are the same as A, B and 
C, but for the second place cell. 

5.2.4 Gamma-Poisson model of place cell recruitment 

Place cell recruitment to represent an environment was defined as the place cell exhibiting 

at least one place field in the environment. Based on the methods detailed by Rich et al. 

(2014) and the reports that a Gamma distribution is a good model for predicting the number 
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of fields that place cells form in environments (Alme et al., 2014; Rich et al., 2014; Lee et 

al., 2019), the gamma-Poisson model in this study was implemented as follows. The number 

of fields that any given cell had in an environment was drawn from a Poisson distribution. 

The expected number of fields a place cell should have in the environment – the shape of 

the Poisson distribution – was computed by multiplying the area of the environment with the 

field formation propensity of the cell. The field formation propensities, measured as the mean 

number of place fields a cell would form per 1 m2 of environment area, were drawn from a 

Gamma distribution. After using this method to compute the number of fields in an 

environment for a large number of cells, the proportional distribution of field counts across 

all cells can be calculated for the environment. In order to minimise variability in this 

prediction, 100 000 cells were simulated in each population. The total number of cells in a 

population does not change the resulting proportional distribution of field counts but does 

reduce variability between simulated populations. 

The shape and scale parameters of the Gamma distribution were optimised to reproduce 

the proportional place field count distributions across cells in the experimental data. The 

gamma-Poisson model prediction is the proportional distribution of field counts in an 

environment across the whole population, including the cells with no fields in the 

environment. However, during parameter optimisation, the gamma-Poisson model 

prediction was computed using only the counts of cells with at least one place field to match 

the same measurements in the experimental data. This approach allowed finding the optimal 

parameters defining the field propensity distribution of the whole population without 

quantification of the place cells that had no fields in the observed environments – silent cells 

– in the experimental data. While it rests strongly on the assumption that the field 

propensities are Gamma distributed, given that this is well evidenced by studies that directly 

quantify silent cells (Rich et al., 2014; Lee et al., 2019), the method used here is perfectly 

valid for estimating the parameters of that Gamma distribution. 

The Gamma distribution parameters were optimised using the sum of squared residuals 

between the proportional distribution of place field counts in the prediction and the data. The 

errors were summed over all field counts as well as each environment size. The values in 

the experimental data were computed by pooling the units across all animals, separately for 

each environment size. In addition to the data from each environment, an additional 

theoretical environment was included in the model fitting. The area of this environment and 

the field count of each cell was computed as the sum across the other four environments. 

The parameter optimisation was performed using the Differential Evolution algorithm (Storn 

and Price, 1997) with best1bin strategy as implemented in SciPy (Virtanen et al., 2020). The 
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bounds for the search area were set to between 0.1-10 for the shape parameter and 0.005-

0.8 for the scale parameter. This solution space was verified to be convex by computing 

errors at 0.1 and 0.005 intervals for the shape and scale parameters, respectively. Because 

of the noise in the experimental data and the indeterministic nature of this optimisation 

problem (inclusion of the Poisson process step), the results varied slightly between 

iterations. Still, the shape parameter was always between 1.8 and 2.2, with scale changing 

correspondingly to maintain a product of ~0.25 (mean number of fields per 1 m2 across 

cells). 

5.2.5 Analysis of place cell activity during individual runs through place 

fields 

Runs through place fields were detected separately for each place field when the animal’s 

trajectory crossed the place field, based on the region of the place field in the spatial 

ratemap. One second preceding and following the entering and exiting, respectively, of the 

place field region was also considered to be a part of each run. The location in a run was 

computed for each position sample by linearising the trajectory using Euclidean distances 

between the two-dimensional coordinates and normalising this to represent to the proportion 

of distance covered from entering and exiting the place field. The instantaneous spike rate 

was computed during each position sample, and these values were smoothed with a 0.5-

second moving average. The rest of the measures were based on this smoothed spike rate 

mapped to proportional position along the trajectory, combined with the expected spike rate 

values based directly on the spatial ratemaps. A field in the instantaneous firing rate was 

detected as the period around the peak firing rate where the instantaneous spike rate was 

greater than the lowest value in the spatial ratemap region constituting the place field, given 

that this period was greater than one position sample. The centre of the place field was 

computed as the mid-point along the linearised trajectory between the start and end of the 

field. 

Unless stated otherwise, the runs used in any analysis were filtered for the following criteria: 

• At least 2 spikes were expected based on the spatial ratemap. 

• The length of at least 10 cm based on the linearised distance between entering and 

exiting the field. 

• A field was detected in the instantaneous spike rate, except in the quantification of 

place cell failures to fire during runs through its place field. 
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• The ratio between the linearised length of the trajectory and the actual minimum 

distance between the positions where the animal entered and exited the field – 

tortuosity – of less than 1.5. 

• The maximum duration of 10 seconds, based on the portion of the trajectory from 

entering and exiting the place field. 

• Minimum speed of 10 cm/s between entering and exiting the place field. 

In some analyses, the measurements from runs are associated with different distance bins 

from walls. If the portion of the run with the field detected in the instantaneous firing rate 

overlapped with a distance bin, then the measure from the run contributed to the set of 

values for that distance bin. An exception for this is the analysis of place cell failures, where 

the field was not detected in the instantaneous firing rate. In this case, the in-field portion of 

the run based on spatial ratemap was used instead to identify overlap with a distance bin. 

Both of these approaches resulted in some runs contributing to more than one distance bin. 

However, the alternatives of associating runs to distance bins have greater issues. For 

example, doing this based on the mid-point of the detected field would bias for including 

shorter runs in the distance bins closer to the walls. 

5.2.6 Population-level measures 

Spatial information, measured in bits per spike, was computed as defined by Skaggs et al. 

(1993). The ratemaps used for this analysis were computed using the adaptive smoothing 

method (Skaggs et al., 1996), which optimizes the trade-off between sampling error and 

spatial resolution. The spatial information was only computed if the unit had a peak greater 

than 1 Hz in its regular (not adaptively smoothed) spatial ratemap. In cases where the peak 

rate in the spatial ratemap was below 1 Hz, the spatial information value was set to 0. 

Fisher information was computed based on spatial ratemaps by dividing the squared 

derivative (second-order accurate central difference) of the firing rate with the firing rate at 

each location, separately for the two axes along walls (Zhang et al., 1998). The sum of 

Fisher information in the two axes was used as the total Fisher information at each location 

(Michael Brown and Bäcker, 2006). Values at locations where the firing rate was below 0.1 

Hz were ignored for that unit, contributing 0 to the Fisher information of the total cell 

population at that location. Because Fisher information is higher with less smooth ratemaps, 

the results can be biased to higher values at locations with lower spatial sampling – less 

accurate and more variable ratemap values. The spatial ratemaps used for this analysis 

were, therefore, recomputed with a fixed sampling of 10 samples per spatial bin to correct 

for this bias, ignoring spatial bins with fewer samples. Only spatial bins with at least 6 
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surrounding valid bins were included, because bins adjacent to ignored bins have less 

accurate values due to smoothing. The average Fisher information was then computed 

across all place cells and all positions matching a location criterion (e.g. distance to wall). 

Decoding of animal’s current location was performed using the position reconstruction 

method described in the General Methods section (3.7). The current firing rate of place cells 

at each time point was estimated using 1-second temporal windows. Decoding was 

performed on periods where the animal was moving faster than 10 cm/s, using samples 

defined by overlapping temporal windows in 1/30 s steps. The ratemaps used as the 

expected population activity at each location were computed using the same criteria as 

ratemaps for all other analyses, which also includes the 10 cm/s speed threshold. 

In cases where decoding accuracy at different locations is compared, corrections were 

required for the bias of lower decoding errors at locations with higher spatial sampling – 

resulting in more accurate spatial ratemaps at these locations. For such analyses, the 

decoding was computed using spatial ratemaps with 8 cm bins, and exactly 30 samples (1 

second of data) averaged for each spatial bin. Spatial bins with fewer data were ignored, 

and a random subset of data was used for all spatial bins with more than 30 samples. The 

decoding results were recomputed 3 times to allow for sampling of different subsets of data 

at locations with high spatial sampling. The presented results combine data from all three 

iterations, while it was verified that using just a single iterations does not meaningfully 

change the results. The decoding error values used for this analysis were further filtered by 

ignoring the lowest 5% based on posterior peak values and ignoring samples with Euclidean 

error greater than half the length of the shortest wall in the environment. Both of these 

filtering criteria correct for the bias for larger errors by the walls due to random guessing. 

5.2.7 Phase precession 

Phase precession measures were computed for individual runs through place fields and also 

for each field – combining data from all runs through that field. The positional value used for 

each spike when computing phase precession for individual runs was the distance in 

centimetres covered by the animal since entering the place field, as detected in the 

instantaneous firing rate. When computing values for place fields, aggregating data across 

all runs through that field, the positional value used for each spike was the proportional 

distance covered by the animal between entering and exiting the place field, based on the 

instantaneous firing rate. Only those fields were included in the analysis for which there were 

at least 6 spikes of data across runs. Phase precession measures for runs were only 

computed if there were at least 10 spikes during the run and the length of the detected place 



114 
 

field based on the instantaneous spike rate was greater than 5 cm. The phase of each spike 

was the mean theta phase smoothed with a Gaussian (5 ms sigma) across all tetrodes on 

the corresponding implant. Theta phase for each tetrode was computed based on the first 

channel as the angle of the Hilbert transform of bandpass filtered LFP (7-11 Hz, Butterworth 

digital filter with order 2). 

The correlation coefficient (r), slope and phase shift of the best fit line to the data (spike 

phases by proportional position in the field or distance since entering the field) was 

computed using the circular-linear regression method described by Kempter et al. (2012). 

The phase precession slope in individual runs measures the change in the preferred theta 

phase of spikes for every centimetre travelled. When computed for place fields, aggregating 

data from multiple runs, it measures the total change in phase during the entire run through 

the field. The statistical significance of the fitted line was computed by re-computing the 

correlation coefficient 1000 times with different permutations between the spike phases and 

positions. The proportion of permutations greater than a positive r or lower than a negative 

r was used as the p-value. 

5.2.8 Place field size models 

Three place cell population models with different methods for determining place field size 

and centroid density were used to match experimental findings. In all models, each place 

cell has exactly one place field. Therefore, to make results comparable, experimental data 

had to be treated similarly – population measures were computed as an average per place 

field rather than an average per place cell. 

In some models, place field widths are determined by their distance to walls. This approach 

is motivated by the fact that the most consistent cue throughout all environments is the 

height of nearby walls of the enclosure. Specifically, the place cell widths orthogonal to a 

wall were scaled in proportion to the change in the angular size 𝜃(𝑑, ℎ) of the wall height ℎ, 

with movement orthogonal the wall at different distances to the wall 𝑑: 

 𝜃′(𝑑, ℎ) = −
ℎ

𝑑2 + ℎ2
 (3) 

The minimum value of the function 𝜃′(𝑑, ℎ) for all 𝑑 ≥ 0 is defined as 
1

ℎ
 and the maximum is 

0. This function is not very convenient for describing the width of place fields. However, 

through multiplying 𝜃′(𝑑, ℎ) by ℎ and adding 1 we get the function 𝛿(𝑑, ℎ), which grows from 

0 to 1, in proportion to the differential of the angular size of the wall height at different 

distances to the wall: 
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 𝛿(𝑑, ℎ) = −
ℎ2

𝑑2 + ℎ2
+ 1 (4) 

Equation 4 describes the proportional size of a place field between the minimum and 

maximum place field widths, in terms of distance from a wall 𝑑 and the height of that wall ℎ. 

In order to fit this model to experimental data, we need to add a multiplicative term 𝑔 to 

determine the range between the smallest and largest place field and an additive term 𝑤 to 

determine the width of the smallest place field: 

 ∆(𝑑, ℎ, 𝑔, 𝑤) = 𝑔 × 𝛿(𝑑, ℎ) + 𝑤 (5) 

Equation 5 (∆(𝑑, ℎ, 𝑔, 𝑤) or Δs as an abbreviation for change in angular size) describes the 

width of a place field based on the range of possible field widths and the distance 𝑑 to a cue 

with size ℎ (e.g. the wall height). Δs is the fundamental component of two out of the three 

place field size models used in this study. 

The width of place fields in the experimental data is computed based on the region in the 

spatial ratemap, where the firing rate is at least above 1 Hz. However, Gaussian functions 

used to model the firing rate of place fields 𝑓(𝑥, 𝜎) at any position with distance 𝑥 from the 

peak are defined by the parameter sigma 𝜎, as follows: 

 𝑓(𝑥, 𝜎) = 𝑒
−
𝑥2

2𝜎2 (6) 

Therefore, in order to model place fields with Gaussians functions, it is necessary to compute 

the sigma 𝜎 of the Gaussian with a given amplitude (peak spike rate in Hz) that has a value 

of 1 at a distance from the peak specified by half the width of the field. To simplify this 

calculation, we instead compute the distance from the peak where the value of a Gaussian 

with an amplitude of 1 is equal to the reciprocal of the peak spike rate 𝑝, as this where a 

Gaussian with an amplitude equal to 𝑝 would have a value of 1 Hz. The equation for the 

sigma 𝜎(𝑝,𝑤) of the Gaussian describing a place field with a peak spike rate of 𝑝 and width 

𝑤 was solved by first equating Equation 6 to 𝑝−1 and then solving for 𝜎: 

 𝑒
−

𝑥2

2𝜎2 = 𝑝−1, solve for 𝜎 (7) 

 
𝜎 =

𝑥

√2 ln
1
𝑝−1

 
(8) 

Equation 8 defines the sigma 𝜎 of the Gaussian function that has a proportional value of 𝑝−1 

at distance 𝑥 from the peak with spike rate 𝑝. By substituting the distance 𝑥 with half of the 

place field width 
𝑤

2
 and simplifying the reciprocal of the peak spike rate in Equation 8, we get 
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the sigma 𝜎(𝑝,𝑤) of the Gaussian describing a place field with a peak spike rate of 𝑝 and 

width 𝑤: 

 𝜎(𝑝,𝑤) =

𝑤
2

√2 ln 𝑝
 (9) 

The total firing rate in a place cell population, grows with increasing width of place fields, 

assuming the peak spike rate is constant in all fields. This effect is due to the area under the 

curve of the Gaussian increasing with larger sigma values. To achieve a constant total firing 

rate in a place cell population, the number of place fields must decrease in proportion to the 

increase in place field size. Specifically, in models with a variable place field density, the 

probability of a field centroid (2D Gaussian peak location) at any potential location 𝑃(𝑣, 𝑣𝑚𝑖𝑛) 

was defined using the volume of the 2D Gaussian defining the place field 𝑣 and the volume 

of the 2D Gaussian of the smallest place field with the lowest peak spike rate in the 

environment 𝑣𝑚𝑖𝑛 as: 

 𝑃(𝑣, 𝑣𝑚𝑖𝑛) =
𝑣𝑚𝑖𝑛

𝑣
 (10) 

The volume of a place field was calculated as follows. The place field firing rate in the 2D 

environment 𝑓(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦, 𝑝) was defined by the distance from the peak in the axes parallel 

to the walls of the environment (𝑥 and 𝑦), the sigma values on these axes (𝜎𝑥 and 𝜎𝑦) and 

the peak spike rate 𝑝 as a 2D Gaussian: 

 𝑓(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦, 𝑝) = 𝑝 × 𝑒
−(

𝑥2

2𝜎𝑥
2+

𝑦2

2𝜎𝑦
2)

 (11) 

Therefore, the volume 𝑣(𝜎𝑥, 𝜎𝑦, 𝑝) of the place field with peak spike rate 𝑝 and sigmas 𝜎𝑥 

and 𝜎𝑦 was computed using the defined integral of the 2D gaussian over an infinite range in 

both x- and y-axis: 

 𝑣(𝜎𝑥 , 𝜎𝑦, 𝑝) =∬ 𝑓(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦, 𝑝)𝑑𝑥𝑑𝑦
∞

−∞

= 2𝜋𝑝𝜎𝑥𝜎𝑦 (12) 

The Δs model describes the place field size and density as a function of distance to the 

nearest walls on both axes. The place fields were modelled using Equation 11, with sigmas 

in the two axes calculated using Equations 5 and 9 based on distances to the nearest walls 

in both axes. The peak spike rate was drawn from a Gamma distribution (shape = 2) with a 

scale parameter fit to the distribution of peak spike rate values of place fields in the middle 

of environment D (> 80 cm from walls). In cases where the peak rate from the Gamma 

distribution was below 2 Hz it was drawn again until a value above 2 Hz was drawn. In this 

way, the peak spike rates were all above 2 Hz to match the field detection criteria used for 
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the experimental data. The firing rate values below 0.5 Hz were set to 0. Place field centroids 

were positioned at 0.5 cm intervals along the axes parallel to the walls within the boundaries 

of the environment, with the probability defined by Equation 10. 

The gamma model describes the place field size as drawn from a Gamma distribution with 

fixed parameters at all locations in the environment and place field centroids distributed 

uniformly throughout the environment and also outside its boundaries. The place fields with 

centroids (2D Gamma function peak locations) outside the environmental boundaries can 

extend into the observed environment. Therefore, the partially observed firing fields of these 

cells can be detected as place fields with their centroids inaccurately allocated to locations 

inside the environment. This model follows from the hypothesis that the hippocampal 

representation is continuous and only appears bound by the environment because this is 

the only way we can observe it experimentally. The place cells are modelled using 2D 

Gaussian functions defined with two sigma parameters and amplitude as well as rotational 

angle parameters (Robitaille et al., 2013). The sigma parameters were computed with 

Equation 9. The smaller width value was drawn from a Gamma distribution (shape = 2) with 

a scale parameter fit to the distribution of the minor axis widths of place field ellipses. Only 

place fields with centroids in the middle of environment D (> 80 cm from walls) were used to 

estimate that distribution. The larger width value of each place field in the model was 

computed as the sum of the smaller width value and the product between the smaller width 

value with an extension ratio drawn from a Gamma distribution (shape = 2). The scale 

parameter of this extension ratio Gamma distribution was fit to measurements of the same 

place field data. This measurement was the difference between the longer and shorter 

widths of each place field expressed as a proportion of the shorter width. The peak spike 

rate was also drawn from a Gamma distribution (shape = 2) with the scale parameter fit to 

measurements of the place fields in the middle of the largest environment (> 80 cm from 

walls). Similarly to the Δs model, peak rates below 2 Hz were not used. The rotational angle 

was randomly assigned to each place field. The firing rate values below 0.5 Hz were set to 

0. The place field centroid locations were drawn from a uniform distribution in both axes 

parallel to the walls of the rectangular environment. The range of the field centroid location 

values reached far enough beyond the boundaries of the observed environment that the no 

place field with peak spike rate, width and extension ratio up to the 95th percentile would 

have a firing rate above 0.5 Hz within the observed environment. The total number of place 

fields was scaled to achieve a mean density of 1 field centroid per 4 cm2. 

