172 research outputs found

    Internet protocol television (IPTV): The Killer application for the next-generation internet

    Get PDF
    Internet Protocol Television (IPTV) will be the killer application for the next-generation Internet and will provide exciting new revenue opportunities for service providers. However, to deploy IPTV services with a full quality of service (QoS) guarantee, many underlying technologies must be further studied. This article serves as a survey of IPTV services and the underlying technologies. Technical challenges also are identified

    Framework for Content Distribution over Wireless LANs

    Get PDF
    Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive technology for Intent access. Due to the low-cost of chipsets and support for high data rates, Wi-Fi has become a universal solution for ever-increasing application space which includes, video streaming, content delivery, emergency communication, vehicular communication and Internet-of-Things (IoT). Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 standard has been amended several times over the last two decades, to incorporate the requirement of future applications. The 802.11 based Wi-Fi networks are infrastructure networks in which devices communicate through an access point. However, in 2010, Wi-Fi Alliance has released a specification to standardize direct communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi Direct after 9 years of its release is still used for very basic services (connectivity, file transfer etc.), despite the potential to support a wide range of applications. The reason behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit its performance in dense networks. These include the issues related to topology design, such as non-optimal group formation, Group Owner selection problem, clustering in dense networks and coping with device mobility in dynamic networks. Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense networks where the topology changes frequently which directly affects the network performance. The dynamic nature of such networks challenges the operators to design and make optimum planifications. In this dissertation, we propose solutions to the aforementioned problems. We contributed to the existing Wi-Fi Direct technology by enhancing the group formation process. The proposed group formation scheme is backwards-compatible and incorporates role selection based on the device's capabilities to improve network performance. Optimum clustering scheme using mixed integer programming is proposed to design efficient topologies in fixed dense networks, which improves network throughput and reduces packet loss ratio. A novel architecture using Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive networks using machine-learning algorithms to predict the network changes ahead of time and self-configuring the network

    Delivery of Personalized and Adaptive Content to Mobile Devices:A Framework and Enabling Technology

    Get PDF
    Many innovative wireless applications that aim to provide mobile information access are emerging. Since people have different information needs and preferences, one of the challenges for mobile information systems is to take advantage of the convenience of handheld devices and provide personalized information to the right person in a preferred format. However, the unique features of wireless networks and mobile devices pose challenges to personalized mobile content delivery. This paper proposes a generic framework for delivering personalized and adaptive content to mobile users. It introduces a variety of enabling technologies and highlights important issues in this area. The framework can be applied to many applications such as mobile commerce and context-aware mobile services

