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Many situations in Robotics require the analysis of the motions
of complex multibody systems. These are sets of articulated bod-
ies arising in a variety of devices, including parallel manipulators,
multifingered hands, or reconfigurable mechanisms, but they ap-
pear in other domains too, as mechanical models of molecular
compounds or nanostructures. Closed kinematic chains arise fre-
quently in such systems, either due to their morphology, or to
geometric or contact constraints to fulfill during operation, giv-
ing rise to configuration spaces of an intricate structure. Despite
appearing very often in practice, there is a lack of general soft-
ware tools to analyze and represent such configuration spaces.
Existing packages are either oriented to open chain systems, or
to specific robot types, which hinders the analysis and develop-
ment of innovative manipulators. This paper describes the CUIK
suite, a software toolbox for the kinematic analysis of general
multibody systems. The implemented tools can isolate the valid
configurations, determine the motion range of the whole multi-
body system or of some of its parts, detect singular configura-
tions leading to control or dexterity issues, or find collision- and
singularity-free paths between configurations. The toolbox has
applications in robot design and programming, and it is the result
of several years of research and development within the Kine-
matics and Robot Design group at IRI, Barcelona. It is available
under GPLv3 license from http://www.iri.upc.edu/cuik.

Motivation and Outlook
The notion of configuration space (C-space) is fundamental

in Robotics. It allows designing motion analysis algorithms for
broadly-defined classes of robots, without worrying about their

particular geometry or multibody structure. In most Robotics
courses this notion is introduced for open-chain robots, where
the C-space has an explicit global parametrization. In this way,
C-spaces are readily understood and algorithms operating on
them can be easily defined. In real problems, however, the
C-space can have a more complex structure. On a welding robot,
for instance, the set of valid configurations reduces to those where
the end-effector is in contact with the surface to be welded. This
constraint implicitly defines a non-parametric C-space whose
analysis is not trivial in general. Similar problems arise in Struc-
tural Biology, when analyzing the feasible motions of a molecule,
or in Computer-Aided Design, when assembling parts using spa-
tial constraints. The CUIK suite provides effective tools for ana-
lyzing the C-spaces arising in such a broad range of applications,
a point not properly addressed in the related packages available
so far.

In all the considered problems, the valid configurations are im-
plicitly defined by a system of kinematic equations encoding the
assembly, task, or contact constraints intervening in the problem,
and the goal is to analyze the motion capabilities by finding the
solutions of such system. In an extreme case, the valid configura-
tions are isolated points. This is what happens, for example, when
solving position analysis problems on parallel or serial manipu-
lators, where one wishes to compute the feasible configurations
for given values of the input or output coordinates. Historically,
the preferred approach to tackle these problems has been variable
elimination: the initial equations are reduced to a resultant uni-
variate polynomial, which is solved using well-established meth-

http://www.iri.upc.edu/cuik


θ
P = (x, y)

Figure 1. Results of the CUIK suite tools on the Stickybot III robot from the Stanford Biomimetics and Dexterous Manipulation Lab
(http://bdml.stanford.edu). Each leg has a five-bar mechanism (left, with actuated joints in red), whose C-space is shown projected to
the (x, y) coordinates of point P and angle θ (right). The suite allows a comprehensive analysis of the motions of systems of this kind. It can compute
the C-space (the translucent gray surface), incrementally produce atlases to solve optimization or path-planning problems (the red and blue mesh at the
top), obtain multiresolutive approximations of singularity loci (the blue boxes and the refined red curve), or generate probabilistic roadmaps to connect
configurations (the white tree, with a path highlighted in green). The projection of this surface to the (x, y) plane produces the reachable workspace of
point P .

ods for this case. The approach is sound, but it may introduce
extraneous roots and the size and degree of the resultant rapidly
grow with the number of bodies and the complexity of their con-
nection pattern. General elimination packages can be used [8],
but they rapidly explode in complexity even on small problems,
which explains why no general software for motion analysis has
been built using them. The CUIK suite circumvents these issues
by adopting an opposite approach. Instead of reducing the ini-
tial system of equations to a resultant polynomial, we formulate
it as a larger system including only linear and quadratic equa-
tions. This particular formulation is then exploited to implement
a branch-and-prune method able to compute the whole solution
set. The method departs from an initial box bounding this set and
effectively prunes unfeasible portions of the box until all solution
points are isolated at the desired accuracy. Software toolboxes
like ALIAS [16], Bertini [1], or PHC [28] have been applied to
kinematics, but they implement general methods for solving sys-
tems of algebraic equations. In contrast, the CUIK suite sacrifices
generality to gain simplicity and efficiency in the implementation.