The Δs gamma model also describes the place field size and density as a function of 

distance to the nearest walls on both axes. However, unlike the Δs model, the Δs gamma 
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model allows for variability in the field widths at each location. This variability is introduced 

by sampling the place field width in a given axis from a Gamma distribution (shape = 2) with 

the scale parameter calculated based on the distance to the wall on that axis, using Equation 

5 (same as for the Δs model). Place cell firing rates were computed, similarly to the Δs 

model, using Equation 11, and the sigma values from field widths were calculated using 

Equation 9. The place field centroids were positioned the same way as in the Δs model, 

except the field widths used to calculate the probability of a place field (Equations 10 and 

12) were the mean values of the field width Gamma distributions at that location. The peak 

spike rate was also drawn from a Gamma distribution (shape = 2) with the scale parameter 

fit to measurements of the place fields in the middle of the largest environment (> 80 cm 

from walls). Similarly to the Δs model, peak rates below 2 Hz were not used. 

Gamma parameters of all distributions were fit using Maximum Likelihood Estimate, 

optimising a log-likelihood function, with a penalty applied for samples outside of the 

distribution’s range. The parameters ℎ, 𝑔 and 𝑤 of Equation 5 (Δs) were fit to data using a 

non-linear least-squares method, the Trust Region Reflective algorithm. The starting 

parameters for ℎ, 𝑔 and 𝑤 were 10, 1 and 1, respectively. The three parameters were bound 

between 0 and infinity. All of the above optimisation algorithms were used as implemented 

in SciPy (Virtanen et al., 2020).  

Fitting the parameters to Equation 5 was different for the Δs gamma model. The model aims 

to also include large place fields near walls, with the true centroid close the wall, but the full 

extent of the field being cut at the environmental boundary. Therefore, the parameter 

optimisation method had to replicate truncated field width measurements. To this end, during 

model fitting the field width Gamma distribution with a given scale parameter was resampled 

100 000 times and each value greater than twice the distance to the wall was set to the sum 

of the distance and half the original width. The mean of the resulting values – the constrained 

mean of the field width Gamma distribution – was used as the model estimate with given 

parameters. This approach reproduces the width measurements that would be obtained for 

place fields that extend beyond the environmental boundaries in the hippocampal internal 

representation. Because of the increased complexity of this model, it was not possible to 

use the methods mentioned above for parameter optimisation. Instead, the Differential 

Evolution algorithm (Storn and Price, 1997) was used with best2bin strategy as implemented 

in SciPy (Virtanen et al., 2020). The parameters ℎ, 𝑔 and 𝑤 were bound to ranges 1-80, 1-

60 and 1-40, respectively. 
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All models were simulated using environments of the same size as those used in the 

experiments. Spatial ratemaps were created using the same bin size and place fields were 

detected using the same methods as for the experimental data, except no measure for 

spatial correlation was used. The same methods used for experimental data were used to 

compute any measurements on the modelled place fields, for example, their width or 

centroid coordinates. Only those modelled place cells were kept for which a valid place field 

was detected within the observed environment. Therefore, in some models, many place cells 

were discarded because the place fields were too small, or they did not extend far enough 

into the observed environment. This approach reproduced the results of the place cell 

detection methods applied to experimental data. 

5.3 Results 

5.3.1 Large numbers of place fields were detected in all environments 

A total of 629 place cells were recorded across the five animals, with close to or above 100 

place cells in each animal (Figure 5.3A). The total number of place fields detected in each 

animal was roughly six times the number of place cells identified (Figure 5.3A). The number 

of place cells with at least one place field in the environment was higher in larger 

environments (Figure 5.3B), and so was the number of detected place fields (Figure 5.3C). 

 

Figure 5.3 Count of recorded place cells and detected place fields. A | Count of place cells 
and place fields detected in each animal across all environments. B | Count of place cells in each 
animal that had at least one field in an environment. C | Count of place fields detected in each 
animal plotted for each of the environments. 

5.3.2 Place cells form unique representations of each environment 

Place cell remapping across environments was quantified using the correlation between 

place cell ratemaps, the similarity in inter-field distances of place cell pairs and the probability 
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of decoding the animal’s location to other environments than where it actually was at a given 

time point. 

When quantifying the similarity between ratemaps, only those place cells were used that 

had a spike rate above 0.01 in at least 6 spatial bins in one of the ratemaps. The ratemaps 

constructed from the first and last half of the recording in environment A were highly 

correlated (Figure 5.4A). Correlation between these ratemaps was greater than the 

ratemaps from environment A and A’ (A v A’), while correlation in both sets of ratemaps was 

far above the shuffled set (A v A’ shuffled) (Figure 5.4A) (KW: H = 644, p = 1.64 x 10-140; 

MW: U > 1.8 x 105, P < 10-5; N > 565 for all comparisons). The shuffled data were the same 

as in A v A’, but with randomised pairings between units in A and A’. The remapping between 

first and last recording in environment A (A v A’) was greater than remapping within a single 

recording but only partial and far less than that measured with randomised unit pairs. 
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Figure 5.4 Place cell map is distinctive in all four environments. A | Comparison of Pearson 
correlations in the following ratemaps: those computed on the first and second half of the recording 
in environment A (A ½ v ½); the ratemaps of environments A and A’ (A v A’); ratemaps of units in 
environment A paired with a random ratemap in A’ of the same set of units. B | Scatter plot with 
least-squares regression line and the correlation coefficient between normalised distance 
measurements of fields from the same pair of units in two environments (first and second distance 
measurement). The shaded regions delineate higher density regions with darker colours using 
gaussian kernel density estimate. C | Comparison of the normalised distances in the second 
environment based on the quadrant of the distance measure in the first environment (data Q1, first 
quadrant; data Q4, second quadrant) and a shuffled dataset, where the pairing between same cells 
in an animal was randomised between environments. D | The distribution of samples decoded to 
each of the environments, while the animal was in a given environment. The results from when the 
animal was in environment A also include decoding to A’. This was not allowed as an option during 
decoding when the animal was in environments B, C or D. All values are means for an animal. 
Error bars show 95% confidence interval of the mean based on bootstrapping. E | Comparison of 
the certainty of the decoding model about the animals’ location when they were decoded to be in 
the correct vs incorrect environment, plotted separately for when the animal was in each of the 
environments. The certainty is measured as the peak in the posterior probability matrix divided by 
the number of units. The dashed horizontal lines indicated the quadrants in the distribution. The 
distributions are for decoded samples pooled across all animals. F | Same as in E, but using values 
from posterior probability matrices each normalised to sum to 1 across environments. 

Inter-field centroid distance analysis pooled data across all combinations of environments, 

which required the normalisation of distance values to a proportion of the diagonal in each 
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environment, for measurements to be comparable. This analysis included all place cells that 

had exactly one place field in both of the environments being considered. Figure 5.4B shows 

all inter-field distance comparisons overlaid on a kernel density estimate to support the 

visualisation. Inter-field distances of same units between any two environments were 

correlated (Pearson: r = 0.169, P < 10-24), while this was not the case if the unit pairs were 

randomised separately in each animal (Pearson: r = 6.39 x 10-4, p = 0.96). The same effect 

can also be seen in Figure 5.4C, where the distribution of inter-field distances in the second 

environment of the two being compared are separated into two groups based on the inter-

filed distance in the first environment – the first (Q1) and last (Q4) quartile. The inter-field 

distances of the Q1 group were lower in the second environment compared to the Q4 group 

and the shuffle data (distances of random unit pairs), while the Q4 group values are the 

highest (KW: H = 79.6, p = 5.14 x 10-18; MW: U > 3.2 x 105, P < 10-7; N = 927 for all 

comparisons). Therefore, place cells with their place fields nearby or far from each other in 

one environment are more likely to be so in other environments, at least in the case where 

they have exactly one field in both of the environments. 

When decoding the animal’s current location using spatial ratemaps of all environments, it 

is possible to assess the frequency of the peak probability being in the correct environment 

– the environment where the animal was in during the time point that was being decoded. 

The decoded environment was correct for 87.42% of samples when the animal was in 

environment A, as an average across animals (Figure 5.4D left). In these measures, the 

ratemap of environment A’ was also included. The current location was decoded to be in A’ 

for 6.16% of samples. There was a significant difference in the probability of the decoded 

location being in each of the environments (KW: H = 15.6, p = 0.0036), with A being the 

most likely (MW: U = 0, p = 6.09 x 10-3 for all comparisons). Decoding localised the animal 

to be in A’ with higher probability than C or D (MW: U > 1, P < 0.03). The other comparisons 

were not statistically significant. A high incidence of incorrectly decoding to A’, while in A, is 

expected, because the environment is the same. The marginal remapping between A and 

A’ appears sufficient to greatly reduce the probability of decoding to A’, while in A. 

Nevertheless, the probability decoding to A’ while in A was higher compared to other 

environments that are far larger. If the hippocampal maps of other environments were similar 

to A, as was the case with A’, then the erroneous decoding events to the larger environments 

would be considerably higher than A’ just by chance. 

Decoding to incorrect environments, while the animal was in B, C and D, was also examined 

(Figure 5.4D right). Similarly to when the animal was in environment A, the probability of 

decoding the animal’s location to be in incorrect environments was low. Across recordings 
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in environments A, B, C and D, when the ratemaps for A’ were not included, the probability 

of the decoded location being in the correct environment was 94.48% on average across 

animals. These findings suggest that the hippocampus formed separate maps for all 

environments in the experiment. 

Beyond the location of the maximum probability in the decoding posteriors, the peak values 

are informative as well. Higher values mean that the observed spike rates were a better 

match to those expected based on ratemaps. The posterior peak values, divided by the 

number of units and pooled across animals, were higher in cases where the decoded 

location was in an incorrect environment (Figure 5.4E) (MW: U > 4.8 x 108, P < 10-66; N > 

9642 in all environments). When posteriors were divided by the total probability across all 

potential locations (normalised such that they sum to 1) the peaks were lower for samples 

where the decoded locations were in an incorrect environment (MW: U > 8.1 x 108, p = 0; N 

> 9642 in all environments). These two results mean that the decoding to an incorrect 

environment occurs because of a high probability match between observed and expected 

spikes, rather than accidental error due to low probability matches to all possible locations. 

5.3.3 The same Gamma distribution governs place field formation 

propensities also in smaller environments where field density increases 

The number of place cells and place fields used to represent an environment determines 

the accuracy of the encoded spatial information as well as storage capacity. Here, the 

proportion of place cells and place fields involved in representing each environment is 

evaluated. 

The distribution of place cells with any given number of place fields depends on the size of 

the environment (Figure 5.5A). In larger environments, a higher percentage of place cells 

have a larger number of fields. A uniform distribution of place fields of any given cell would 

produce the same effect. A population of place cells with an equal Poisson rate did not 

capture the wide distribution of place field counts among cells, especially in the larger 

environments (data not shown). However, a gamma-Poisson model of field formation was 

able to match experimental data very well (Figure 5.5A). The process of optimising the 

Gamma distribution parameters and other details of the gamma-Poisson model are provided 

in the Methods section (5.2.4). The gamma-Poisson model predictions of the proportional 

distribution of fields across cells were accurate in all environments, including a theoretical 

environment combining the area and field counts of each unit across the other environments. 

The gamma-Poisson model also predicts the proportion of silent cells – pyramidal cells with 
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no place fields in an environment. It predicted that almost 90% of the pyramidal cell 

population had at least one field in the theoretical combined-environment (Figure 5.5A). 

Therefore, approximately 90% of the place cells close enough to the implanted tetrodes 

were observed to form a field in at least one of the recorded environments. In environment 

D, this value was just under 75%. 
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Figure 5.5 Smaller environments have a higher field density, but the distribution of the field 
formation propensities is consistent in all environments. A | In larger environments, individual 
place cells have more place fields. Values represent the count of place cells that had a given 
number of place fields in each environment as a percentage of place cells that were active in that 
environment (≥ 1 fields). A model of field propensities where a fixed Gamma distribution (inset) 
specifies the Poisson rates of field formation based on environment size accurately predicts the 
distributions observed in data. The black line indicates the distribution that could be measured in 
the full place cell population – including silent cells – as predicted by the gamma-Poisson model. 
B | Distribution of detected place fields in different size environments. The values represent the 
number of place fields in each environment as a percentage of total place fields detected across 
all environments in a given animal. The linear regression line fitted to the data is shown as a dashed 
line. Inset shows the density of place fields in each environment. C | The proportion of place cells 
that have place fields in environments of different size follows a logarithmic curve. The values 
represent the number of cells that had a place field in each environment as a percentage of total 
place cells identified in each animal (≥ 1 fields in at least one environment). Dashed lines connect 
predictions of the gamma-Poisson model, as well as the model predictions adjusted based on field 
density ratios (B inset). Inset in C shows the gamma-Poisson model prediction of CA1 pyramidal 
cell recruitment to form fields in environments of different size up to over 99% recruitment at 72 m2. 

The number of place fields in each environment increased with the size of the environment 

(Figure 5.5B) (KW: H = 1.76, p = 5.3 x 10-4). The values observed in the range of environment 

sizes used in this study could be described well with a linear regression line (slope = 3.417, 

intercept = 8.318, r = 0.982, p = 1.7 x 10-14). The density of place fields (the percentage of 
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total field centroids per m2 in each environment) is higher in the smaller environments than 

larger ones (Figure 5.5B inset) (KW: H = 1.79, p = 4.71 x 10-4). The decreasing place field 

density in larger environments appears to be approximating an asymptote close to the slope 

of the fitted line mentioned above. Therefore, it is likely that the number of place fields formed 

to represent an environment scales linearly with environment size, except for small 

environments, where there is a disproportionately high number of place fields. 

In larger environments, a higher percentage of detected place cells – those with a field in at 

least one of the recorded environments – were found to have a place field (Figure 5.5C) 

(KW: H = 14.4, p = 0.002). The recruitment of units to encode locations in increasingly larger 

environments followed a logarithmic curve. 

The gamma-Poisson model was used to predict the count of place cells with at least one 

field in each environment as a percentage of cells that had at least one field in any of the 

four environments. The field formation propensity of each cell was kept constant as field 

count distributions were computed for each environment. The simulated cells with no fields 

in any of the environments were removed from the population. The resulting predictions 

were accurate for environments C and D but underestimated the percentage of units with a 

field in the smaller environments (Figure 5.5C). This mismatch could be due to the higher 

density of place fields in smaller environments (Figure 5.5B inset). When the areas of each 

environment were multiplied by the field density ratios (2.46, 1.66, 1.27 and 1 for 

environments A, B, C and D, respectively) during the process of place cell recruitment 

estimation, then the predictions matched up perfectly well with experimental data (Figure 

5.5C). The same modification also improved the gamma-Poisson model accuracy at 

estimating the field count distributions in different size environments (data not shown). 

Multiplying the area of an environment input to the gamma-Poisson model is equivalent to 

multiplying the scale parameter of the Gamma distribution by the same value. These results 

suggest that in conditions where place field density is higher, the fields are formed with 

propensities based on the same shape Gamma distribution; however, the scale parameter 

increases in proportion to field density. These factors do not have a great impact on 

estimates of cell recruitment in vast open spaces, because the decreasing field density in 

larger environments seems to reach an asymptote at around 10 m2 (Figure 5.5B inset). 

Based on the gamma-Poisson model parameterised on this experimental dataset, the full 

place cell population should be 99% recruited at 72 m2, at which point fewer than 1% of CA1 

pyramidal cells are still silent in the environment (Figure 5.5C inset). 
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It is important to verify that the findings are not the result of anomalies in spike sorting. 

Combining multiple place cells into a single unit during the clustering phase of data 

processing would create a unit with a higher number of place fields. L-ratio (Schmitzer-

Torbert and Redish, 2004) and Isolation Distance (Harris et al., 2001) were computed for 

each unit as described in the methods (Figure 5.6). The analysis of the relationship between 

these measures and the number of place fields detected per cell revealed a positive 

correlation with Isolation Distance (r = 0.112, p = 0.007). There was also a significant 

negative correlation between the L-ratio and the maximum spatial correlation between odd 

and even minute ratemaps (r = -0.111, p = 0.007). These relationships suggest that place 

cells with a higher number of place fields and more stable ratemaps were better-isolated 

clusters, rather than otherwise. It is therefore unlikely that anomalies in spike sorting biased 

for detecting a higher number of place fields per place cell. 
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Figure 5.6 High place field count per cell is not the result of over clustering in spike sorting. 
Pair-wise correlation plots of place cell clustering-quality measures (Isolation Distance and L-ratio) 
and ratemap property measures (spatial correlation of odd vs even minute ratemaps and the 
number of place fields). Diagonal plots show the distribution of each measure named at the base 
of the column. The plots above the diagonal show the measures named on the left of each row 
plotted against measures named at the base of each column. The plots below the diagonal show 
the kernel density estimate of the same measures. Lines indicate the linear regression lines fitted 
to data, together with r and p values of the fit. 

5.3.4 Place fields are smaller but more numerous near walls of the 

environment 

There is generally too much variability in data to compare individual locations in the 

environment. However, pooling values by distance to walls or corners still enables 

comparisons of measures at different distances to these landmarks. This method of 
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aggregating data from multiple locations to provide insight into trends in measurements 

within environments is used throughout this thesis section. Further spatial selection criteria 

are occasionally applied, such as only including samples in the middle portion of the 

environment, distant from long walls. This criterion is used to maximise the uniformity of 

sampling across distances to a wall and minimizing effects from the other walls. The distance 

bins and spatial selection criteria are highlighted in diagrams on top of each plot. 

Given that place field centroid density was different in different size environments, it could 

be hypothesised that the place field density also varied within environments. Indeed, place 

field centroid density at less than 28 cm from walls was higher in smaller environments 

(Figure 5.7A) (KW: H = 13.8, p = 3.16 x 10-3). It was also higher near the wall than towards 

the middle of environments C and D (Figure 5.7A) (KW: H > 11.2, p < 3.74 x 10-3). While 

these measures per distance bin could be computed separately for each animal, further 

spatial selection required pooling data across animals. The place field centroid density 

distribution at a specific distance bin was computed at all 28 x 28 cm regions centred on 

spatial bins within a distance range from a landmark (corner or wall), using place field 

locations aggregated across animals. Using this method field density was shown to be 

higher in the corners of the smaller environments (Figure 5.7B) (KW: H = 34, p = 2 x 10-7; N 

≥ 24 for all environments) and also closer to corners within each of the larger environments 

(Figure 5.7B) (MW in environment B: U = 4686, p = 6.2 x 10-4; KW in C and D: H > 82.1, p 

< 1.6 x 10-18; N ≥ 24 for all group). With spatial selection criteria for the middle third between 

the long walls, the field density by the short wall was also shown to be higher in the smaller 

environments (Figure 5.7C) (KW: H = 270, p = 3 x 10-58; N ≥ 64 for all environments) and 

closer to short walls in the larger environments (Figure 5.7C) (MW in environment B: U = 

7454, p = 4.3 x 10-5; KW in C and D: H > 98.9, p < 3 x 10-22; N ≥ 80 for all group). In 

environment D, place field centroid density in the middle of the environment is about half of 

that by the wall (Figure 5.7C). Finally, to verify that this effect was not confounded by the 

increased spatial sampling near the walls and corners, the same measurements as in Figure 

5.7A were computed separately for spatial bins in each group that were in the lower or higher 

half based on dwell time. No significant differences were found between the resulting sub-

groups (Figure 5.7D). 