    IEEE 802.11 ๊ธฐ๋ฐ˜ Enterprise ๋ฌด์„  LAN์„ ์œ„ํ•œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ „ํ™”์ˆ™.IEEE 802.11์ด ๋ฌด์„  LAN (wireless local area network, WLAN)์˜ ์‹ค์งˆ์ ์ธ ํ‘œ์ค€์ด ๋จ์— ๋”ฐ๋ผ ์ˆ˜ ๋งŽ์€ ์—‘์„ธ์Šค ํฌ์ธํŠธ(access points, APs)๊ฐ€ ๋ฐฐ์น˜๋˜์—ˆ๊ณ , ๊ทธ ๊ฒฐ๊ณผ WLAN ๋ฐ€์ง‘ ํ™˜๊ฒฝ์ด ์กฐ์„ฑ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š”, ์ด์›ƒํ•œ AP๋“ค์— ๋™์ผํ•œ ์ฑ„๋„์„ ํ• ๋‹นํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ”ผํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ์ด๋Š” ํ•ด๋‹น AP๋“ค์ด ๊ฐ™์€ ์ฑ„๋„์„ ๊ณต์œ ํ•˜๊ฒŒ ํ•˜๊ณ  ๊ทธ๋กœ ์ธํ•œ ๊ฐ„์„ญ์„ ์•ผ๊ธฐํ•œ๋‹ค. ๊ฐ„์„ญ์œผ๋กœ ์ธํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฑ„๋„ ํ• ๋‹น(channelization) ๊ธฐ๋ฒ•์ด ์ค‘์š”ํ•˜๋‹ค. ๋˜ํ•œ, ํ•œ ์กฐ์ง์ด ํŠน์ • ์ง€์—ญ์— ๋ฐ€์ง‘ ๋ฐฐ์น˜๋œ AP๋“ค์„ ๊ด€๋ฆฌํ•œ๋‹ค๋ฉด ํŠน์ • ์‚ฌ์šฉ์ž๋ฅผ ์„œ๋น„์Šคํ•  ์ˆ˜ ์žˆ๋Š” AP๊ฐ€ ์—ฌ๋Ÿฟ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ, ์‚ฌ์šฉ์ž ์ ‘์†(user association, UA) ๊ธฐ๋ฒ•์ด ์ค€์ •์ (quasi-static) ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ ๋ชจ๋‘์—์„œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐ€์ง‘ ๋ฐฐ์น˜๋œ WLAN ํ™˜๊ฒฝ์—์„œ ์™€์ดํŒŒ์ด(WiFi) ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ฑ„๋„ ํ• ๋‹น ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ฐ๊ฐ์˜ AP์— ์ฑ„๋„์„ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ„์„ญ ๊ทธ๋ž˜ํ”„(interference graph)๋ฅผ ์ด์šฉํ•˜๋ฉฐ ์ฑ„๋„ ๊ฒฐํ•ฉ(channel bonding)์„ ๊ณ ๋ คํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ฃผ์–ด์ง„ ์ฑ„๋„ ๊ฒฐํ•ฉ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ด๋‹น AP๊ฐ€ ๋™์  ์ฑ„๋„ ๊ฒฐํ•ฉ์„ ์ง€์›ํ•˜๋Š”์ง€ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ฃผ ์ฑ„๋„(primary channel)์„ ๊ฒฐ์ •ํ•œ๋‹ค. ํ•œํŽธ, ์ค€์ •์  ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ UA ๋ฌธ์ œ๋Š” ๋‹ค์†Œ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ๊ฐ์˜ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ์„œ๋กœ ๋‹ค๋ฅธ UA ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ค€์ •์  ํ™˜๊ฒฝ์—์„œ์˜ UA ๊ธฐ๋ฒ•์€ ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก, ๋‹ค์ค‘ ์‚ฌ์šฉ์ž MIMO (multi-user multiple input multiple output), ๊ทธ๋ฆฌ๊ณ  AP ์ˆ˜๋ฉด๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๊ณผ ํ•จ๊ป˜ AP๊ฐ„์˜ ๋ถ€ํ•˜ ๋ถ„์‚ฐ(load balancing)๊ณผ ์—๋„ˆ์ง€ ์ ˆ์•ฝ์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์—์„œ UA ๋ฌธ์ œ๋Š” ๋‹ค๋ชฉ์ ํ•จ์ˆ˜ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜์˜€๊ณ  ๊ทธ ํ•ด๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ UA ๊ธฐ๋ฒ•์€ ํ•ธ๋“œ์˜ค๋ฒ„(handover, HO) ์Šค์ผ€์ค„ ๋ฌธ์ œ๋กœ ๊ท€๊ฒฐ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋„๋กœ์˜ ์ง€ํ˜•์„ ๊ณ ๋ คํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ ‘์†ํ•  AP๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” HO ์Šค์ผ€์ค„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฌ์šฉ์ž๋Š” ๋‹จ์ง€ ๋‹ค์Œ AP๋กœ ์—ฐ๊ฒฐ์„ ๋งบ์„ ์‹œ๊ธฐ๋งŒ ๊ฒฐ์ •ํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ ๋งค์šฐ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์ธ HO ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ๊ทธ๋ž˜ํ”„ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•(graph modeling technique)์„ ํ™œ์šฉํ•˜์—ฌ ๋„๋กœ๋ฅผ ๋”ฐ๋ผ ๋ฐฐ์น˜๋œ AP์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•œ๋‹ค. ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์œ„ํ•ด ์ง์„  ๊ตฌ๊ฐ„, ์šฐํšŒ ๊ตฌ๊ฐ„, ๊ต์ฐจ๋กœ, ๊ทธ๋ฆฌ๊ณ  ์œ ํ„ด ๊ตฌ๊ฐ„ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๋„๋กœ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ๋„๋กœ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๊ฐ ์‚ฌ์šฉ์ž์˜ ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ๊ทธ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ฐ ์‚ฌ์šฉ์ž ๋ณ„ HO์˜ ๋ชฉ์  AP ์ง‘ํ•ฉ์„ ์„ ํƒํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” HO ์Šค์ผ€์ค„ ๊ธฐ๋ฒ•์˜ ์„ค๊ณ„ ๋ชฉ์ ์€ HO ์ง€์—ฐ ์‹œ๊ฐ„์˜ ํ•ฉ์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ๊ฐ AP์—์„œ ํ•ด๋‹น ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๋ ค๋Š” ์‚ฌ์šฉ์ž ์ˆ˜๋ฅผ ์ค„์ด๋ฉด์„œ WiFi ์—ฐ๊ฒฐ ์‹œ๊ฐ„์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ค€์ •์  ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆํ•œ ์ฑ„๋„ ํ• ๋‹น ๊ธฐ๋ฒ•๊ณผ UA ๊ธฐ๋ฒ•์˜ ํ˜„์‹ค์„ฑ์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ์‹œํ—˜๋Œ€(testbed)๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ด‘๋ฒ”์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ค€์ •์  ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค๊ณผ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค.As the IEEE 802.11 (WiFi) becomes the defacto global standard for wireless local area network (WLAN), a huge number of WiFi access points (APs) are deployed. This condition leads to a densely deployed WLANs. In such environment, the conflicting channel allocation between the neighboring access points (APs) is unavoidable, which causes the channel sharing and interference between APs. Thus, the channel allocation (channelization) scheme has a critical role to tackle this issue. In addition, when