Opposite to [1, 28], moreover, it directly isolates the real roots in-
stead of the complex ones, which is beneficial in practice.

While many approaches can only identify the solutions when
they are isolated points, the branch-and-prune methods in the
CUIK suite can also approximate positive-dimensional solutions.
This can be used to compute the whole C-space or some of its
subsets, providing global information on the motion capabili-
ties of a manipulator. In particular, by adequately defining the
equations passed to the solver, the CUIK suite can isolate the
workspace boundaries and any of the singularity sets typically
defined in the literature [7], becoming the first general tool able
to do so, up to the authors’ knowledge.

Branch-and-prune methods are complete, in the sense that they
obtain all configurations, irrespectively of whether they form one
or several connected components. In many problems, however, it
may be sufficient to explore only those configurations that are
path-connected to a given point. To this end, the CUIK suite
implements higher-dimensional continuation tools allowing to
trace arbitrary manifolds [10]. While branch-and-prune meth-

http://bdml.stanford.edu


Figure 2. A representative set of the commands implemented in the CUIK
suite (ellipses) and their input/output files (rectangles). The parameters file
problem.param is used by all the commands. The suite implements many
other tools not shown here for simplicity. Note that geomview is an external
visualization program.
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Figure 3. A planar arm welding on a beam. The goal is to weld on a
particular point P with orientation θ.

ods proceed by discarding non-valid configurations, continua-
tion techniques march from a given point in all directions iden-
tifying new feasible configurations. Local charts of the C-space
are constructed and coordinated along the way, defining a global
atlas that is suitable to determine feasible motion ranges, opti-
mal configurations, or paths between configurations. Packages
to compute the latter exist, but they are oriented to open-chain
robots [15, 9, 26, 27], or to specific classes of closed-chain de-
vices [14]. The CUIK suite complements these packages by
providing new methods to deal with the general closed-chain
case. For C-spaces of moderate dimension, the suite provides
strategies to connect start and goal configurations through low-
cost, collision- or singularity-free paths. To deal with larger-

[constants]
l1:=1
l2:=1
l3:=1.3
x:=0.25
y:=2.05
theta:=pi/2

[system vars]
u1 x:[-1,1]
u1 y:[-1,1]
u2 x:[-1,1]
u2 y:[-1,1]
u3 x:[-1,1]
u3 y:[-1,1]

[system eqs]
u1 xˆ2+u1 yˆ2=1;
u2 xˆ2+u2 yˆ2=1;
u3 x=cos(theta);
u3 y=sin(theta);
l1*u1 x+l2*u2 x+l3*u3 x=x;
l1*u1 y+l2*u2 y+l3*u3 y=y;

Example 1. The welding0D.cuik file encoding the problem in Figure 3.

dimensional spaces, the suite implements randomized versions of
such tools based on the contruction of rapidly-exploring random
trees spanning the C-space.

Fig. 1 shows the main outputs of the CUIK suite on a particular
example. In the rest of the paper we describe the methods used
to produce such outputs and the associated line commands, illus-
trating them on a simple tutorial example. A representative set of
commands and their input/output files are summarized in Fig. 2.
The documentation available on-line describes all the examples
and functionalities in thorough detail.

Branch-and-prune methods
A basic example shows how the CUIK suite can address posi-

tion analysis problems. Consider the planar manipulator in Fig. 3,
which has three links of lengths l1, l2, and l3, and three revolute
joints. The goal is to compute the arm configurations allowing
to weld in the indicated point P = (x, y), with orientation θ.
Example 1 shows the equations expressing this inverse kinemat-
ics problem in the suite. Observe that the arm configurations
are represented using three normalized vectors, (u1 x,u1 y),
(u2 x,u2 y), and (u3 x,u3 y), encoding the orientation of
each link relative to the X axis of the global frame. The posi-
tion of the end effector is given by the linear equations in the last
two equations, and the [-1,1] ranges for the variables define
a six-dimensional box bounding the location of all the possible
solutions of the problem.