130 
 

 

Figure 5.7 The density of place field centroids decreases with distance from the walls and 
corners. A | Distribution of place field centroid density at different distances from the nearest wall 
across each environment. Values represent the mean for each animal computed across all 
positions in each distance bin. Left: comparison of the field density across environments, using 
only the positions in the first distance bin; right: comparison of the field density across different 
distance bins separately for each of the larger environments, with distance values specifying bin 
centres. The grey lines connect measures from the same animal. The legends on top of each plot 
indicate the distance bins with different shades of green. B | Comparison of field density at different 
distances to corners of the environment, using the distribution of field density values in 28 x 28 cm 
regions centred on all spatial bins at a given distance from the nearest corner and less than 28 cm 
from a nearest wall. These values are computed with fields combined across animals. The legends 
on top of each plot indicate the positions included in each bin with shades of green. C | Same as 
B, but using values for spatial bins only in the middle third of the environment, between long walls 
of the environment, binned by distance to short walls. D | Same as in A, but with values computed 
separately for spatial bins in the lower and higher half based on dwell time. 

If place field centroid density decreases with distance to the walls then place cells would 

provide less information about the animal’s location, assuming place fields remained the 

same size. In order to test this hypothesis, the size of place fields needs to be measured as 

a function of distance to environmental boundaries. For obtaining this measurement, it must 

be decided what determines the location of the measure from each place field. Computing 

the distribution of values for place fields overlapping a given location gives an accurate 

representation of the kind of place fields active at that location. The distributions presented 

in Figure 5.8 were computed using this approach, pooling samples across all spatial bins in 

the location group (e.g. distance to a wall). 
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Figure 5.8 The width of place fields varies by distance to the nearest wall in each axis. A | 
Average distribution of sizes (total area) of place fields overlapping with a position at a given 
location in the environment. Left: comparison of the distribution across environments using 
locations less than 28 cm from a wall; right: comparison of locations at different distances from the 
closest wall, separately for each environment. B | Same as A, but aggregating data based on the 
distance to the nearest corner and only including locations less than 28 cm from the nearest wall. 
C | Average distribution of eccentricity of place fields overlapping with a position at a given location 
in the environment, grouped by distance to the nearest short wall and only including the middle 
third of the environment. D | Same as in C, but aggregated by distance to corners and ignoring 
positions further than 28 cm from walls. E | Average distribution of place field widths parallel to the 
short wall, grouped by distance to the short wall and only using locations in the middle third of the 
environment. F | Same as in E, but using widths orthogonal to the short wall. 

The exact results of KW and MW tests for the comparisons of groups in Figure 5.8 are not 

reported, because, except for a couple of cases, these were all highly significant, even if the 

distributions were perceptually identical. This result is due to extremely high sample sizes, 

greater than 7716 samples – in-field spatial bins across all place fields – in any group. 
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Place fields overlapping locations less than 28 cm from walls had a smaller area in smaller 

environments (Figure 5.8A left) and also closer to walls in larger environments (Figure 5.8A 

right). Place fields also had a smaller area near the corners (Figure 5.8B right). However, 

the differences between the corners across environments were not so simple (Figure 5.8B 

left). In essence, the second-largest environment had the largest fields in the corners, while 

the field area in corners increased with environment size in others. The eccentricity of 

ellipses fitted to place fields was lower in the smaller environments and also further from the 

short wall (Figure 5.8C). This result suggests that fields are more elongated near walls and 

more so in the larger environments. The eccentricity was also lower near corners – place 

fields were less elongated near corners (Figure 5.8D). However, this effect appears smaller 

than the change in eccentricity with distance to the nearest wall. 

Place field widths parallel to the nearest short wall, as measured by the length of their 

projection on this axis, did not change much with distance to the nearest short wall (Figure 

5.8E), although most differences were still statistically significant for reasons discussed 

above. In contrast, the change in place field width orthogonal to the nearest short wall 

increased dramatically with the distance from the wall (Figure 5.8F). This effect is also 

reflected in Figure 5.8E comparison of environments, as the distance to the long wall 

increases with environment size, due to spatial selection for the middle third of the 

environment, and the width parallel to the short wall is orthogonal to the long wall. It is also 

important to note that the width orthogonal to the short wall appears to vary little between 

environments, compared to the change in the same measure with distance to the wall 

(Figure 5.8F). 

In summary, the results on place field density and size suggest that there are fewer individual 

place fields further from walls; however, place fields in these locations are greater in size. 

Specifically, please fields appear to extend in width on the axis orthogonal to a wall with 

distance from that wall. The extension of place fields as a function of distance to walls results 

in more elongated place fields by the walls and less elongated fields in the middle of 

environments, but also in corners – possibly due to even distance to walls in both axes. 

Overall, the decrease in place field centroid density further from walls appears to be matched 

with an increase in the size of fields. 
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5.3.5 Homeostasis of population activity despite changes in place field 

density and size 

The density of place field centroids and the size of place fields affect population-level 

properties of the place cell system. A decrease in the place field centroid density, assuming 

the fields remain the same size, reduces the number of place fields active at any location 

and the average firing rate in the place cell population. Increasing the size of place fields 

instead has the opposite effect. 

The percentage of place cells co-active – firing at greater than 1 Hz – at each location was 

computed based on spatial ratemaps at all spatial bins for each animal. With data 

aggregated across locations, grouped by distance to the nearest wall, the mean percentage 

of co-active units was not significantly different between environments or different portions 

of individual environments (Figure 5.9A). Similarly, the mean firing rate of the place cell 

population, computed for each animal, was not significantly different between different 

portions of any environment or the different size environments (Figure 5.9B). The finding 

that the proportion of co-active units is constant everywhere implies that total area of place 

fields must scale linearly with environment size. In order to verify this, the total area of fields 

in each environment as a percentage of the total area of fields across environments was 

computed separately for animals (Figure 5.9C). Indeed, the linear regression line fit to this 

data was close to perfect (slope = 5.945, intercept = 0.617, r = 0.996, p = 8.3 x 10-21). 

Furthermore, computing percentage of total area values per m2 of each environment yields 

values with no significant differences between different size environments (Figure 5.9C 

inset). The fact that the mean firing rate in the population also remains constant across all 

locations in all environments implies that the firing rate in place fields at all locations must 

be, on average, constant. This hypothesis was validated using the instantaneous firing rate 

during individual runs through place fields in different parts of the largest environment. The 

peak firing rate in runs next to the wall was just slightly higher than in the middle (Figure 

5.9D) (KW: H = 9.4, p = 0.024; MW: U = 5.9 x 105, p = 0.02). The amplitudes of gaussians 

fitted to the instantaneous spike rate in runs were not significantly different between different 

distance bins (Figure 5.9E). In summary, the mean activity in the place cell population is 

constant across environments of different size and locations within these environments. This 

constancy is maintained even as place field centroid density decreases with distance from 

the wall because the size of fields increases correspondingly. 
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Figure 5.9 Total place cell activity in all environments and all locations is consistent. A | 
Percentage of place cells co-active (with firing rate above 1 Hz) at any location in a specific distance 
from the nearest wall, computed as an average for each animal. Grey lines connect measures from 
the same animal. B | Same as A, but measuring the mean spike rate across all place cells in a 
given animal. C | The percentage of total place field area accounted for by place fields in each 
environment, computed separately for each animal. The dashed line is the best-fit linear regression 
line, and its r-value is shown. Inset shows the values of the main plot divided by the size of each 
environment – the percentage of total place field area per m2 of each environment. D | Peak spike 
rate based on instantaneous firing rate during individual runs through place fields at different 
distances to the nearest short wall in the middle fifth of the largest environment. Kernel density 
estimates are cut at 95%. E | Same as in D, but values based on the amplitude of a gaussian fitted 
to the instantaneous firing rate maps of individual runs. 

5.3.6 Changes in fields influence the quality of spatial information 

encoded by place cells 

While the overall level of activity in the place cell population is maintained at all locations, 

the change in place field properties may influence the extent and accuracy of the encoded 

spatial information. For example, a larger place field, compared to a smaller one with same 

peak firing rate, is informative of the animal’s location through a greater extent of the 

environment, but less accurate at each location. Population-level measures, such as the 

spatial information measure defined by Skaggs et al. (1993), the Fisher information and 

position reconstruction error were computed to assess the ability of the population to encode 
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location information in conditions where place field properties change. The details on these 

methods are provided in the Methods section (5.2.6). 

The spatial information (bits per spike) as an average across all place cells detected in each 

animal was higher in larger environments (Figure 5.10A) (KW: H = 13, p = 0.0046; MW for 

A v C: U = 1, p = 0.022; MW for A v D: U = 0, p = 0.012; MW for B v D: U = 1, p = 0.022). 

This could be explained by a greater proportion of cells having a meaningful firing rate in the 

larger environments. Indeed, the mean bits per spike computed using only the place cells 

with a peak firing rate of at least 1 Hz somewhere in the environment was not different 

between environments (Figure 5.10B). In order to test whether the spatial information in the 

place cell ratemap in one environment is predictive of the same value in another 

environment, the standard deviation of the spatial information values across environments 

was computed for each place cell. Only cells with peak rate in their spatial ratemaps of at 

least 1 Hz in all four environments were used in this analysis. This measure of variability 

was also computed 1000 times with shuffling of the spatial information values from different 

environments between cells of each animal. The standard deviations based on the real data 

were significantly lower than those computed on shuffled data (MW one-sided: U = 1.8 x 

107, p = 10-70; N = 299). These results suggest that across different size environments, the 

place cells maintain the shape of place fields in proportion to the environments. Furthermore, 

the spatial information of individual place cells is more similar across different environments 

than expected by chance. 

 

Figure 5.10 Spatial information of individual active units is conserved across different size 
environments. A | The spatial information content (bits/spike) in spatial ratemaps as an average 
across all place cells detected in each animal. Grey lines connect measures from the same animal. 
B | Same as A, but computed as mean across place cells that had a minimum firing rate of 1 Hz in 
a given environment. C | The distribution of standard deviations of place cell spatial information 
across the four different environments, using the same data as in A, compared to the standard 
deviations for when values in different environments were shuffled between cells of each animal. 

Increase in place field width means that the change in firing rate over a fixed distance is 

lower. Given the low and variable firing rate of place cells, this means that wider fields 
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provide less accurate information about the animal’s location. Fisher information captures 

this effect, which is why the average Fisher information across place cells was computed in 

each animal and compared across different locations. This measure was rather noisy; 

however, a significant decrease in Fisher information was found with increasing distance 

from the wall in the largest environment (Figure 5.11A) (KW: H = 8.5, p = 0.037; MW 14 v 

98 cm bin: U = 24, p = 0.022; MW 42 v 98 cm bin: U = 19, p = 0.037). While this trend is not 

apparent in all environments, Fisher information was significantly higher further from corners 

in the environment B (Figure 5.11B) (MW: U = 0, p = 0.012). Inspecting Fisher information 

separately for different axes and only in the middle third of the environment, it was found to 

decrease significantly with distance from the short wall, if computed along the axis 

orthogonal to the wall (Figure 5.11C) (KW: H = 8.6, p = 0.035; MW 14 v 70 cm bin: U = 24, 

p = 0.022; MW 14 v 98 cm bin: U = 20, p = 0.037). This effect was not statistically significant 

for Fisher information computed along the axis parallel to the short wall (Figure 5.11D). 

However, the same measure was different across the different size environments (Figure 

5.11D left) (KW: H = 10, p = 0.017; MW A v C: U = 24, p = 0.022; MW A v D: U = 24, p = 

0.022), which can be explained by increasing distances to the long wall of the included 

region in larger environments. In summary, there appears to be a slight decrease in Fisher 

information with distance from a wall in larger environments, specifically in the axis 

orthogonal to the wall. 
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Figure 5.11 Fisher information in spatial ratemaps decreases with distance to walls. A | Total 
fisher information across both axes at different locations, based on the distance to the nearest wall. 
Grey lines connect measures from the same animal. B | Same as in A, but computed for locations 
based on the distance to the nearest corner. C | Fisher information computed on the axis orthogonal 
to the short wall aggregated across locations based on the distance to the nearest short wall, only 
including samples in the middle third of the environment. D | Same as in C, but computed along 
the axis parallel to the short wall. 

The accuracy of position decoding based on place cell population activity provides a 

measure of how useful it can be for a brain region downstream of the hippocampus – a 

measure of the quality of transmitted location information. A completely naive decoding 

system, randomly guessing the animal’s location, would make the smallest errors when the 

animal is in the middle of the environment. The median error there would be roughly 

equivalent to the distance from the nearest wall (Figure 5.12A), which is half the length of 

the short wall in each environment used in this study. The errors by the walls are roughly 

50% higher (Figure 5.12A). It is therefore important to correct for the bias introduced by 

random guessing errors, as described in the Methods section (5.2.6). The median decoding 

errors using the position reconstruction method described in the Method section (5.2.6) was 

far below the random guess errors in all environments (Figure 5.12B). The decoding error 

varies with the latency between the centre of the temporal window used for spike rate 

estimation and the position samples compared to decoded locations (Figure 5.12B). The 

following analysis uses the optimal decoding latency – comparison to position samples 400 

ms in the future. 



138 
 

 

Figure 5.12 Position decoder 
optimisation. A | Random 
guess errors based on median 
distances to all other locations 
from each location. B | Median 
decoding errors in each 
environment as mean across 
animals, computed with 
different latencies to real 
position data. Error bands show 
the 95% confidence interval of 
the mean across animals. 

Median decoding error was computed separately for each animal and each spatial region 

defined by binned distance to the short wall or corners of the environment. All samples where 

the animal was in the region of interest were pooled to compute the median error. 

Surprisingly, if only the middle portion of the environment, far from long walls, is considered, 

the Euclidean distance within each environment was constant at all distance to the short 

wall (Figure 5.13A right). Although, it was higher right by the wall in larger environments 

compared to smaller ones (Figure 5.13A left) (KW: H = 14.6, p = 0.0022; MW all except C v 

D: U < 2, p < 0.037). The error was also lower near corners compared to further by the wall 

in environment B (MW: U = 1, p = 0.022) and environment C (Figure 5.13B) (KW: H = 8.9, 

p = 0.012; MW 14 v 70 cm bins: U = 1, p = 0.022; MW 42 v 70 cm bins: U = 2, p = 0.037). 

While not statistically significant, this trend was also apparent in environment D (Figure 

5.13B). The decoding error along the axis orthogonal to the short wall increased with 

distance from the wall in all environments (Figure 5.13C right) (MW in environment B: U = 

0, p = 0.012; KW in environment C: H = 11.6, p = 0.003; KW in environment D: H = 11.8, p 

= 0.008). Notably, no differences between the environments were observed for the errors 

orthogonal to the short wall at locations near the wall (Figure 5.13C left). The decoding errors 

parallel to the short wall, however, were different between environments (Figure 5.13D left) 

(KW: H = 16.2, p = 0.001). Similarly to the findings on place field width (Figure 5.8E) and 

Fisher information (Figure 5.11D), these results could be explained by the included middle 

portion of the environments being further from the long walls in larger environments. 

Interestingly, there was no statistically significant difference in the decoding errors parallel 

to the short wall at different distances to the wall (Figure 5.13D right). If anything, there 

appears to be a slight trend of decreasing decoding errors along this axis with increasing 

distance to the wall. In summary, decoding error increases with distance to the wall, but only 

along the axis orthogonal to the wall. This result reflects the increase in place field size and 

decrease in Fisher information along the same dimensions. The Euclidean error does not 

change with distance to the wall, probably because of the errors parallel to the wall 
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decreasing with distance to the wall. Errors in corners are lower, probably because of the 

proximity to walls on both axes simultaneously. 

 

Figure 5.13 Decoding accuracy varies with distance to walls. A | Median Euclidean decoding 
error across samples where the animal was in the middle third of the environment, aggregated in 
regions based on binned distance from the nearest short wall. Grey lines connect measures from 
the same animal. B | Same as in A, but aggregated by distance to the nearest corner. C | Median 
error on the axis orthogonal to the short wall in each environment. D | Median error on the axis 
parallel to the short wall in each environment. 

5.3.7 Optimal place field size increases with increasing uncertainty 

The place fields could be increasing in size with distance from walls to optimise the decoding 

accuracy at locations with increasing spatial uncertainty. In order to illustrate this effect, 

place cell populations were modelled and decoding errors calculated with different levels of 

noise (Figure 5.14). 

The place fields, one per each cell, were uniformly distributed across a 1D environment, and 

the decoding error was measured in the central portion of the environment to avoid edge 

effects. The place fields were all simulated by Gaussians with 8 Hz amplitude and different 

but fixed field size in each population. The observed spike counts were generated with a 

Poisson process using the spike rate of the place field at each position and a temporal 

window of 0.125 seconds or 1 second. Incoherent noise was introduced to each time the 

spike counts were sampled by shifting each place field centre independently with shifts 
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sampled from a normal distribution with 0 mean and standard deviation defined by jitter 

sigma. The precise values of the Gaussian functions without any jitter were used as the 

expected spike rates at each location during decoding. The number of place fields in the 

sampled area of the environment was fixed at 200 for one type of population, resulting in a 

constant density of field centroids. Increasing the size of place fields in this population results 

in increased mean spike rate (Figure 5.14F) and overlap of units (Figure 5.14H). In order to 

match the constant overlap and mean spike rate observed in the real data described above, 

another type of place cell population was modelled. In this population, the number of place 

fields in the sampled area of the environment was decreasing from 200 in proportion to half 

the change in field size. 

In all simulated place cell populations, using either 1-second or 0.125-second temporal 

windows, the decoding error decreased with increasing place field size to an optimal field 

size, where it started increasing along with field size (Figure 5.14 A-D). The optimal field 

size was higher with increasing noise (jitter sigma) in all cases (Figure 5.14E). The optimal 

field sizes were larger if the 1-second temporal window was used and also in the constant 

centroid density type populations, compared to constant overlap (Figure 5.14E). These 

results demonstrate that the optimal size of place fields increases with higher incoherent 

noise in the population – place fields shifting independently. 
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Figure 5.14 Optimal place field size increases with incoherent noise in the population. A | 
Decoding error with different levels of noise (jitter sigma) and different place field sizes (field sigma), 
using a place cell population with a constant density of centroids and a 1-second time window for 
spike rate estimation. B | Same as A, but with 0.125-second time window. C | Same as A, but with 
a constant overlap of place fields, meaning the centroid density decreased with the increase in 
place field size. D | Same as in C, but with 0.125-second time window. E | The place field size with 
the lowest decoding error (optimal field sigma) over different levels of noise (jitter sigma) for data 
in A, B, C and D. F | Comparison of mean spike rate in the place cell population with different size 
place fields in populations with constant centroid density and constant overlap. G | Same as in F, 
but measuring Fisher information. H | Same as in F, but measuring the proportion of overlapping 
place fields as an average at any location. Error bands in all plots represent the 95% confidence 
interval of observing the same mean by bootstrapping the 40 population iterations. Plots A, B, C 
and D share the legend in the top right corner of the figure. Plots F, G and H share the legend on 
G. 
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5.3.8 Place field stability does not change with distance to the walls 

If place fields increased in size with distance from the walls of an enclosure to compensate 

for increased spatial uncertainty, then the firing patterns of place cells should be less stable 

further from the walls. For this reason, multiple measures of the place cell spatial firing 

stability were assessed. These included: the directional modulation, spatial correlation of 

spatial ratemaps from different parts of the recording and variability of the firing patterns 

during individual runs through place fields. 