densely-deployed APs covering a certain area are managed by a single organization, there can exist multiple candidate APs for serving a user. In this case, the user association (UA), i.e., the selection of serving AP, holds a key role in the network performance both in quasi-static and vehicular environments. To improve the performance of WiFi in a densely deployed WLANs environment, we propose a channelization scheme. The proposed channelization scheme utilizes the interference graph to assign the channel for each AP and considers channel bonding. Then, given the channel bonding assignment, the primary channel location for each AP is determined by observing whether the AP supports the static or dynamic channel bonding. Meanwhile, the UA problem in the quasi-static and vehicular environments are slightly different. Thus, we devise UA schemes both for quasi-static and vehicular environments. The UA schemes for quasi-static environment takes account the load balancing among APs and energy saving, considering various techniques for performance improvement, such as multicast transmission, multi-user MIMO, and AP sleeping, together. Then, we formulate the problem into a multi-objective optimization and get the solution as the UA scheme. On the other hand, the UA scheme in the vehicular environment is realized through handover (HO) scheduling mechanism. Specifically, we propose a HO scheduling scheme running on a server, which determines the AP to which a user will be handed over, considering the road topology. Since a user only needs to decide when to initiate the connection to the next AP, a very fast and efficient HO in the vehicular environment can be realized. For this purpose, we utilize the graph modeling technique to map the relation between APs within the road. We consider a practical scenario where the structure of the road is complex, which includes straight, curve, intersection, and u-turn area. Then, the set of target APs for HO are selected for each user moving on a particular road based-on its moving path which is predicted considering the road topology. The design objective of the proposed HO scheduling is to maximize the connection time on WiFi while minimizing the total HO latency and reducing the number of users which contend for the channel within an AP. Finally, we develop a WLAN testbed to demonstrate the practicality and feasibility of the proposed channelization and UA scheme in a quasi-static environment. Furthermore, through extensive simulations, we compare the performance of the proposed schemes with the existing schemes both in quasi-static and vehicular environments.1 Introduction 1.1 Background and Motivation 1.2 Related Works 1.3 Research Scope and Proposed Schemes 1.3.1 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 1.3.2 User Association for Load Balancing and Energy Saving in Enterprise WLAN 1.3.3 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 1.4 Organization 2 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 2.1 System Model 2.2 Channel Sharing and Bonding 2.2.1 Interference between APs 2.2.2 Channel Sharing 2.2.3 Channel Bonding 2.3 Channelization Scheme 2.3.1 Building Interference Graph 2.3.2 Channel Allocation 2.3.3 Primary Channel Selection 2.4 Implementation 3 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 3.1 System Model 3.1.1 IEEE 802.11 ESS-based Enterprise WLAN 3.1.2 Downlink Achievable Rate for MU-MIMO Groups 3.1.3 Candidate MU-MIMO Groups 3.2 User Association Problem 3.2.1 Factors of UA Objective 3.2.2 Problem Formulation 3.3 User Association Scheme 3.3.1 Equivalent Linear Problem 3.3.2 Solution Algorithm 3.3.3 Computational Complexity (Execution Time) 3.4 Implementation 4 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 4.1 System Model 4.2 Graph-Based Modeling 4.2.1 Division of Road Portion into Road Segments 4.2.2 Relation between PoAs on a Road Segment 4.2.3 Directed Graph Representation 4.3 Handover Scheduling Problem 4.3.1 Problem Formulation 4.3.2 Weight of Edge 4.3.3 HO Scheduling Algorithm 4.4 Handover Scheduling Operation 4.4.1 HO Schedule Delivery 4.4.2 HO Triggering and Execution 4.4.3 Communication Overhead 5 Performance Evaluation 5.1 CentralizedChannelizationSchemeforWirelessLANsExploitingChannel Bonding 5.1.1 Experiment Settings 5.1.2 Comparison Schemes 5.1.3 Preliminary Experiment for Building Interference Graph 5.1.4 Experiment Results 5.2 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 5.2.1 Performance Metrics 5.2.2 Experiment Settings 5.2.3 Experiment Results 5.2.4 Simulation Settings 5.2.5 Comparison Schemes 5.2.6 Simulation Results 5.2.7 Simulation for MU-MIMO System 5.3 A Graph-BasedHandover Scheduling for Heterogenous Vehicular Networks 5.3.1 Performance Metrics 5.3.2 Simulation Settings 5.3.3 Simulation Results 6 Conculsion Bibliography AcknowledgementsDocto

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad
    • โ€ฆ
    corecore