741 research outputs found
A hyper-redundant manipulator
“Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss
Manipulator Performance Measures - A Comprehensive Literature Survey
Due to copyright restrictions of the publisher this item is embargoed and access to the file is restricted until a year after the publishing date.The final publication is available at www.springerlink.comPerformance measures are quintessential to the design, synthesis, study and
application of robotic manipulators. Numerous performance measures have been
defined to study the performance and behavior of manipulators since the early days of
robotics; some more widely accepted than others, but their real significance and
limitations have not always been well understood. The aim of this survey is to review
the definition, classification, scope, and limitations of some of the widely used
performance measures. This work provides an extensive bibliography that can be of
help to researchers interested in studying and evaluating the performance and
behavior of robotic manipulators. Finally, a few recommendations are proposed based
on the review so that the most commonly noticed limitations can be avoided when new
performance measures are proposed.http://link.springer.com/article/10.1007/s10846-014-0024-y
Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation
A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation
Ground Robotic Hand Applications for the Space Program study (GRASP)
This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time
The CUIK suite: Analyzing the motion closed-chain multibody systems
Many situations in robotics require the analysis of the motions of complex multibody systems. These are sets of articulated bodies arising in a variety of devices, including parallel manipulators, multifingered hands, or reconfigurable mechanisms, but they appear in other domains too as mechanical models of molecular compounds or nanostructures. Closed kinematic chains arise frequently in such systems, either due to their morphology or due to geometric or contact constraints to fulfill during operation, giving rise to configuration spaces of an intricate structure. Despite appearing very often in practice, there is a lack of general software tools to analyze and represent such configuration spaces. Existing packages are oriented either to open-chain systems or to specific robot types, which hinders the analysis and development of innovative manipulators. This article describes the CUIK suite, a software toolbox for the kinematic analysis of general multibody systems. The implemented tools can isolate the valid configurations, determine the motion range of the whole multibody system or of some of its parts, detect singular configurations leading to control or dexterity issues, or find collision-and singularity-free paths between configurations. The toolbox has applications in robot design and programming and is the result of several years of research and development within the Kinematics and Robot Design group at IRI, Barcelona. It is available under GPLv3 license from http://www.iri.upc.edu/cuik.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under project DPI2010-18449, by a Juan de la Cierva fellowship supporting Montserrat Manubens, and by a CSIC JAE-Doc fellowship partially funded
by the ESF supporting Leonard Jaillet.Peer Reviewe
Prehensile Pushing: In-hand Manipulation with Push-Primitives
This paper explores the manipulation of a grasped object by pushing it against its environment. Relying on precise arm motions and detailed models of frictional contact, prehensile pushing enables dexterous manipulation with simple manipulators, such as those currently available in industrial settings, and those likely affordable by service and field robots. This paper is concerned with the mechanics of the forceful interaction between a gripper, a grasped object, and its environment. In particular, we describe the quasi-dynamic motion of an object held by a set of point, line, or planar rigid frictional contacts and forced by an external pusher (the environment). Our model predicts the force required by the external pusher to “break” the equilibrium of the grasp and estimates the instantaneous motion of the object in the grasp. It also captures interesting behaviors such as the constraining effect of line or planar contacts and the guiding effect of the pusher’s motion on the objects’s motion. We evaluate the algorithm with three primitive prehensile pushing actions—straight sliding, pivoting, and rolling—with the potential to combine into a broader in-hand manipulation capability.National Science Foundation (U.S.). National Robotics Initiative (Award NSF-IIS-1427050)Karl Chang Innovation Fund Awar
A Rapidly Reconfigurable Robotics Workcell and Its Applictions for Tissue Engineering
This article describes the development of a component-based technology robot system that can be rapidly configured to perform a specific manufacturing task. The system is conceived with standard and inter-operable components including actuator modules, rigid link connectors and tools that can be assembled into robots with arbitrary geometry and degrees of freedom. The reconfigurable "plug-and-play" robot kinematic and dynamic modeling algorithms are developed. These algorithms are the basis for the control and simulation of reconfigurable robots. The concept of robot configuration optimization is introduced for the effective use of the rapidly reconfigurable robots. Control and communications of the workcell components are facilitated by a workcell-wide TCP/IP network and device level CAN-bus networks. An object-oriented simulation and visualization software for the reconfigurable robot is developed based on Windows NT. Prototypes of the robot systems configured to perform 3D contour following task and the positioning task are constructed and demonstrated. Applications of such systems for biomedical tissue scaffold fabrication are considered.Singapore-MIT Alliance (SMA
- …