Directional tuning of place cell firing at different locations was measured in directional 

ratemaps computed for each place field. The directional ratemap for a place field was the 

mean spike rate across all position samples where the animal was inside the region of the 

place field, binned into 6° bins by movement direction, and smoothed with a gaussian kernel 

(2-bin sigma). Similarly to the analysis of place field sizes at different locations (Figure 5.8), 

the analysis of directional modulation measures the mean distribution of directionality of 

fields overlapping a location in specific sections of the environment. Therefore, the number 

of samples in each group in this analysis is also very high (N > 6343 for all groups), and the 

statistical significance of the differences between all groups is extremely high. It is, therefore, 

deemed unnecessary to report the specific values for each of the KW and MW tests. 

The mean resultant vector (Berens, 2009) normalised by total spike rate was higher near 

the edges of the environments (Figure 5.15A). It was also higher in the corners of 

environments B and C, but not D (Figure 5.15B). Similar results were found for Kullback-

Leibler divergence (Cover and Thomas, 1991). The Kullback-Leibler divergence was higher 

near the walls (Figure 5.15C), and corners (Figure 5.15D) of all environments, including 

environment D. Therefore, any variability in place cell firing in particular locations caused by 

directional modulation would be greater by the walls of the environments, rather than in the 

middle. 
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Figure 5.15 Place cell firing is more strongly modulated by movement direction close to 
walls. A | The mean distributions of the mean resultant vector of the directional ratemap computed 
with in-field spikes for place fields overlapping with locations at different distances to the nearest 
short wall. B | Same as A, but computed for fields overlapping locations grouped by distance to 
the nearest corner. C | Same as A, but measuring Kullback-Leibler divergence. D | Same as B, but 
measuring Kullback-Leibler divergence. E | Percentage of place fields overlapping with a location 
for which the peak direction in the directional ratemap is within 45° of the short wall axis. The 
dashed horizontal line indicates the 50% level. The legend on top of each plot indicates the range 
of preferred directions considered to be parallel to the short wall. Grey lines connect values from 
the same animal. F | Same as E, but only including place fields for which the Kullback-Leibler 
divergence measure was in the top 25% of all place fields, filtered separately for each environment. 

Given that place cell firing by the walls is modulated more strongly by movement direction, 

it is important to establish whether there is any preferred tuning direction. The proportion of 

place fields with tuning parallel to the short wall was assessed at different distances to the 

wall. The directional preference was considered to be parallel to the short wall if the angle 

of the peak in the directional ratemap was closer than 45° to the axis of the short wall. There 
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was no consistent bias for the preferred direction to be parallel or orthogonal to the short 

wall across the environments (Figure 5.15E), and there was no significant difference to this 

measure between environments (Figure 5.15E left) or at different distances to the wall within 

the environments (Figure 5.15E right). The results were the same even if data was limited 

only to place fields with high directional modulation (top 25% based on Kullback-Leibler 

divergence). In summary, the preferred direction of place cell firing is not biased by the angle 

of a nearby wall. 

The stability of place cell firing was also assessed using the spatial correlation – computed 

as the Pearson correlation between pairs of values in the same bin from spatial ratemaps 

based on odd and even minutes of the recording. There was sufficient data for this analysis 

only in recordings from environment D. The correlation was computed separately for each 

animal and locations grouped by distances to landmarks. The spatial bins used in this 

analysis had to have a firing rate above 0.1 Hz or 1 Hz (specified for separate results) in at 

least one of the ratemaps compared. In order to correct for the bias of more accurate 

ratemaps at locations with greater spatial sampling, the ratemaps were computed using 

exactly 5 samples at each location (0.2 seconds of data) and only bins with at least 6 

surrounding bins with enough samples were included. In the case of spatial ratemaps 

computed using data filtered for movement direction, 3 samples were used instead, and the 

criteria for surrounding valid bins was set to 4. The directional filtering for movement 

orthogonal to the short wall only included data from samples where the animal was moving 

along the axis orthogonal to the short wall within a margin of 45°. This method was used 

relative to the other axis for movements parallel to the short wall. 

There was no significant difference between spatial correlation at different distances to the 

short wall in the middle third of the environment, regardless if 0.1 Hz (Figure 5.16A) or 1 Hz 

(Figure 5.16C) criterion was used. Similarly, the spatial correlation was the same at different 

distances to the corners of the environment using either the 0.1 Hz (Figure 5.16B) or 1 Hz 

(Figure 5.16D) criteria for including spatial bins. Even when using the ratemaps computed 

on samples filtered for movement direction and a 0.1 Hz inclusion criteria, there was no 

difference in spatial correlation at locations grouped by distance to the short wall (Figure 

5.16 E and F). Therefore, spatial ratemaps are equally stable at all locations of the largest 

environment, even if corrected for directional modulation. 
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Figure 5.16 Spatial ratemaps are equally stable across the largest environment. A | Spatial 
correlation of odd and even minute ratemaps (where spike rate was above 0.1 Hz in either ratemap) 
at different distances to the short wall, based on locations in the middle third of the environment. 
Grey lines connect values from the same animal B | Same as A, but computed for locations 
grouped by distance to the nearest corner, and only using locations less than 40 cm from the 
nearest wall. C | Same as A, but only using spatial bins where spike rate was at least 1 Hz in either 
of the odd or even minute ratemap. D | Same as B, but using 1 Hz threshold. E | Same as A, but 
using ratemaps computed using data from periods during movement orthogonal to the short wall 
(with an angular deviation from the axis of the short wall of at least 45°). F | Same as E, but filtering 
for movement parallel to the short wall (within 45° margin). G | Proportion of runs through a place 
field in which no spikes were detected, using only the runs overlapping different distance bins in 
the middle fifth of the environment, that were orthogonal to the axis of the short wall (by 45° margin). 
H | Same as G, but using runs parallel to the short wall. 

Another way to measure the stability of place cell firing is to inspect the variability of the cell 

activity across individual runs through its place field. The runs were detected and associated 

with different locations, as described in the Methods section (5.2.5), and only the runs 

overlapping the middle fifth of the environment were used. The percentage of runs, where 

at least 2 spikes were expected based on the spatial ratemap, but no spikes were observed, 

was not significantly different at different distances to the short wall in runs orthogonal 

(Figure 5.16G) or parallel (Figure 5.16H) to the short wall. This analysis produced the same 

results, although with a lower overall frequency of place cell failures, even if the spatial 

ratemaps were computed with samples filtered for the same movement direction (with a 45° 

margin) (data not shown). In summary, the probability of a place cell to fire at all during a 

run through a place field is not dependent on the proximity of nearby walls. 
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Place field firing variability during individual runs through place fields in the largest 

environment was analysed further using overdispersion and peak spike rate. Overdispersion 

quantifies the extent of variability in observed spike counts compared to that predicted by a 

Poisson model (Fenton and Muller, 1998), with the rate based on the spatial ratemap. This 

analysis also included the one-second extension of the trajectory before entering and after 

exiting the place field to exclude the effects from place field jitter during runs. Negative 

values indicate that fewer spikes were observed than expected, and positive values indicate 

that too many spikes were observed. Bonferroni correction was applied to the p-values of 

the statistical tests in Figures 5.17 and 5.18 on the level of groups (Kruskal Wallis and 

Levene group test p-value multiplier = 16) as well as pair-wise comparisons within each 

group (Mann Whitney U and Leven pair-wise test p-value multiplier = 6). 

The variance of overdispersion Z score was not significantly different at different distances 

to the nearest short wall in runs orthogonal to the wall, using data from the middle fifth of the 

environment D (Figure 5.17A) (Levene test of variance: W = 1.06, p = 1, with Bonferroni 

correction). However, in runs orthogonal to the short wall, the variance was greater by the 

wall (Figure 5.17B) (Levene across groups: W = 4.68, p = 0.046; Levene 15 v 75 cm bin: W 

= 8.8, p = 0.018; Levene 15 v 105 cm bin: W = 7.9, p = 0.031; all with Bonferroni correction). 

The results from this analysis were the same if spatial ratemaps were computed using data 

during movement in the matching direction (45° margin). 
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Figure 5.17 Spike rate variability during runs through place fields is greater near the wall. A 
| Overdispersion in runs orthogonal to the short wall in the middle fifth of the environment. The 
shaded region indicates the standard deviation around the median. B | Overdispersion in runs 
parallel to the short wall. C | Expected peak spike rate based on the spatial ratemap in runs 
orthogonal to the short wall. D | Same as C, but in runs parallel to the short wall. E | Peak spike 
rate observed during a run through the place field along the axis orthogonal to the short wall. F | 
Same as E, but in runs parallel to the short wall. G | The ratio of the observed and expected peak 
rate during runs orthogonal to the short wall. H | Same as G, but in runs parallel to the wall. Kernel 
density estimate in all plots is cut at 95%. 

The peak rate expected based on the spatial ratemap in runs orthogonal to the short wall 

increased with distance from the wall (Figure 5.17C) (KW: H = 41.3, p = 8.98 x 10-8; MW 

between all distances bin pairs except 75 v 105 cm and 45 v 75 cm: U < 33970, p < 0.017; 

all with Bonferroni correction). In runs parallel to the short wall, the expected peak rate 

increased with distance from the wall in the first three bins until 90 cm from the wall and then 

decreased again (Figure 5.17D) (KW: H = 71.7, p = 2.9 x 10-14; MW between all distances 

bin pairs except 45 v 105 cm: U < 177900, p < 0.004). The observed peak firing rate during 

runs orthogonal to the short wall was lowest at the wall (Figure 5.17E) (KW: H = 21, p = 1.6 

x 10-3; MW 15 cm bin compared to any other: U < 18720, p < 0.047; all with Bonferroni 

correction), but it did not vary with distance to the wall in runs parallel to the wall (Figure 
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5.17F). These results on the peak firing rate are reflected in the analysis of the ratio between 

observed and expected peak rate. This ratio was consistent at all distances to the short wall 

in runs orthogonal to the wall (Figure 5.17G) but decreased with increasing distance from 

the short wall in runs parallel to the wall (Figure 5.17H) (KW: H = 63.3, p = 10-12, with 

Bonferroni correction). The results from the analysis of the peak firing rate in runs were 

effectively the same if the spatial ratemaps were computed only using data with the 

movement direction matching the run direction (with a 45° margin). The results were also 

unchanged by using the amplitude of the Gaussian fitted to the spike rates in each run 

instead of the peak spike rate. 

In summary, the peak spike rate in runs orthogonal to the wall increases with distance from 

the wall, but not in runs parallel to the wall. The increase in peak rate in orthogonal runs 

results in higher spike rate values in spatial ratemaps for locations further from the wall and 

lower spike rates by the wall. As spike rates in runs parallel to the wall, which do not vary 

with distance to the wall, are compared to spatial ratemaps, the spike rates by the wall are 

proportionally higher (Figure 5.17H). This effect can also explain the increased variances of 

the overdispersion Z score by the walls (Figure 5.17B). The analysis using spatial ratemaps 

based on movement direction filtered data does not remove this effect, because with the 

margin of 45° the set of runs parallel to the wall still include runs almost orthogonal to the 

wall. There is not enough data for more precise directional filtering. 

The location of the place fields can be measured independently of the changes in the firing 

rate, and this could also change between different runs through the same place field. The 

length of place fields as detected based on the instantaneous firing rate increased with 

distance from the short wall in runs orthogonal to the wall (Figure 5.18A) (KW: H = 79.1, p = 

10-15; MW between all distance bin pairs except 75 v 105 cm: U < 61840, p < 2.2 x 10-3, all 

with Bonferroni correction) and decreased in runs parallel to the wall (Figure 5.18B) (KW: H 

= 42, p = 7 x 10-8; MW 15 cm v any other distance bin: U < 519100, p < 1.5 x 10-3; all with 

Bonferroni correction). The observed field length in proportion to that expected based on the 

ratemap also increased with distance from the short wall in runs orthogonal to the wall 

(Figure 5.18C) (KW: H = 28, p = 5.8 x 10-5; MW 15 cm v any other distance bin: U < 31430, 

p < 0.012; all with Bonferroni correction) and parallel to the wall (Figure 5.18D) (KW: H = 

105, p = 10-21; MW between all distance bin pairs except 45 v 105 cm and 75 v 105 cm: U < 

495500, p < 0.029; all with Bonferroni correction). In general, the fields are smaller than 

expected based on the spatial ratemap (Figure 5.18 C and D). These results were 

qualitatively the same when spatial ratemaps were computed on data filtered for the same 

movement direction as each run (45° margin). They were also unchanged by using the 
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standard deviation of a Gaussian fitted to spike rates as the length of the field, except the 

increase in field length parallel to the wall and decrease in proportional field length 

orthogonal to the wall with distance from the wall, which were not statistically significant. In 

summary, while the fields in the instantaneous firing rate increase in size with distance from 

the wall, particularly in runs orthogonal to the wall, at greater distances from the wall, they 

match more closely to that expected based on the spatial ratemap. 

 

Figure 5.18 Place field absolute jitter in runs is the same at all distances to the wall, but 
proportional jitter is higher near the walls. A | The length of the field detected in the 
instantaneous firing rate during runs through place fields orthogonal to the short wall. B | Same as 
A, but based on runs parallel to the short wall. C | The same as A, but measuring the length in 
proportion to that expected based on the spatial ratemap. D | Same as C, but in runs parallel to the 
short wall. E | The shifts of place field centres detected in the instantaneous firing rate during runs 
orthogonal to the short wall compared to the centre based on the spatial ratemaps. The shaded 
region indicates the standard deviation around the median. F | Same as E, but based on runs 
parallel to the short wall. G | The ratio of the shift in the place field centre and the place field length 
based on the instantaneous firing rate in runs orthogonal to the short wall. H | Same as G, but 
based on runs parallel to the short wall. Kernel density estimate in all plots is cut at 95%. 

Place fields detected in the instantaneous firing rate during runs through the field were 

usually shifted forward – occurring earlier – than expected based on the spatial ratemap 
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(Figure 5.18 E and F). The median of this shift is around 15-20 cm. The variance of the place 

field centre relative to that expected based on ratemaps was constant at different distances 

to the short wall in runs orthogonal to the wall (Figure 5.18E) (Levene: W = 1.01, p = 1, with 

Bonferroni correction). It was also the same in runs parallel to the wall. The place field jitter 

in proportion to the length of the place field based on the instantaneous firing rate in runs 

orthogonal to the short wall had the greatest variance next to the wall (Levene across 

groups: W = 13.5, p = 1.8 x 10-7; Levene for first bin v all others: W > 14.1, p < 0.001; all with 

Bonferroni correction). This effect, although not as pronounced, was also the case for runs 

parallel to the short wall (Levene across groups: W = 6.28, p = 4.8 x 10-3; Levene for 15 v 

45 cm and 15 v 75 cm: W > 9.33, p < 0.014). The results relating to the place field jitter were 

qualitatively similar when spatial ratemaps were computed with data filtered for movement 

directions matching each run (45° margin). Using the absolute values of the jitter and 

comparing these with KW and MW tests also produced qualitatively similar results. 

Measuring the field location using the location of a Gaussian fitted to the spike rates during 

each run resulted in these results being not statistically significant. However, the estimation 

of field location using fitted Gaussians was noisier than the other method. Altogether, these 

results suggest that the place fields jitter the same amount at different distances to the wall. 

Still, in proportion to the length of the field, the variance in place field location in runs is 

greater by the wall, especially along the axis orthogonal to the wall. 

Based on the measures of place cell firing rate variability used in the results described 

above, there is no evidence for increased noise in place cell firing with increasing distance 

from the wall. Therefore, it is unlikely that place fields increase in size with distance from the 

wall to compensate for increased spatial uncertainty. In fact, some results suggest that the 

place cell firing is more variable by the walls. It is more likely to be modulated by movement 

direction near the walls than in the middle of the environment, even if the preferred angle of 

the directional tuning does not have a systematic bias relative to the angle of the nearby wall 

(Figure 5.15). The measures of spatial correlation did not reveal a decrease in place cell 

firing rate stability with increasing distance to walls (Figure 5.16) and neither did the 

overdispersion measure of place cell spiking during runs through place fields (Figure 5.17). 

The peak spike rate based on spatial ratemaps increases with distance to the wall, and so 

does the peak spike rate in the instantaneous firing rate during runs orthogonal, but not 

parallel to the wall (Figure 5.17). The change in the peak rates based on the spatial ratemap 

with distance to the wall could also be explained by place fields near the walls being more 

smeared out in the spatial ratemaps. The smaller place fields near walls get more smeared 

out because they shift around as much in the larger ones in the middle (Figure 5.18). In 
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summary, place cell firing rate is not increasingly unstable with distance from walls, but 

rather, by some measures, it is more variable at locations near the walls of the environment. 

5.3.9 Place field properties are conserved for individual units across 

environments 

The results in Figure 5.4C suggested that place fields nearby or far from each other in one 

environment are more likely to be similarly arranged in another environment. Therefore, 

some determinants of place cell firing are conserved across environments. Given the large 

number of place cells recorded in many different environments in this study, it was possible 

to test which of the many properties of place fields are similar for the same unit across many 

environments. 

This analysis includes data from environments B, C and D. Place cells with at least one 

place field in each of these environments were pooled across animals. A total of 258 place 

cells were used for this analysis – a minimum of 30 in any animal. If there was more than 

one place field in an environment, then the average measure of those fields was used. The 

mean value for many of these properties (e.g. place field count and area) changes with the 

environment size. To make values comparable across environments, they were ranked 

separately for each animal and environment by their position in the sorted order. In the case 

of tied values, each value was assigned the average of the ranks that would have been 

assigned to all the tied values. A shuffle comparison was computed 1000 times, each time 

randomising the associations between place cells and place field measures in different 

environments, separately for each animal. 

The number of place fields per unit varied less for each cell across environments than 

expected by chance (Figure 5.19A) (MW one-sided: U = 2.5 x 107, p = 2 x 10-11, with 

Bonferroni correction). So did the area (Figure 5.19B) (MW one-sided: U = 2.8 x 107, p = 1.6 

x 10-4, with Bonferroni correction) and peak spike rate (Figure 5.19C) (MW one-sided: U = 

2.4 x 107, p = 3.4 x 10-13, with Bonferroni correction) of place fields. The ratio between the 

peak spike rate and the approximate radius (the radius of a circle with an area equal to the 

place field area) was used to describe the shape of each place field – the gradient of the 

firing rate decay from the peak. This measure also varied less for each cell across 

environments than expected by chance (Figure 5.19D) (MW one-sided: U = 2.4 x 107, p = 

10-14, with Bonferroni correction). The eccentricity of place fields, however, was not 

conserved across environments by place cells (Figure 5.19E). The strength of directional 

modulation of in-field firing based on the Kullback-Leibler divergence was conserved by 
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place cells across environments (Figure 5.19F) (MW one-sided: U = 2.9 x 107, p = 2.6 x 10-

3, with Bonferroni correction). So was the distance of the place cell centroid to the nearest 

wall (Figure 5.19G) (MW one-sided: U = 2.8 x 107, p = 2.4 x 10-5, with Bonferroni correction) 

and the nearest corner (Figure 5.19H) (MW one-sided: U = 3 x 107, p = 0.015, with Bonferroni 

correction). However, the orientation of the major axis of the ellipse fitted to the place fields 

relative to the long wall of each environment was seemingly random across environments 

for each place cell (Figure 5.19I). All the statistically significant results mentioned above 

were still true if real values were used for all measures, instead of ranked values, except 

field count, area, and directional modulation results. However, because each environment 

had a different size and the field count, as well as their area, scales with the size of the 

environment, the method using ranked counts and areas is more accurate. 



153 
 

 

Figure 5.19 Standard deviation of several place field properties is more similar across 
environments for the same unit than across units. A | Distribution of the place cells’ ranked 
field count standard deviation across environments (data) and the distribution of the same measure 
with values between place cells mixed up separately for each animal (shuffle). B | Same as A, but 
using the ranked area of place fields. C | Same as A, but using the ranked peak spike rate of place 
fields. D | Same as A, but using the ranked ratio of peak spike rate to the approximate radius of 
each place field. E | Same as A, but using the ranked eccentricity of place fields. F | Same as A, 
but using the ranked Kullback-Leibler divergence of place fields. G | Same as A, but using the 
ranked distance to the nearest wall of each place field’s centroid. H | Same as A, but using the 
ranked distance to the nearest corner of each place field’s centroid. I | Same as A, but using the 
ranked angle relative to the long wall of each place field’s best-fit ellipse. 
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5.3.10 Multi-field place cell fields were not arranged in a hexagonal 

pattern 

Place cells receive input from grid cells, suggesting that the arrangement of place fields of 

cells with multiple place fields may have a similar pattern to grid cell firing. In order to test 

this hypothesis, spatial auto-correlograms (SACs) were computed using place cell data from 

environment D, filtering for cells with a specific number of place fields in that environment. 

A measure of gridness derived from the SACs was compared using the correct place field 

locations and also randomised place field locations. 

The spatial ratemaps used for computed SACs were created for each unit by adding together 

its place field ratemaps – each retaining firing rate values only inside the place field region, 

with values in the rest of the spatial ratemap set to 0. This approach allowed creating a 

shuffle comparison where the place fields were randomly re-arranged between place cells, 

creating new place cell spatial ratemaps by summing together field ratemaps of randomly 

allocated fields. The shuffled place field cell populations were recomputed 50 times to 

ensure a good estimate of the shuffle distribution. The SAC measures the correlation of the 

spatial ratemap with itself at all possible lags in the two axes. The gridness score was 

computed for each cell based on the SACs, by rotating it at 30-degree increments, 

correlating the rotated SAC with the original, and subtracting the maximum values at 30°, 

90° and 150° from the minimum values at 60°, 120° and 180°. 

The gridness scores computed using the real data were compared with those computed 

using the data with randomised place field locations while filtering for place fields with each 

exactly 3, 4 or 5 place fields (N values were 116, 48 and 16, respectively). The distributions 

of gridness scores were not significantly different in any of those cases (Figure 5.20A-C). 

Same results were found when filtering for place fields with a minimum of 3, 4 or 5 place 

fields (Figure 5.20D-F) (N values were 197, 81 and 33, respectively). In summary, there was 

no evidence of place fields being arranged in a hexagonal grid-like pattern. 
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Figure 5.20 Multi-field place cell gridness scores are not different from what would be 
expected from randomly arranged place fields. A | Gridness scores of ratemaps constructed 
using the detected place fields (data) compared to ratemaps constructed by randomly assigning 
these fields to units (shuffle). Only data from environment D and place cells with exactly 3 place 
fields in that environment were used. B | Same as A, but using place cells with exactly 4 fields. C 
| Same as A, but using place cells with exactly 5 fields. D | Same as A, but using place cells with 
at least 3 fields. E | Same as A, but using place cells with at least 4 fields. F | Same as A, but using 
place cells with at least 5 fields. 

5.3.11 Phase precession is slower in larger place fields 

Phase precession is the shift in place cell firing at successively earlier phases of the theta 

oscillation as the animal traverses a place field. In larger place fields, the change in the theta 

phase of the place cell firing should be less than in smaller place fields. In order to asses 

how the highly variable place field size in this dataset affects phase precession, the phase 

offset, slope, correlation coefficient (r) and p-value was computed as described in the 

Methods section (5.2.7). The distribution of values across all place fields and their 

relationships are presented in Figure 5.21. The slope of the fitted line was bi-modal with a 

most prominent peak at around -300°. The fitted line was statistically significant (p < 0.05) 

for most place fields. 
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Figure 5.21 Distribution of phase precession measures across all place fields. Diagonal plots 
show the distribution of each measure named at the base of the column. The plots above the 
diagonal show the measures named on the left of each row plotted against measures named at 
the base of each column. The plots below the diagonal show the kernel density estimate of the 
same measures. 

The relationships of the place field size to the slope of the phase precession and the phase 

offset was analysed using data aggregated by place fields as well as individual runs. Only 

place fields or runs with a negative phase precession slope and p-value below 0.05 were 

used in the following analysis. The size of place fields was measured by the radius of the 

circle that has an area equivalent to the place field. This approach makes the size values 

more meaningful with respect to positions in straight runs through the place field. The slope 

of phase precession using data from all runs through the place field was positively correlated 

with the radius of the field (Figure 5.22A) (slope = 0.464, intercept = -245, r = 0.085, p = 
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0.011) and so was the phase offset (Figure 5.22B) (slope = 0.436, intercept = 12.4, r = 0.111, 

p = 8.4 x 10-4). The size of a place field during a run was measured by its length in the 

linearised trajectory based on the field detected in the instantaneous firing rate. The slope 

of the phase precession (deg/cm) was less steep (less negative) in runs, where the place 

field detected in the instantaneous spike rate was longer (Figure 5.22C) (slope = 0.076, 

intercept = -10, r = 0.514, p = 10-145). The phase offset in runs was also positively correlated 

with the length of the field (Figure 5.22D) (slope = 0.204, intercept = 19.3, r = 0.083, p = 1.3 

x 10-4). In summary, the spikes place cells with a larger place field tend to fire later and 

precess slower through theta phases than those with smaller place fields. 

 

Figure 5.22 Place cells with a larger place field fire later and precess slower through theta 
phases. A | The relationship between the slope of phase precession and the size of the place field 
(radius of a circle with an area equal to the field), using data aggregated over multiple runs through 
the field. The shaded region shows the kernel density estimate for the data shown with blue dots. 
The black line is the linear regression line fit to the data, for which the r-value is shown. B | Same 
as A, but plotting the phase offset instead. C | The relationship between the slope of the phase 
precession in runs and the place field length as detected in the instantaneous firing rate in each 
run. The linear regression line looks curved because the field lengths are on a logarithmic scale to 
facilitate visualisation. D | The relationship between the phase offset of phase precession in runs 
and the field length each run. 

5.3.12 Models of place field size, density and homeostatic mechanisms 

The results presented in this chapter of the thesis suggest that the place field size varies 

with distance to walls (Figure 5.8), and so does the density of place field centroids (Figure 
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5.7). Additionally, the overall activity in the place cell population appears to remain constant 

despite these changes (Figure 5.10). Capturing these effects in a computational model is 

essential for further analysis of field formation propensities and place cell recruitment in 

different size environments. Three place cell population models were used to approximate 

the experimental findings, each with a different method for defining the size and distribution 

of place fields. The full definitions and parameter optimisation methods of these models are 

detailed in the Methods section (5.2.8). 

One approach to modelling the size of place fields is based on their distance to nearby walls. 

Figure 5.23A shows the mean width of place fields overlapping positions at different 

distances to walls in environment D. Data were pooled across all corners of the environment, 

mapping the long wall position to the north wall and the short wall position to the west wall. 

There appears to be a gradual increase in place field width orthogonal to the north wall with 

distance from that wall, while the distance from the west wall does not seem to make much 

difference. The same effect was found for field width orthogonal to the west wall (Figure 

5.23B). Given the similarity of patterns in place field widths relative to the north and west 

walls, the area of place fields should also be similar with respect to both axes. Indeed, the 

mean area of place fields overlapping positions at different distances to walls was symmetric 

along the diagonal (Figure 5.24C). These results suggest that the mean place field width in 

both axes could be modelled with the same function of field widths relative to the nearest 

orthogonal wall. 
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Figure 5.23 Modelling overlapping place field mean width with Δs model. A | Mean widths 
orthogonal to the north (long) wall of place fields overlapping with each position pooled across all 
corners of the environment D. B | Same as A, but for showing widths relative to the west (short) 
wall. C | Mean area of place fields overlapping positions relative to the north (long) and west (short) 
walls. D | Place field area computed from mean place field widths at different distances to walls, 
shown in side-axes. E | The residuals (absolute difference) between C and D. F | Δs model fit to 
mean field widths orthogonal to a wall at different distances to the wall, computed separately for 
each environment. The text in each plot specifies the optimal model parameters for data in that 
environment. Error bands show the 95% confidence interval of calculating the same mean for the 
data based on bootstrapping. 

In order to test this hypothesis, the mean place field width on the axis orthogonal to a wall 

was computed for fields overlapping each distance bin (8 cm) from that wall, pooling data 

across all four walls. Figure 5.24D side axes show this field width measure at different 

distances to the orthogonal wall replicated for both axes. The central axis in Figure 5.24D 

shows the area of an ellipse computed at each position using the mean field widths shown 
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in the side axes. The predicted field area values are a qualitatively good match to that 

measured in data (Figure 5.24C). Their similarity was evaluated by computing the residuals 

(absolute difference) between the field area values in the model and the data (Figure 5.24E). 

Therefore, a single model describing the place field width on an axis orthogonal to a wall 

based on its distance from the wall is likely to provide a good approximation of the place 

field shape and size across the environment. 

The first model – Δs model – as detailed in the Methods section (5.2.8), describes the place 

field size as a function of distance to the nearest walls on both axes. The optimal fit of the 

model defined by Equation 5 produced a very close match to the measures of mean width 

by distance to the orthogonal wall in all environments, as is apparent from a near-perfect 

overlap between the data and the model predictions in Figure 5.23F. While the full data, not 

just the mean, was used to fit the parameters, the least-squares optimisation method 

effectively fits the mean of values. Although the fits are a good match to the data, the optimal 

parameters are rather different between all the environments (Figure 5.23F), meaning that 

the model would not generalise well across environments using this data. Because the data 

used here is the mean field width overlapping each position, the values next to the wall in 

larger environments are far higher because of larger fields in the middle of those 

environments extending to the walls and contributing to the mean width value there as well. 

This effect is visible in the distribution of place field widths orthogonal to the wall in different 

environments (Figure 5.8F). The majority of fields near the wall have a similar width in all 

environments; however, in larger environments, there is also a significant proportion of far 

wider fields. Furthermore, a model defining the size of fields overlapping each position could 

not be used directly to model individual place fields. 

The place field widths at different distances to walls can also be computed based on the 

location of the field centroids. This approach requires a lot more data; however, sufficiently 

accurate estimates of the widths can be calculated using the method of aggregating the 

measurements taken in relation to all walls, as described above for overlapping field 

measurements. Only measurements where the centroid was less than 125 cm from a wall 

were used for any place field. Figure 5.24A shows the mean field widths measured 

orthogonal to a wall as a function of field centroid distance from the wall. The widths are 

highly similar in all environments, regardless if measured with respect to the long or short 

wall. Figure 5.24B shows the distribution of field widths at different distances to the wall in 

each environment. The trends in field width distributions at different distances to the wall in 

smaller environments seem to be simply snapshots of the longer trends in larger 

environments. The Δs model was fit to the data of place field widths by distance to the wall 
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in environment D (Figure 5.24C). Using the parameters optimised on data from environment 

D, the model gives an accurate prediction of data also from other environments (Figure 

5.24C). These parameters fit to field widths by centroid distances in environment D were 

used for the Δs model predictions further below, rather than the fits to field widths by overlap 

at each location. The peak spike rate of place fields was sampled from a Gamma distribution 

(shape = 2) with scale parameter fit to peak spike rates of place fields in the middle of 

environment D, at least 80 cm from walls (Figure 5.26C). The place fields in the Δs model 

were distributed with a variable density inversely proportional the volume of the average 

place field at each location, as described in the Methods section (5.2.8). No quantifications 

of the model fits are provided here because the evaluation is based on the predictions of 

other measurements shown further below together for all models. 

 

Figure 5.24 Fitting the Δs model to place field widths by centroid distances to the wall. A | 
Mean field width orthogonal to a wall at different distances to the wall based on centroid locations 
in each environment. B | Distribution and mean of field width orthogonal to a wall at different 
distances to the wall based on field centroid positions in each environment. The colour scale is 
independent in each distance bin to facilitate visualisation. C | Place field width measurements 
shown in A with predictions of the Δs model fit to data from environment D. D | Place field peak 
spike rates at different distances to the wall and the mean peak spike rate of all place fields 
indicated with the black line. Error bands in all plots show the 95% confidence interval of calculating 
the same mean using bootstrapping. 

Figure 5.24D shows the peak spike rate values in place fields at different distances to the 

wall based on their centroid location. The mean peak spike rate for fields right by the wall is 



162 
 

lower in some environments, but further than 20 cm from the wall, the peak spike rate is 

fairly constant across all distances to the wall and all environments. 

The field width measurements near the wall have a high probability of being equal to twice 

the distance to the wall, apparent in place field width distributions in the largest environment 

(Figure 5.25A). However, from more than 50 cm from the wall, the proportion of place fields 

with widths around 50 cm remains fairly consistent, while the tail of the distribution keeps 

extending with distance from the wall. At more than 80 cm from the wall, the full distribution 

of the field width orthogonal to a wall is very similar at all distances to the wall. These trends 

suggest that the place field width distribution may be approximating the actual underlying 

distribution, with fields near walls simply cropped by the boundary. 

The parameters of Gamma distribution fit to place field widths at different distances to the 

wall were variable (Figure 5.25B). When computed using widths of place fields with centroids 

in the middle of the largest environment, the Gamma distribution shape and scale 

parameters came close to 2 and above 40, respectively. A Gamma distribution with the 

shape variable equal to 2 is also called an Erlang-2 distribution – a distribution defined by 

just one parameter (scale). Fixing the shape parameter at 2, showed that the scale 

parameter was converging at 50 already at distances of 80 cm from the wall (Figure 5.25B). 

This trend suggests that the place field width measurements at over 80 cm from walls are a 

good approximation for the distribution of field widths across the environment if this 

distribution was indeed constant everywhere. Figure 5.25C shows the distribution of field 

width values, pooling all samples at more than 80 cm from the wall, and the Gamma 

distribution (fixed shape = 2, i.e. Erlang-2 distribution) with parameters fit to that data. For 

illustrative purposes, Figure 5.25D shows the place field widths drawn from that same 

Gamma distribution at all distances to the wall, excluding widths greater than twice the 

distance to the wall. Place fields with widths drawn from a fixed distribution at all locations 

in the environment may reproduce the field width measures that otherwise seem to indicate 

that place field width orthogonal to a wall increases with distance from the wall. It could be 

hypothesised that this distribution of field widths is constant across the environment, 

extending beyond the boundaries of the experimentally observed hippocampal 

representation. In that case, the higher proportion of smaller place fields by walls of the 

enclosure could be the result of many otherwise larger fields being cropped by the boundary. 

The gamma model aims to capture precisely this effect. 
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Figure 5.25 Place field size distribution is revealed in the middle of the largest environment. 
A | The distribution of field width orthogonal to a wall at different distances to the wall in environment 
D. The colour scale is independent in each distance bin to facilitate visualisation. The yellow vertical 
line indicates the distance of 80 cm from the wall, from where the distribution remains largely 
unchanged with increasing distance from the wall. B | The shape and scale parameters of the 
Gamma distribution fit to field width values at different distances to the wall. C | Distribution of place 
field widths across fields with centroids further than 80 cm from walls and the probability density 
function (pdf) of a Gamma distribution (Erlang-2) fit to this data. D | Field widths at different 
distances to the wall predicted using the Gamma distribution from C, excluding any widths that are 
more than twice the distance to the wall. 

The second model – gamma model – as detailed in the Methods section (5.2.8), describes 

the place field size as drawn Gamma distribution with fixed parameters at all locations in the 

environment and place field centroids distributed uniformly extending also outside the 

environmental boundaries. Given that the distribution of field widths, measured as the length 

of their projection on a given axis, can be accurately estimated using fields in the middle of 

the largest environment (Figure 5.25), this approach could also provide good estimates of 

other place field properties. The parameters of ellipses fit to place field regions would provide 

an even more accurate estimate of place field shape and size distributions than widths 

orthogonal to walls. Estimates of peak spike rate distribution among place fields would also 

be more accurate, as it would not be affected by fields being cropped by walls of the 

enclosure. Place fields in the largest environment with centroids at least 80 cm from walls 

were used to estimate the parameters for the Erlang-2 distribution (Gamma with shape = 2) 

describing best-fit ellipse minor axis length (Figure 5.26A) and major axis extension ratio 
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(Figure 5.26B), as well as peak spike rate (Figure 5.26C). The major axis extension ratio 

was the extent by which the major axis of an ellipse was greater than the minor axis, 

expressed as a proportion of the minor axis. These three distributions were used for creating 

the place fields in the gamma model. 

 

Figure 5.26 Fitting gamma parameters to distributions of place field properties. A | Minor 
axis lengths of the best fit ellipse of place fields in the middle of environment D (> 80 cm from the 
walls) and the probability density function (pdf) of a Gamma distribution (fixed scale = 2, i.e. Erlang-
2 distribution) fit to this data. B | Same as A, but major axis extension ratios. C | Same as A, but 
peak spike rates. D | Distribution of best-fit ellipse orientations. E | Relationship between the minor 
axis length and major axis extension ratio of place fields in the middle of the largest environment 
with a linear regression line. The shaded regions indicate the kernel density estimate to facilitate 
visualisation. F | Same as E, but the relationship between minor axis length and peak spike rate. 
G | The total area of place fields with different best-fit ellipse minor axis length values and the total 
area of fields created with 2D Gaussian models using matching field shape and peak spike rate 
parameters. Error bands show the 95% confidence interval of observing the same mean with 
bootstrapping. H | Same as G, but measuring the mean firing rate across all positions. 

The orientation of the best-fit ellipses of place fields in the middle of the largest environment 

was not strongly biased (Figure 5.26D) and, therefore, the random orientation of place fields 

was used in the gamma model. It was also important to establish if any of the properties 

were strongly correlated. The minor axis length and major axis extension ratio were not 

correlated (Figure 5.26E). The correlation between minor axis length and peak spike rate 

was significantly correlated (Figure 5.26F) (slope = 0.019, intercept = 4.3, r = 0.314, p = 2.8 

x 10-5). However, this effect could be due to the lower peak spike rate of place fields right by 
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the wall (Figure 5.24D), where the fields are far smaller as measured in the experimental 

data (Figure 5.24A). The low peak rates by the wall could be the result of many fields only 

partially extending into the observed environment being detected as small fields with a lower 

peak firing rate. Therefore, taking this into account would be in conflict with the purpose of 

the gamma model. Furthermore, for most place fields in the model (minor axis length median 

≈ 57 cm) the peak rate based on the fitted line in Figure 5.26F would on vary by around 1 

Hz. For these reasons, the peak spike rate for a given field was sampled from a fixed Gamma 

distribution (Erlang-2) shown in Figure 5.26C at all locations in the environment. 

It is important to validate that the 2D Gaussians used to model the place fields were a good 

approximation to the place fields in experimental data. The crucial measures used for 

evaluating the models were the area of a place field and its mean firing rate across all 

positions in the environment – the volume under a 2D Gaussian divided by the area of the 

environment. Both the area (Figure 5.26G) and mean firing rate (Figure 5.26H) of place 

fields simulated with the mean major axis extension and mean peak spike rate were a good 

match to the measurements on place fields from the experimental data, across all minor axis 

lengths. Although the model slightly overestimated the area of large place fields, possibly 

because larger fields have a less regular shape. Nevertheless, 2D Gaussians are a good 

compromise between simplicity and accuracy for modelling place fields. 

The third model – Δs gamma model – as detailed in the Methods section (5.2.8), describes 

the place field width in two axes using a Gamma distribution (shape = 2) with the scale 

parameter dependent on distance to the orthogonal wall based on Equation 5. The exact 

details of parameter optimisation are provided in the Methods section (5.2.8), but a summary 

is provided here as well. In order to account for large fields with centroids close to walls 

being cropped at the walls, the field size estimates of the Δs gamma model during fitting are 

computed using a constrained mean – limiting field widths by their proximity to walls. Figure 

5.27 shows the excellent match between the constrained mean field width in the model and 

the mean width of place fields orthogonal to a wall in environment D at different distances 

to the wall – the data used optimise the model parameters. Because the data were fit using 

the constrained mean, the mean width used to create place fields as 2D Gaussians in the 

Δs gamma model is higher than the measurements in the data, and the constrained mean 

used during fitting, especially close the wall (Figure 5.27). The peak spike rate of place fields 

was sampled from a Gamma distribution (shape = 2) with scale parameter fit to peak spike 

rates of place fields in the middle of environment D, at least 80 cm from walls (Figure 5.26C). 

The place fields in the Δs gamma model were distributed with a variable density inversely 
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proportional the volume of the average place field at each location, as described in the 

Methods section (5.2.8). 

 

Figure 5.27 Fitting the Δs 
gamma model to place field 
widths by centroid distance to 
the wall. Mean place field widths 
orthogonal to a wall at different 
distances to the wall in 
environment D, and the 
measures of the fitted model. The 
scale parameter of the Δs 
gamma model computed with 
Equation 5 is shown using a 
separate y-axis. The text shows 
the parameters fit for Equation 5. 

The three models were evaluated based on how closely they reproduced the findings in the 

experimental data. Specifically, experimental results used for this evaluation were the size 

of place fields as measured for place fields overlapping each location, population-level 

measurements and field centroid density in the different size environments. Because each 

place cell in the models had precisely one place field, some of the experimental results were 

re-computed as average per place field, instead of average per place cell. The total number 

of place fields detected in the place cell populations simulated with the three models were 

between 5335-7712 in environment A, 9172-11165 in environment B, 14378-17114 in 

environment C and 23218-30201 in environment D. 

The field width orthogonal to a wall in the Δs model is optimised to match the mean in the 

experimental data (Figure 5.24C). Unsurprisingly, the measurements of field width by 

centroid distance to a wall in the simulated place cell spatial ratemaps perfectly match the 

widths defined by model parameters using Equation 5 (Figure 5.28A). This result is, at the 

very least, a validation of the calculations of simulated place field parameters. However, 

Figure 5.28A also highlights the lack of variability in place field widths of the Δs model that 

is prominent in the experimental data (Figure 5.24B). Figure 5.28B compares the mean field 

widths of the model place fields overlapping each location to the experimental data 

previously also shown in Figure 5.23F. The Δs model dramatically underestimates the mean 

field width based on overlap with each location because it lacks the small proportion of large 

place fields that extend across the environment and greatly increase the mean field width 

everywhere. The lack of variability in field size based on overlap with each location is also 

highlighted in Figure 28C-D. The model underestimates the place field widths at all locations, 

failing to replicate the wide distribution of place field widths in the experimental data. 



167 
 

 

Figure 5.28 Evaluating field size predictions of the Δs model. A | The distribution of field width 
orthogonal to a wall as measured in spatial ratemaps of Δs model place cells with field centroids 
at different distances to the wall in each environment. The lines show the mean of the distribution 
at each distance bin and error bands show the 95% confidence interval of the mean based on 
bootstrapping. The dashed line shows the field widths as defined by Equation 5 fit to experimental 
data in Figure 5.24C. B | The mean field width orthogonal to a wall as measured in spatial ratemaps 
of Δs model place cells with a field overlapping each location and the same measurements from 
experimental data (also shown in Figure 5.23F). C | The distribution of field width parallel to the 
short wall as measured in spatial ratemaps of Δs model place cells with a field overlapping each 
location and the same measurements from experimental data. Only data from locations in the 
middle third of the environment are included. D | Same as C, but field widths orthogonal to the short 
wall. 

The gamma model, however, reproduces the broad range of field sizes in the measurements 

of field width orthogonal to a wall by centroid distance to the wall (Figure 5.29A). In the field 

width distribution measurements based on spatial ratemaps from the model (Figure 5.29A), 

there is a consistently high proportion of fields with a width equal to twice the distance to the 

wall, much like in the results from the experimental data (Figure 5.24B). However, this 

pattern only extends to around 40 cm from the wall in the experimental data, while it 

continues beyond 60 cm from the wall in the gamma model. The proportion of fields with a 

small width close to the wall is lower in the model data (Figure 5.29A) compared to the 

experimental data (Figure 5.24B). The constant distribution of field widths at distances 

greater than 80 cm from the wall is reproduced well by the model, as could be expected 

based on how the model is defined. 
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Despite the field sizes in the gamma model sampled from the same distribution at all 

locations, the measured mean of the field width distributions at each location is still a close 

match to the Δs model fit that perfectly overlapped with the mean measurements in the 

experimental data (Figure 5.29A). Unlike the Δs model, the simulated place field data from 

the gamma model also reproduces the mean field width by field overlap measures in the 

experimental data to a high degree, except next to the wall in environments C an D (Figure 

5.29B). The distributions of place field widths by overlap at different locations in the gamma 

model also provide a qualitatively good match to the experimental data (Figure 5.29C-D). 

Even though the number of samples in each group is enormous and most comparisons are 

bound to come out statistically significant, there are still some cases where there is no 

statistically significant difference between the distributions based on the model and 

experimental data. However, the gamma model does clearly fail to capture the high 

proportion of fields with very small field widths orthogonal to the short wall right next to the 

wall in environments C and D (Figure 5.29D), as was also apparent in Figure 5.29B. 

 

Figure 5.29 Evaluating field size predictions of the gamma model. This figure is the same as 
Figure 5.28, except the model data is from the gamma model. The Δs model fit in A is included to 
facilitate the comparison of distribution means across models. 

The Δs gamma model also reproduces the broad range of field sizes in the measurements 

of field width orthogonal to a wall by centroid distance to the wall (Figure 5.30A). The place 

fields with centroids close to the wall in the Δs gamma model include a larger proportion of 
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small fields (Figure 5.30A) than the gamma model (Figure 5.29A). However, the Δs gamma 

model still overestimates the proportion of fields with widths exactly twice the distance to the 

wall compared to the experimental data (Figure 5.24B). The Δs gamma model matches the 

mean width of place fields overlapping each position (Figure 5.30B) better than the Δs model 

(Figure 5.28B), but not as well as the gamma model (Figure 5.29B). Figure 5.30C-D shows 

that the Δs gamma model consistently underestimates the size of place fields, even though 

it performs better at capturing the broad distribution than the Δs model (Figure 5.28C-D). 

 

Figure 5.30 Evaluating field size predictions of the Δs gamma model. This figure is the same 
as Figure 5.28, except the model data is from the Δs gamma model. The Δs model fit in A is 
included to facilitate the comparison of distribution means across models. 

The three models were also compared in the accuracy of their population-level activity and 

place field distribution predictions. In order to make models comparable to the results from 

the experimental data, the latter was re-computed as measures per place field – as if each 

place cell only had precisely one place field in each environment. Therefore, the results 

based on experimental data shown here are slightly different from those in the original 

analysis. Most importantly, the population-level measures shown here are different between 

environments because of the different number of place fields in each environment. However, 

the measures are still constant across different locations within each environment (Figure 

5.31A-B), as shown in the original analysis (Figure 5.9A-B). 
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Figure 5.31 Evaluating population activity and spatial distribution predictions of field size 
models. A | Comparison of the average place field overlaps at different locations in place cell 
population models and the experimental data. The dots show the results based on the experimental 
data, computed in the same way as for Figure 5.9A, but as a percentage of place fields, not as a 
percentage of place cells. B | Comparison of the average firing rate at different locations in place 
cell population models and the experimental data. The dots show the results based on the 
experimental data, computed in the same way as for Figure 5.9B, but as an average across place 
fields, not as an average across place cells. C | Comparison of the place field centroid density at 
different locations in place cell population models and the experimental data. The dots show the 
results based on the experimental data, computed in the same way as for Figure 5.7B. D | 
Comparison of the place field area distribution across the four environments in proportion to the 
size of each environment in place cell population models and the experimental data. The dots show 
the results based on the experimental data, computed in the same way as for Figure 5.9C inset. E 
| Comparison of the place field distribution across the four environments in proportion to the size 
of each environment in place cell population models and the experimental data. The dots show the 
results based on the experimental data, computed in the same way as for Figure 5.5B inset. 

The gamma model produced by far the most accurate match of place field overlap (Figure 

5.31A) and mean spike rate (Figure 5.31B) to the experimental data. The Δs model and the 

Δs gamma model both underestimated the percentage of overlapping fields and the mean 

spike rate at each location, with the Δs gamma model performing only slightly better. This 
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effect could also be at least partially due to proportionally fewer large place fields at all 

locations in these two models, compared to the gamma model. 

All models were fairly good at estimating the density of the detected place field centroids at 

different locations (Figure 5.31C). The gamma model slightly underestimated the density of 

place field centroids near the walls in the smallest environment, while the Δs model 

reproduced these results most accurately. Conversely, the Δs model underestimated the 

place field centroid density in the middle of the larger environments, where the place fields 

are larger. In contrast, the gamma model performed very well in this regard. The Δs gamma 

model produced intermediate results with measurements consistently between the two other 

models. 

Only the Δs model reproduced the constant field area distribution in proportion to 

environment size across all four environments found in the experimental data (Figure 

5.31D). The Δs gamma model and gamma model performed increasingly worse, 

underestimating the total area of fields in the smaller environments and overestimating it in 

the larger ones. This measure is greatly affected by the number of place fields detected in 

each environment, in proportion to the total across environments, which also more accurate 

in the Δs model than other models (Figure 5.31E). The Δs gamma model and gamma model 

also underestimated the proportion of place fields in smaller environments. 

The place cell population in the gamma model, as could be expected based on the model’s 

definition, had constant mean Fisher information per place field at all locations in each 

environment (Figure 5.32). The gamma model predictions were considerably more accurate 

than the Δs model and the Δs gamma model (Figure 5.32). However, this result was primarily 

due to the Δs model and the Δs gamma model overestimating the Fisher information 

orthogonal to the short wall at locations close to the wall. Although this effect was not as 

strong in the experimental data in the experimental data, the Fisher information orthogonal 

to walls does seem to decrease slightly with distance from the wall (Figure 5.11C), because 

place fields change in width along that axis. Therefore, even though the gamma model 

predictions of Fisher information are more accurate than the other models, it fails to reflect 

the slight decrease in Fisher information with increasing distance from the wall observed in 

the experimental data. This inaccuracy is due to the constant place field shape distribution 

across the whole environment in the gamma model. 
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Figure 5.32 Evaluating Fisher information predictions of field size models. A | Comparison of 
the Fisher information orthogonal to the short wall at different distances to the wall in place cell 
population models and the experimental data. The dots show the results based on the experimental 
data, computed in the same way as for Figure 5.11C, but as an average across place fields, not 
as an average across place cells. B | Same as A, but measuring the Fisher information parallel to 
the short wall. 

5.4 Discussion 

5.4.1 Summary of results and significance 

Place cell population activity encodes the animal’s location (Wilson and McNaughton, 1993; 

Skaggs and McNaughton, 1998) and the accuracy of this information is dependent on the 

properties of place fields. This study provides the first comprehensive account of the relevant 

place field properties at different locations in variable size open field environments and their 

impact on the location information encoded in the place cell population. Place fields near 

walls are smaller but more numerous than in the middle of open field environments. The 

changes in these place field properties counter-balance each other, as part of a homeostatic 

mechanism that ensures a constant level of activity in the place cell population. Regardless, 

the change in place field size influences the maximal precision at which location can be 

decoded from place cell activity. By using models at two extremes, a population of place 

cells with field shapes defined by distances to walls and another with uniformly distributed 

equal shaped fields, it was shown that neither adequately explains the experimental data. 

Instead, there are likely to be two sub-populations of place cells, one with consistent 

dynamics everywhere and another with field shape and centroid density dependent on the 

location relative to spatial cues. Additionally, it is shown that while place cells remap between 

environments, some relationships between cells and place field properties for individual cells 

are conserved. These properties include the field formation propensity of place cells, 

previously described for linear track environments (Rich et al., 2014), and now, in this thesis, 
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also for open field environments. These results extend the understanding of the 

hippocampal representation and are invaluable for models of place cells. 

5.4.2 Place field formation and property conservation across 

environments 

The place cells recorded in this study formed distinctive representations of the different 

environments while maintaining their mapping to locations in the smallest environment 

recorded in the beginning and end of the of each recording day. Positional reconstruction 

(decoding) rarely localised the animal to an incorrect environment. Decoding to a different 

environment than the one being explored was most likely when environments A and A’ were 

considered. This result is expected because the environments A and A’ were the same. 

While decoding to the environment A’ while in A was not significantly higher from all other 

environments, it would certainly be so if the size of the environments was taken into account. 

The fact that decoding in environment A is still quite accurate even if environment A’ is 

considered reflects the partial remapping of place fields between these recordings – the 

place cell mapping is not perfectly stable throughout the day. 

Interestingly, when only the environments A, B, C and D were considered, localisation to an 

incorrect environment was the result of increased certainty of the decoding in the wrong 

environment, rather than globally high uncertainty and random guessing. Videos of animal 

position and the decoded location showed that the during epochs of decoding to an incorrect 

environment, the location did not progress in a smooth trajectory as it did during accurate 

decoding. Instead, the reconstructed location in a wrong environment was non-continuous, 

jumping between seemingly random points (data not shown). This dynamic also describes 

the clearly defined but very low peak in the posteriors of incorrect environments consistently 

present while the highest peak across posteriors accurately decoded the correct location 

(data not shown). The posteriors of the larger environments often had multiple of such peaks 

simultaneously. Further analysis could establish whether any behavioural variables or brain 

processes correlated with the moments where the location was decoded to an incorrect 

environment. 

Despite the clear distinction between the hippocampal maps of each environment, some 

spatial arrangements between place fields of the same cell pair were maintained across 

environments. Place fields of any two cells that were nearby in one environment were more 

likely to be so in another environment. The opposite was true for place fields that were far 
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from each other. Similar results have been reported previously (Eichenbaum et al., 1989; 

Hampson et al., 1996). 

Several interlinked properties of place fields were also conserved in individual cells across 

environments. The size and location relative to walls and corners of a place cell’s fields in 

one environment were similar to those in another. It is worth noting that any two cells, with 

place fields far from walls, are also likely to have fields close to one another in all 

environments. It is important to conduct further analyses controlling for this factor while 

measuring the tendency of place cell pairs to have nearby or distance fields across 

environments. 

Other place field properties conserved by cells across environments included the peak spike 

rate, flatness of the fields (gradient of the firing rate decay from peak), directional modulation 

of place cell in-field firing and spatial information in their spatial ratemaps. The flatness, 

directional modulation and spatial information are related to the conservation of position 

relative to the walls of an environment. Because the peak spike rate does not vary with 

location in the environment, but the size of place fields does, then they must be flatter where 

they are larger. The shape and size of place fields, in turn, determine the spatial information 

in the spatial ratemap. The firing rate of place cells in fields near walls is more strongly 

modulated by direction. Therefore, location relative to walls is linked to field size, shape, 

directional modulation of in-field firing and spatial information in the ratemap. All these 

properties are conserved to some degree by individual cells across environments. 

Perhaps the most important finding was that the number of place fields a cell had in each 

environment was similar across environments rather than random. The field formation 

propensity of place fields, first described by Rich et al. (2014) based on data from a linear 

track, is reported to be conserved by units across environments in a Ca2+-imaging study 

using multiple virtual linear track environments (Lee et al., 2019). These studies define the 

place field formation propensity as a function of the linear track length, and a Gamma 

distribution best describes the distribution of these field propensities across place cells. 

The same model was applied to the open field environment data in this thesis. Similarly to 

the studies above, the Gamma distribution was far better than any fixed value at generating 

the field propensities necessary to match the experimentally measured distribution of place 

field counts across cells. However, the parameters of the Gamma distribution were 

considerably different from the one reported for linear environments. Crucially, the shape 

parameter based on open field data is greater than one, meaning that the Gamma 

distribution assumes a mounded (unimodal), but skewed shape. In contrast, the shape 
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parameter in the fits to data from linear environments was reported to be less than one (Rich 

et al., 2014; Lee et al., 2019), meaning the Gamma distribution is exponentially shaped. This 

disparity arises from the differences in the distributions of field counts across cells, which in 

the case of linear environment studies has followed an exponential curve, unlike the data 

shown in this thesis. Because the field count distribution shown here does not follow an 

exponential curve in the largest environments, it cannot be reproduced with field 

propensities drawn from an exponentially shaped distribution – the Gamma distribution 

shape parameter must be above 1. It is important to note that this effect was observed here 

also when the data were not combined across all recorded environments, and only the data 

from the largest environment was used. 

The difference in field count distributions across cells could reflect the smaller total area that 

the place cells need to represent in the linear environments, compared to the largest open 

field environments used in this study. In both of the studies in linear environments (Rich et 

al., 2014; Lee et al., 2019) the total area of the track was closest to environment C in this 

study (4.38 m2), where the field count distribution was still close to an exponential 

distribution. Furthermore, on a linear track, the animal is not required to sample the whole 

width of the track and, in the case of a virtual environment, it is physically unable to do so. 

Therefore, the extent of the sampled hippocampal spatial map in this study was considerably 

larger than in previous studies on linear tracks, thereby revealing the actual distribution of 

field propensities. An alternative explanation may be two distinct populations of place cells, 

as discussed further below in relation to modelling the place field centroid distributions. It 

may be that fields of one place cell sub-population are far more common in linear 

environments because of the constant proximity to environmental boundaries and the field 

formation propensities in this population are indeed exponentially distributed. Nevertheless, 

the Gamma distribution of field propensities per m2 of an environment described in this study 

is what governs the number of fields any place cell is likely to form in an open field 

environment. 

By modelling place cell recruitment using a single population with the identified field 

propensity distribution fixed across environments for each cell, it was possible to reproduce 

the place cell recruitment in the experimental data. Although not invalidating all alternative 

solutions, this result provides further validation to the findings described above on field 

propensities being conserved by cells across environments. Interestingly, matching the 

experimental data required the scaling of the areas of smaller environments in proportion to 

the higher place field density in those environments – equivalent to scaling the field formation 

propensities by the same amount. Therefore, place cell system treated the smaller 
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environments as larger than they are in the physical space relative to the other environments 

while maintaining the same principles of place field formation. In other words, the scaling 

factor of the hippocampal representation appears to be higher in smaller environments. 

Based on the Gamma distribution parameters fit to the data in this study, more than 99% of 

place cells form at least one place field in environments larger than 72 m2. Given the 

logarithmic curve, 99.9% recruitment of place cells is achieved in far larger environments. 

The exact value of this varies greatly with small changes to the parameters of the Gamma 

distribution. The place cell recruitment prediction in a 1 m2 environment was predicted to be 

~21%, which is on the low end compared to values previously reported for similar size 

environments (Wilson and McNaughton, 1993; Karlsson and Frank, 2008). The prediction 

for a 0.25 m2 environment is also far lower than the 13% reported previously (Thompson 

and Best, 1989). However, when the correction for a higher field density in small 

environments is used for these predictions as well, then the recruitment estimates based on 

this study match those in the literature (data not shown). While these are interesting and 

very specific predictions, possibly useful for evaluating models, as discussed in the 

Introduction section (1.6.3), they do not necessarily represent the capacity of the place cell 

system to encode spatial information. 

In summary, the place cells recorded in this study formed different representations of each 

environment with a variable number of place fields per each cell. The underlying propensity 

to form fields was consistent for each cell across environments and had a Gamma 

distribution. Other factors determining the place field locations and shapes were also 

consistent across environments for each cell. However, there was still considerable 

variability in these measures for each cell across environments. These results highlight the 

fact that place cell representations in different environments have similarities on the single-

cell or cell-pair level while being sufficiently decorrelated at all locations on the population-

level to encode the animal’s position with high accuracy. 

5.4.3 Homeostatic changes in place field properties 

A higher proportion of place cells encoding a given location would increase the certainty by 

which an animal could recognise that location. In other words, the accuracy of decoding an 

animal’s position at a specific location from place cell activity depends, among other factors, 

on the number of place cells active at that location. This study is the first to demonstrate that 

the proportion of co-active place cells is constant at all locations. Specifically, there is no 

difference in the proportion of co-active place cells at different distances to walls within each 

environment and also compared across environments. The total spike rate of all place cells 
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or mean across units is also constant. It has previously been reported that the firing rate in 

the place cell population as averaged over entire recordings in two environments can be 

very similar (Hirase et al., 2001). However, this study provides the first account of it being 

the case in the rate code representing different locations within an environment. 

The above results imply that the total area of place fields within an environment must be 

linearly proportional to the area of the environment, which was indeed the case in this study. 

These results are surprising because the dynamics of the available sensory information are 

not the same within and between environments. For example, in the middle of a large open 

field environment, only visual cues are available, and these change much slower with 

respect to an equivalent distance travelled in the corner of a small environment. The 

constancy of population-level activity should be accounted for by place cell population 

models, which is not trivial because some factors influencing the percentage of co-active 

cells are not constant across environments. 

One factor critical to the mean spike rate across cells is their peak firing rate in place fields. 

This study is the first to show that the distribution of the peak firing rates in place fields is 

constant at all locations, even as other place field properties change. Assuming that all fields 

are the same shape, just scaled to different sizes, and indeed, 2D Gaussians provided a 

good estimate of the volume of place fields of different size, two other factors affecting the 

proportion of co-active cells are left to consider. The size of place fields, or the widths of 2D 

Gaussians, and the density of field centroids – a measure of how tightly packed the fields 

are. 

Place fields near walls of an open field environment are smaller and, therefore, larger 

environments have a higher proportion of large place fields, as has been suggested by a 

previous study (Fenton et al., 2008). Specifically, the place fields primarily increase in size 

with distance from a wall along the axis orthogonal to the wall. A similar effect is observed 

in the change of place field size when the environment is extended (O’ Keefe and Burgess, 

1996). This effect is explained by the boundary vector cell model (Burgess et al., 1997; 

Hartley et al., 2000; Barry and Burgess, 2007). The strong influence of walls on the width of 

place fields results in fields close to one wall but far from others being elongated along the 

nearest wall. The analysis of field size based on overlap with each location as well as the 

analysis based on the position of field centroids support these conclusions. The comparison 

of field size models discussed further below does so as well. 

The spatial distribution of place field centroids also affects the proportion of co-active cells, 

their mean rate and also the measure of field size based on their overlap with a given 
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location. The place fields near the walls are more densely packed. Proximity to walls in all 

directions appears to be relevant, as field density is also higher in the smaller environments, 

even if comparing the corners. As a result, the overall number of place fields in proportion 

to the size of an environment is higher in smaller environments. Early studies with very few 

cells in a small cylinder (76 cm diameter) did not find a significant difference in field centroid 

density relative to walls (Muller et al., 1987); however, later work supports the results in this 

thesis (Hetherington and Shapiro, 1997). 

An increase in place field size or an increase in the density of field centroids would increase 

the number of co-active cells and the mean spike rate in the population, assuming other 

factors remain constant. The field size and centroid density change with distance from the 

walls of an environment. Given that other factors determining the population-level activity 

remain constant, the field size and centroid density must be changing in a way that they 

compensate for each other, maintaining a constant population-level activity in a homeostatic 

manner. 

5.4.4 Modelling the changes in place field properties and the 

homeostatic mechanism 

The three models developed in this study reproduce the homeostatic mechanism as they 

attempt to explain the changing field size and centroid density. In the gamma model, the 

distributions defining the place fields, including the density of field centroids, are constant 

everywhere. The Δs model and the Δs gamma model define the field density at any location 

based on the mean field size at that position, which should achieve a constant population-

level activity. The slightly higher population-level activity at the walls of smaller environments 

using all three models is likely because of the corners of an environment being more 

influential in the mean in the environment, and they exacerbate the effects the models are 

designed to produce near walls. 

Interestingly, simulating place field sizes using the same distribution everywhere, as in the 

gamma model, does result in the measured field sizes being smaller near walls of an 

enclosure. This effect is due to place fields near walls being cropped by environmental 

boundaries. However, the gamma model fails to reproduce the magnitude of the difference 

in field size – the fields near walls appear still too large compared to the data. On the other 

hand, both the Δs model and the Δs gamma model – both defining the size of place fields 

by their proximity to walls – underestimate the size of fields measured by field overlap with 

locations. In the case of the Δs model, this result could be attributed to the lack of large fields 
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that exist in the experimental data. While the centroids of these large place fields are far 

from walls, they extend to the walls and contribute the mean field size there as well. The Δs 

gamma model aims to correct for this shortfall but still underestimates the mean place field 

size overlapping any location. Another explanation for why the Δs model and the Δs gamma 

model underestimate field sizes near walls relates to the variable density of place field 

centroids in these models. 

The change in field centroid density based on field size in the Δs gamma model is a potential 

reason for underestimating field sizes. That is if the field size at a location is measured as 

the mean of fields overlapping that location. The lower field centroid density at locations 

where the centroids of large fields are positioned reduces the number of large fields in the 

Δs gamma model. Conversely, the density of place field centroids is far higher by the walls 

where the fields are smaller. Therefore, even though the Δs gamma model reproduces the 

field size distribution based on centroid distances to walls, the exacerbated difference in field 

density means there are still proportionally fewer large place fields across the environment 

than in the data or the gamma model. 

The place field density measures based on spatial ratemaps simulated using the gamma 

model matched experimental data quite well. This result is surprising because the modelled 

place fields were distributed uniformly with no variability in centroid density. The increase in 

place field centroid density near walls in the gamma model is entirely due to fields with 

centroids outside the environment being cropped by boundaries. These place fields partially 

extend into the environment, and these regions are detected as smaller place fields in 

addition to the otherwise uniformly distributed fields with a fixed distribution of sizes. Still, 

the gamma model underestimates the field density near walls and also the rate at which the 

density drops with distance from a wall.  

The Δs model and the Δs gamma model perform better at estimating the field density at 

different locations, but neither quite captures just how much higher the field density is near 

the walls of the small environment. On the other hand, both of these models, but especially 

the Δs model, tend to underestimate the field density in the middle of large environments, 

where the gamma model performs the best. 

Only the Δs model managed to reproduce the experimental result of the total field area in 

an environment increasing linearly with the area of the environment. It was also the best at 

predicting the average density of place field centroids in each environment. This outcome 

could be explained by the Δs model most accurately matching the mean field size based on 

centroid location and, thereby, the density of fields centroids. 
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It should be noted that the place fields in the simulated data were detected with exactly the 

same methods as the experimental data, which meant that extremely large fields were 

excluded. This criterion was harsher in the smaller environments, as the threshold was equal 

to half the area of an environment. This filter was necessary in the experimental data to 

exclude units that did not present a stereotypical place field but instead fired at a high rate 

throughout the environment, which resulted in a high spatial correlation measure. However, 

this means that many of the enormous place fields simulated using the gamma model or the 

Δs gamma model were excluded in smaller environments, explaining the proportionally 

fewer fields and lower total field area in smaller environments measured in data from these 

models. 

It may be that a model combining the features of the gamma model and the Δs gamma 

model would be able to match the experimental data better than any of the three models 

developed in this study. The combinatorial model could simply be the sum of the two models. 

The parameters of both models could be optimised simultaneously using the total of their 

simulated cells as the prediction. The resulting model would describe the place cell 

population as comprising of two sub-populations. The first sub-population would have place 

fields distributed uniformly with all properties having a constant distribution, like the gamma 

model. This sub-population would reflect the features of the continuous attractor models of 

place cells and could be driven by the grid cell system that is theoretically unbound by 

environmental boundaries – like the place cells in the megamap model (Hedrick and Zhang, 

2016). The second sub-population would have the properties of the Δs gamma model, most 

importantly, the field size being defined by proximity to spatial cues – in the case of the 

environments in this study, the walls. This sub-population would share features with place 

cells defined by the boundary vector cell model (Burgess et al., 1997; Hartley et al., 2000; 

Barry et al., 2006). It could be driven by boundary vector cells or border cells and the point 

attractor input from CA3, allowing specificity to sensory cues. The separation of CA1 place 

cells to two populations with these kinds of features matches well with the experimentally 

observed differences in the properties of place cells in deeper and more superficial parts of 

the CA1 pyramidal layer (Geiller et al., 2017). 

Future work could improve the application of the described models and also validate the 

combined model with features of both the gamma model and the Δs gamma model. A crucial 

improvement would be to avoid the exclusion of very large place fields in smaller 

environments, but this would also need to be done in the experimental data used to fit the 

model parameters. The models do not account for spatial instability of place fields, and the 

model parameters are optimised using data from spatial ratemaps that obscure this effect 
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and provide inaccurate measurements of field sizes. These effects are discussed further 

below. Future work could estimate the field sizes form the experimental data more 

accurately, which would improve the model parameters as well. The results on field 

formation propensities from this study could be used to incorporate the multi-field nature of 

place cells in the models. Additionally, the higher field density in corners of smaller 

environments compared to larger ones suggests that the walls in all directions influence 

place field properties, and this should also be implemented in future models. Finally, beyond 

validation using the same methods as in this study, the combined model could be used to 

estimate the proportion of place cells in either sub-population and to verify if these 

populations have the same place field formation propensities, as was discussed above. 

5.4.5 The effect of changes in place field properties to encoded location 

information 

The change in place field size and shape, as well as their density in different locations 

relative to walls of an environment, is bound to influence the location information encoding 

properties of place cells. Analysis using multiple measures, including information content, 

stability and location encoding accuracy on the population-level as well as single-cell level 

revealed that in some respects, the quality of the place cell code remains unchanged. Still, 

by some measures, the animal’s ability to self-localise in the middle of large open spaces is 

reduced, compared to locations near walls and smaller environments. 

The spatial information measure developed by Skaggs et al. (1993) measures the 

information content of a spatial ratemap using an information-theoretic approach. The spatial 

information of place cells with a field in each environment was similar across environments 

within units as well as an average across units. The measure of spatial information is 

agnostic to the absolute size of place fields, and only the size proportional to the environment 

and the distribution of relative firing rates is important. Increasing the size of a place field in 

the same environment reduces the quantity of spatial information, while a smaller field 

results in a higher spatial information measure. Therefore, this result suggests that the place 

field count and size scaled in proportion to the area of the environment for each cell. 

Because the peak firing rate in place fields remains constant, this result could be predicted 

based on the fact that the total area of place fields in each environment scales with the area 

of the environment. 

Fisher information, however, is not agnostic to the absolute size of place fields. It is based 

on the shape and slope of the place fields and inversely proportional to the theoretical limit 



182 
 

of the decoding error (Zhang et al., 1998). Interestingly, Fisher information did not vary at 

locations by the walls of different size environments. Although, crucially, only if computed as 

an average across all place cells in each animal. If only the place cells with the field in the 

given environment were considered, Fisher information would be higher in smaller 

environments, as fewer cells have a field there. However, Fisher information did decrease 

with distance from a wall in the largest environment, particularly along the axis orthogonal 

to the wall, suggesting that the decoding error should increase with distance from the walls. 

This result would be expected based on the finding that place fields increase in size with 

distance from walls, especially in the axis orthogonal to the wall. In fact, given that place 

fields get larger and the centroid density decreases with distance from the wall, Fisher 

information should decrease significantly with distance from the wall in all environments, 

tightly correlated with the change in place field properties. However, the data used for this 

analysis had to be limited and subsampled to avoid confounds from uneven sampling, which 

caused the Fisher information measurements to be rather noisy. It is likely that with better 

spatial sampling, the Fisher information measurements would be more accurate and could 

reveal a far stronger negative correlation with field size in all environments. 

While Fisher information is useful for estimating the acuity of location information at each 

location, it is far from perfect in estimating the physiologically relevant accuracy of the 

encoded location information. Particularly because of the low firing rates of place cells and 

Poisson characteristics of neural activity (Mathis et al., 2012). A more physiologically 

relevant measure is the decoding error (Mathis et al., 2012). 

The Euclidean error in decoded locations did not change across locations in the environment 

where the place fields increased in size, and it was also the same across environments. 

However, the decoding error measured along an axis orthogonal to a wall increased with 

distance from that wall. Surprisingly, this seems to be balanced out by a slight decrease in 

the decoding error along the perpendicular axis with distance from the wall, resulting in a 

constant Euclidean error across these locations. The results discussed so far do not explain 

why decoding errors parallel to walls are higher next to walls. The place field size and 

centroid density does not change significantly along this axis with distance to the wall. 

One potential factor for higher decoding errors near walls is the increased directional 

modulation of place cell firing near walls. However, the directional selectivity near walls was 

not more likely to be oriented along either axis, although these measures were quite noisy. 

Another factor influencing the accuracy at which place cells can encode location is the 

spatial stability of their firing rates. Measured with spatial correlation, the stability of place 
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cell firing was unchanged to wall and corners. Same results have been reported previously 

(Muessig et al., 2015). Selecting for data were the animal was moving orthogonal or parallel 

to walls produced the same results. However, because spatial correlation measures the 

stability of the firing rate by comparing the average rates of different parts of the recording, 

it does not capture the variability in place cell firing in the instantaneous firing rate. 

The place field stability in the instantaneous firing rate was analysed based on individual 

runs through each place field. This analysis revealed variability in the firing rate along the 

axis parallel to a wall that increased with distance from the wall. The place fields during 

individual runs through a place field shifted by the same amount with a similar variance 

compared to their expected location in the spatial ratemap regardless of the animal’s running 

direction or distance to a wall. However, because the place fields near walls are smaller 

along the axis orthogonal to the wall, the equivalent jitter of fields between runs results in 

greater smearing of place fields on this axis and location in the spatial ratemaps, that 

represent the average spike rates over multiple runs. Therefore, the spatial ratemap values 

underestimate the instantaneous firing rate of place cells more near walls than further from 

walls. The effect of this difference in the spatial ratemap accuracy is dependent on the axis 

of the run. The instantaneous firing rate of place cells during runs orthogonal to a wall is 

lower close to the wall, but it does not change in runs parallel to the wall. Therefore, the 

values in the spatial ratemap are a more accurate representation of the place cell firing rates 

when the animal is moving orthogonal to the wall. 

The increase in spatial ratemap accuracy with distance from the wall affects the decoding 

error on both axes, as the error axes do not relate to the movement direction. However, this 

effect is only apparent in the axis parallel to the wall. It is masked in errors on the axis 

orthogonal to the wall because the errors on this axis are lower near the wall for other 

reasons. The change in the decoding error orthogonal to the wall is expected because the 

place field size increases along this axis further from the wall. Additionally, the errors near 

walls are constrained by the wall, which exacerbates the trends in the decoding errors 

orthogonal to the wall. Neither of these factors influences the decoding error parallel to the 

wall, which is why the increase in the accuracy of spatial ratemaps with distance from the 

wall is evident in the reduction of decoding error only on this axis. These factors combine to 

explain the constancy of the Euclidean decoding error despite changes in the errors along 

the two axes. 

The increase in peak spike rate of place cells with distance from the wall during runs 

orthogonal to the wall but not parallel to the wall is intriguing. This effect is not apparent and 
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looks almost reversed if the peak rates in runs are pooled across all running directions, 

particularly because there are more runs parallel to walls. A higher firing rate during runs 

parallel and close to the wall compared to runs orthogonal to the wall explains the higher 

directional modulation of place cell firing near walls. However, it also means the directional 

tuning preference should be parallel to walls rather than orthogonal to them, which was not 

the case in this study. Although, more refined analysis methods could come to that 

conclusion, as the results here were rather noisy. 

The prospective nature of place cell firing observed in this study has also been described 

previously on linear tracks (Mehta et al., 2000) and has become an integral part the 

successor representation framework of hippocampal function (Stachenfeld et al., 2017). It 

may be that the rate of ramping up of place cell firing as the animal enters the firing field has 

an upper bound that is too low for cells to reach the correct peak firing rate if the in-field part 

of the run is very short. This effect would impact runs orthogonal to walls more than those 

parallel to walls because of the shape of place fields near walls, thereby explaining the 

difference in peak firing rates in runs on these axes. 

The method of detecting the place field locations in runs may be exacerbating just how 

prospective the place cell firing is. The field centres were detected as the mid-point in the 

in-field part of the trajectory rather than the location of the peak rate because the former is 

a more robust measure given the highly variable and often very low spike rates of place 

cells. If place field location was measured based on the location of the peak spike rate in the 

run, then the mean of the positional jitter would be closer to zero. However, much of the 

variance in the jitter would remain and still be greater in proportion to field sizes near walls 

– the rest of the conclusions would still be valid. 

Future models of place cell population like the ones in this study could take the findings of 

the instantaneous firing rate analysis into account. This property of place cell firing would be 

challenging to replicate in models, as it requires defining the firing rate of neurons as a 

function of movement direction but could allow more accurate replication of experimental 

data. As mentioned above, the actual size of place fields could be estimated more accurately 

if the information from spatial ratemaps was combined with the observed jitter of place fields 

during individual runs. Incorporating so many factors into a model increases its complexity 

and also interpretability. However, given the heterogeneous and dynamic nature of the place 

cell population now increasingly evident, the increase in the complexity of models may be 

inevitable. 



185 
 

5.4.6 Influence of grid cells on place field locations 

Place cells receive input from grid cells which are likely to influence locations of place fields. 

It follows that the spatial arrangement of place fields may reflect the hexagonal firing patterns 

of grid cells. The place fields of cells receiving input from the same set of grid cells or place 

cells with multiple fields in the same environment would be most likely to show this effect. 

In this study, the gridness scores of multi-field place cells showed no evidence of hexagonal 

symmetry as the gridness scores were low and distributed the same as for simulated cells 

with randomly rearranged place fields. It may be that the method of computing the gridness 

using ratemaps that ignored out of field firing produced very low measures of gridness, 

thereby masking a potentially small but statistically significant hexagonal symmetry. 

Additionally, in multi-field place cells, not all fields were always perfectly captured with the 

field detection method, and removing even very few fields may have a dramatic impact on 

the gridness measure. Nevertheless, the method used here was validated on a few 

examples of recorded grid cells, and it did produce representative gridness scores. 

5.4.7 Phase precession slope and phase offset are correlated with field 

size 

Place cell spikes during runs through a place field shift from late to earlier phases of the 

ongoing theta oscillation (O’Keefe and Recce, 1993). This phenomenon can be challenging 

to study in open field environments compared to linear tracks because individual runs 

through a place field in an open field environment can be variable compared to the 

constrained one-dimensional trajectories on linear tracks. Nevertheless, it is important to 

verify that the same effects observed on linear tracks are also present in open field 

environments. 

Kjelstrup et al. (2008) showed that on a long linear track larger place fields in the ventral 

hippocampus also have slower phase precession, as predicted by the relationship between 

the theta phase and an animal’s position in the field (O’Keefe and Recce, 1993; Huxter et 

al., 2003). The analysis in this thesis came to the same conclusion about the variable size 

place fields recorded in the dorsal hippocampus of rats foraging in large open field 

environments. 

In this study, it was also verified that the phase offset of the phase precession was positively 

correlated with field length. This finding matches the prediction by Leibhold and Monsalve-
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Mercado (2017) based on their model of phase precession that ameliorated the violation of 

the cell order consistency of co-active cells with different size place fields. 
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6 General discussion 

6.1 The neural implementation of the cognitive map in naturalistic 

environments 

Research during the 20th century laid the groundwork for the study of spatial cognition. 

Seminal work led by Edward C. Tolman and his colleagues led to the conception of the 

cognitive map to explain the ability of animals to localise themselves and navigate optimally 

through unexplored sections of an environment (Tolman, 1948). Fundamentally, animals 

can localise themselves in space. With reference to David Marr’s levels of understanding 

complex systems (Marr, 1982; Krakauer et al., 2017), these spatial abilities require animals 

to solve the self-localisation problem using computation – the first level of understanding as 

defined by Marr. The cognitive map serves as a potential algorithm – the second level of 

understanding in Marr’s framework. It is a high-level explanation of how animals may be 

able to perform that computation. This algorithm – the cognitive map – organises information 

about places and relationships between them, supporting self-localisation and construction 

of routes (O’Keefe and Nadel, 1978). With the discovery of place cells (O’Keefe and 

Dostrovsky, 1971) and other cells with spatially selective firing patterns (O’Keefe, 2007), the 

implementation of this algorithm – Marr’s third level of understanding – was narrowed down 

to the hippocampal formation. Numerous studies, showing that lesions in the hippocampal 

formation impair spatial cognition (Morris, 2007), support the conclusion that the algorithm 

supporting the problem of self-localisation is implemented in the hippocampal formation. 

This thesis is focused on the implementation of the cognitive map in place cells, to 

understand how they support spatial cognition. Specifically, Chapter 4 aims to characterise 

hippocampal replay – a candidate neural implementation of spatial information storage and 

recall from the cognitive map – in a new open field navigation task. Chapter 5 is concerned 

with the animal’s ability to self-localise regardless of environment size. Both of these studies 

emphasize the ethological relevance, thereby reducing the shortcomings of the reductionist 

approach. Namely, the tendency to observe too limited or unnatural neural and behavioural 

states (Krakauer et al., 2017). The navigational task experiment (Chapter 4) achieves this 

through the use of an open field environment instead of a constrained maze when studying 

neural correlates of navigation. The experiment investigating location information in place 

cell representations of different size environments (Chapter 5) aims to uncover their 

fundamental properties that are not seen in the unnaturally small environments used 

traditionally to study place cells. Chapter 3 describes the technical developments that made 
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these experiments possible and supports future experiments in even larger or more complex 

environments. Both experiments provide valuable insight into the neural implementation of 

the cognitive map in large environments, particularly the study in Chapter 5. 

The findings of place cell statistics uncovered by the use of huge environments, as described 

in Chapter 5, highlight the importance of studying the brain in naturalistic conditions where 

the full range of neural activity and behaviour states (Krakauer et al., 2017) can be observed. 

The actual distribution of place field formation propensities is somewhat different from that 

previously reported (Rich et al., 2014; Lee et al., 2019), but can still be modelled well using 

a Gamma distribution. A homeostatic mechanism maintains overall activity in the place cell 

population, despite a change in place field size and centroid density with distance from walls. 

Place cell firing also remains equally stable across large open spaces. Finally, modelling 

results suggest there may be two sub-populations of place cells, one with fields tuned to 

spatial cues, and another with field locations and size independent of location in the 

enclosure. None of these results could have been observed so convincingly in smaller 

environments, and yet they are vital for accurate models of place cells. 

SpatialAutoDACQ developed to conduct the experiments reported in this thesis could be 

combined with a wireless electrophysiological recording system to study truly ecological 

behaviours and their neural implementations. In order to study navigation in environmental 

spaces (Wolbers and Wiener, 2014), the potential use of satellite home locations (Poulter et 

al., 2018) and fragmentation of cognitive maps (Moser et al., 2017), experiments need to be 

on larger spatial scales. A study investigating bat place cell representations in a 200 m long 

tunnel is already in progress (Eliav et al., 2019). SpatialAutoDACQ solves technical 

challenges of large-scale behavioural tracking and experiment automation that would be 

faced by any researcher proceeding in this direction. 

Large scale studies come with the challenge of recording the same neurons throughout a 

sufficiently long period to acquire the necessary spatial sampling. Recently developed neural 

probes based on mesh electronics could make it possible to record not just individual 

neurons but complete populations consistently for weeks or months (Hong et al., 2018). 

Non-stationarity of the cognitive map is another challenge, but equally, the dynamic changes 

in the cognitive map are crucially important for the study of learning and forgetting. 

6.2 Navigation from behaviour to single-unit activity 

Navigation and self-localisation are tightly linked abilities, as discussed in the Introduction 

section (1.1.1). The true value of self-localisation arises as it is used for navigation, and the 
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latter is impossible without the former. Interestingly, on the level of behaviour, navigation is 

more intuitive to characterise than self-localisation. In contrast, on the level of neural activity, 

the process of navigation has remained for more elusive (Spiers and Barry, 2015). When 

observing natural behaviour, navigation stands out clearly during epochs when an animal 

moves purposefully between locations. Self-localisation is only explicit when the animal is 

exhibiting a particular behaviour limited to a specific location, e.g. falling asleep at a ‘home 

location’. However, self-localisation is assumed to be continuous because otherwise, it 

would not be possible to navigate. 

The transiency of navigation makes its neural implementation far more difficult to investigate 

than self-localisation. Especially in the hippocampus, where the neural activity only appears 

to reflect other than self-localisation only when the animal is immobile; therefore, only 

distinguishing the planning phase of a navigational epoch. Aside from replay just prior to 

movement (Pfeiffer and Foster, 2013; Singer et al., 2013), place cell activity during the rest 

of a navigational epoch has not been distinguished from the activity during foraging or 

exploration. The cue-triggered navigational task presented in this thesis was developed with 

the intention of providing the experimenter with some control over the timing of navigational 

planning as well as execution. Tasks with cue-triggered behaviour significantly increase the 

saliency of related neural activity patterns, especially if remaining temporal variability is 

corrected for with time warping (Williams et al., 2020). Unfortunately, as discussed in Section 

4, there was no increase in ripple or replay events around the time of the trial where 

navigational planning was expected to occur. Future work could clarify if instead theta 

sequences (Wikenheiser and Redish, 2015; Kay et al., 2020) during vicarious trial and error 

behaviour just before running to the goal (Johnson and Redish, 2007) could be supporting 

navigational planning in this task. 

The execution of movement during navigation has received very little attention compared to 

the navigational planning or representation of goal vectors (Spiers and Barry, 2015; Poulter 

et al., 2018). It could be implemented in brain regions downstream of the hippocampus and 

in either of two forms. The sequence of movement vectors could first be computed based 

on the cognitive map, then stored in the working memory for the period of a navigational 

epoch, during which they are executed as high-level motor actions. Alternatively, the optimal 

path could be evaluated continuously during goal-directed movement based on prospective 

firing in theta cycles. Errors between the prospective trajectory and a goal could be used for 

online adjustment of motor commands. Potentially, the two methods could be integrated for 

longer paths, so that sequential vector endpoints could serve as intermediate waypoints, 

reducing the required length of trajectories represented in each theta cycle. 
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Such sequential activation of place cells with adjacent fields during movement – first 

described as phase precession (O’Keefe and Recce, 1993) – have been found to encode 

alternative future trajectories during navigation (Kay et al., 2020). These activations are 

separated into successive theta cycles – theta sequences. In the latter study, theta 

sequences were not biased towards the future direction of the animal, which would be 

required if this activity was used to guide movement. However, previous work did find a 

correlation between future trajectory properties and these place cell sequences during 

movement (Wikenheiser and Redish, 2015). Without a bias to represent the future path 

during navigational planning, the process that computes the errors between the current and 

desired trajectories must be keeping track of which theta cycles express the correct path. 

Alternatively, the cycling may include only trajectories that diverge a few steps ahead of the 

animal, moving the diversion point onwards in each theta cycle to reflect the continuously 

updated decision. Future work on movement control studying brain regions downstream of 

the hippocampus and the hippocampus simultaneously could support the study of navigation 

by exposing a link between hippocampal activity and motor actions. One potential candidate 

is posterior parietal cortex, which receives input from the entorhinal cortex (Amaral and 

Lavenex, 2007). It has neurons encoding peri-personal space and high-level motor actions 

(Kandel et al., 2013). Furthermore, several studies have found posterior parietal cortex to 

be involved in navigation (Maguire et al., 1998; Wilber et al., 2014; Whitlock, 2017). 

6.3 The determinants of place cell firing fields 

After 50 years of study, the determinants of place field formation and the mechanisms by 

which place cells continuously encode self-location remains elusive. Even grid cells, 

discovered only 15 years ago seem to be explained more elegantly using attractor dynamics 

and oscillatory interference models. In fairness, the highly structured firing pattern of grid 

cells, like head direction cells, lends itself to be described by nicely constrained models. In 

contrast, place cell firing field locations and shapes are highly variable, even for individual 

cells across locations within a single environment. Yet, the population activity appears to 

transition smoothly as adjacent locations are represented during the animal’s movement – 

the cells behave as part of a continuous attractor network. The hippocampal field is still 

struggling to describe the place cell population with a simple model. It may have remained 

such an enigma because there could be sub-populations of place cells, each with very 

different characteristics, randomly arranged in the principal cell layer, much unlike grid cells. 

Only recently have studies started to tease apart these sub-populations of place cells. The 

modelling results in this thesis suggest there could be two sub-populations – one with 
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uniformly distributed fields with similar properties everywhere and the other with fields 

arranged and shaped based on proximity to boundaries or cues. The different sub-

populations only became apparent in the very large environment, where the cue-bound cells 

could be absent in the middle of the environment. Close inspection of electrode locations 

after place cell recordings has revealed a gradient in the strength of landmark control over 

place cell firing between the deeper and superficial portions of CA1 pyramidal layer (Geiller 

et al., 2017). The recent development of high-density silicon probes (Jun et al., 2017) would 

greatly assist the inspection of these sub-populations in large open-field environments. 

Two subpopulations of place cells have also been found to have different contribution to 

offline replay events before and after exploring a novel environment (Grosmark and Buzsáki, 

2016). The cells activated in sequences forming trajectories based on their mapping to an 

unexplored environment also contributed to replay events post-exploration. A separate 

subset of place cells only contributed to replay events after the animal had explored the 

novel environment. This latter population of place cells had fewer and more defined place 

fields, while the former had larger and less stable place fields. These populations may 

correspond to the place cell population models in this thesis, one with fields defined by 

proximity to walls (smaller fields) and the other with uniformly distributed fields (larger fields). 

This hypothesis could be tested in future studies using recordings in a novel large 

environment. Cell subpopulation identification based on replay properties, as in the study by 

Grosmark and Buzsáki (2016), could be used in fitting the combined model (discussed in 

section 5.4.4) to experimental data. 

If place cells are indeed a heterogeneous population, then it will not be possible to model 

them with a single elegant model, but rather as a combination of separate models for each 

sub-population. It is important also to consider that there is no evidence to conclude that 

these sub-populations are mutually exclusive. All CA1 pyramidal cells may be receiving the 

same inputs, only with variable weights, resulting in a range of combinatory properties, 

rather than clearly distinct sub-populations. In this case, modelling the population-level 

statistics, instead of individual cells, could be more tractable. An example of that is the field 

formation propensity model described by Rich et al. (2014), which was also used in this 

thesis. The proportion of cells with any number of fields in an environment can be accurately 

predicted based on environment size. The place cell population models in this thesis 

described the proportion of place fields of any size based on the location within an 

environment. Future work combining the model with two sub-populations of place cells with 

field formation propensity model could provide an excellent description of place cells. 
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Still, there may yet be a distinctive pattern in place cell activity, lending it to elegant modelling 

of single-unit firing properties. It may have remained invisible because of the limited 

environments in which these cells are studied. The work described in this thesis put great 

emphasis on using large environments in an attempt to avoid the same outcome as the first 

studies on grid cells that failed to report them as having grid-like firing patterns – the 

environments in those studies were too small. It would be quite the irony, if only just a little 

larger environment is needed to observe regularity in place cell firing. For example, if the 

place cells with uniformly distributed fields had fixed inter-field distances of 3 metres, this 

would have gone unnoticed in all studies, including this one. Undoubtedly, there is more to 

learn about the global positioning system in the brain by observing it in action on truly 

ethological scales. 

6.4 Implications of the work in this thesis on spatial cognition 

Compared to the other cell types, the rule for place cell firing may appear the simplest – it 

fires when an animal is at a specific place. However, the simplicity of it is contingent on the 

concept of place – a location in space. While it may seem an intuitive concept, it is a highly 

abstract variable, necessitating a combination of multiple information sources. As all 

neurons, place cells rely on information provided by the sensory organs and the intermediate 

processing steps. The amount of intermediate processing must be immense to yield the 

firing property of place cells – increased activity at a point in space, irrespective of movement 

speed and direction, viewing angle, past actions and future intentions. Of course, many 

studies highlight specific situations where place fields do depend on those variables 

(O’Keefe, 2007); however, in general, place cell firing can be modelled purely based on 

distance from specific irregularly located, seemingly arbitrary points in space. 

As discussed by O’Keefe and Nadel (1978), the perception of space and places rests on 

more fundamental concepts, such as identification and extension. The firing of a place cell 

– continuously decreasing with distance from a specific point in space – effectively 

represents a combination of identity (point in space) and extension (distance from it). Based 

on the boundary vector cell model, place cells do this by combining inputs from multiple 

boundary vector cells (Burgess et al., 1997; Hartley et al., 2000; Barry et al., 2006). The 

models presented in this thesis suggest that a sub-population of place cells functions this 

way. Each boundary vector cell, however, fires based on the distance to a specific physical 

cue, such a wall, rather than an arbitrary point in space. Therefore, a sub-population of place 

cells can be described as a first-order combination of identification of physical objects and 

extension in the physical space, which yields a representation of arbitrary points in space. 
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This representation is clearly valuable for spatial cognition, providing the animal with its 

precise location in relation to multiple landmarks. 

The value of the other sub-population of place cells, with fields distributed uniformly, 

independently of environmental boundaries, could be different. These cells could be 

mapping to locations on a more global scale, rather than immediate surroundings. Such 

global representations have been found in grid cells (Carpenter et al., 2015). In large 

environments, the place cells in this sub-population may be found to anchor more strongly 

to distal than local cues. Their firing fields may also be more robust in the absence of 

landmarks, e.g. in darkness, at least relative to each other. The concept of place persists in 

the absence of cues even after complete disorientation. Anyone could experience this first-

hand. They’d need to be blind-folded, transported to an open area, disoriented, and then 

asked to walk a few meters away and back to the original drop-off location. Not only would 

they intuitively understand the existence of that drop-off location, but they would also be able 

to navigate to it. If place cells are fundamental to knowing where we are – our awareness of 

places – then a sub-population of place cells able to function in the absence of any external 

cues must exist. These would most likely be highly dependent on path-integration input, 

such as that from grid cells. 

As a result of the variable field density of one place cell sub-population relative to landmarks, 

the internal representation of space is distorted compared to the physical space. The 

possible firing rate combinations of place cells can be considered to be restricted to a sub-

space, called the manifold (Mcnaughton et al., 1996). The positions on the manifold mapping 

to corners of an environment are further apart than those mapping equally spaced positions 

in the centre of the environment. That is because place fields near walls and corners are 

smaller than those in the middle of an open field environment, and the peak firing rate does 

not change to compensate. If the manifold of place cells recorded in the large environment 

reported in this thesis was represented in three dimensions, then it would likely look like a 

plane with stretched out corners. The manifold approach has already been used 

successfully with head direction cells (Chaudhuri et al., 2019). However, such analysis 

requires a very high number of simultaneously recorded neurons, which is likely why it is yet 

to be performed using place cells. This distortion of the internal representation of space 

could be reflected in the perception of distance and movement effort between locations in 

cue-rich and cue-poor parts of an environment. Equally, these abilities could be based on 

the sub-population of place cells with uniformly distributed fields, which does to produce a 

distorted internal representation, and could support accurate distance perception.  
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