To facilitate the generation of the cuik files, the suite allows
defining the problems in a high-level form. By executing

> cuikequations welding0D.world

a set of equations equivalent to that in Fig. 3 is obtained from
the world file given in Example 2. This file describes the links
and joints of the multibody system. A link definition includes
the name of the link and its geometric shape, and a joint is given
by its type, the two links connected, and the position of the joint



[constants]
l1:=1
l2:=1
l3:=1.3
x:=0.25
y:=0.75
theta:=pi/2

[links]
environment: body "beam.off" blue
link1: body "link1.off" gray
link2: body "link2.off" gray
link3: body "link3.off" gray

body "gripper.off" black
[joints]
revolute: ground (0,0,0) (0,0,1)

link1 (0,0,0) (0,0,1)
revolute: link1 (l1,0,0) (l1,0,1)

link2 (0,0,0) (0,0,1)
revolute: link2 (l2,0,0) (l2,0,1)

link3 (0,0,0) (0,0,1)
fix: environment

link3
Tx(x)*Ty(y)*Rz(theta)

Example 2. The welding0D.world file from which a system of equations
equivalent to that in Fig. 3 can be automatically generated.

in the local frame of each link. Fig. 4 shows some of the robots
modelled with world files in the CUIK suite. These predefined
world files can be used as a starting point to easily define new
problems.

By means of simple manipulations, the equations in Fig. 3 can
be simplified into the following system of equations

0.5*u2 x + 1.5*u2 y = 0.625,

u2 xˆ2 + u2 yˆ2 = 1,

and the search box can be limited to the ranges [−0.75, 1] and
[−0.25, 1] in u2 x and u2 y, respectively. The graph of these
equations and the new search box are represented using solid
and dotted lines in Fig. 5 (top). As shown, the solution points
lie in the intersection of a line and a circle in the space of u2 x
and u2 y. To identify such points, the box is first bisected along
the u2 x axis, obtaining the two yellow boxes in the bottom
of the figure. The circular arc inside each yellow box is then
approximated by half-planes (shown dashed in the figure). These
half-planes are used in conjunction with the linear equation to
derive a tiny box around the solution on the left, and a larger
dark-gray box bounding the solution on the right. This pruning
operation is implemented using linear programming, and it is
repeated for each box until no further significant reduction is
possible. In the end, if the largest side of the box is below a given
threshold, it is considered a solution box. Otherwise it is bisected
and the process is recursively applied to the newly-created
sub-boxes. The command

> cuik welding0D.cuik

automates this process. It reads the cuik file, simplifies the
equations when possible, and applies the pruning and bisection
operations until all solution points are isolated at the desired

Figure 4. Some of the robots modelled in the CUIK suite: The Schunk
anthropomorphic hand, the Barret hand-arm system, the YouBot two-arm
mobile platform, and the PR2 service robot.

accuracy. The problem in Fig. 3 is simple, but the method is also
successful on complex problems involving general 6R robots
and Stewart platforms [21], or in mechanisms with more than 12
chains [20]. To have an idea, elimination or resultant methods are
finding their limit in mechanisms of much less complexity [23].

The cuik command can also be used to isolate C-spaces of
positive dimension. For instance, if the robot in Fig. 3 has to weld
along a line in the lower part of the beam while keeping fixed
the tool orientation, then the problem exhibits a one-dimensional
manifold of solutions. Figure 6 shows several stages of the
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Figure 5. The bisection of the yellow box in the top plot produces the
child-boxes in the bottom plots. By considering the linear equation and
the relaxed version of the circle equation, we can accurately bound the
solution points for the problem encoded in Fig.3.

branch-and-prune method in this case (top plots), and the final
box approximation returned as output (bottom plot). The plots
are obtained and visualized by executing

> cuik welding1D.cuik

> cuikplot3d welding1D.sol 1 3 4 welding1D.gcl

> geomview welding1D.gcl

which projects the solution boxes to the subspace of the u1 x,
u2 x, and u2 y coordinates. These are the variables appearing
in the 1st, 3rd, and 4th positions of the welding1D.cuik file
describing the problem. The insets in the bottom plot show the
arm configurations corresponding to some of the boxes.

If the welding task is further relaxed and the tool can contact
the beam with any orientation, the problem exhibits a two-
dimensional C-space. Such space can be interactively explored
using the command

> cuikexplore welding2D.world

and it can again be approximated using the cuik command,
producing the results in Fig. 7 (top). The box approximation
includes about 15000 boxes that are computed in just 45 seconds
on a standard desktop computer. To solve more difficult problems
in reasonable time, the CUIK suite implements a parallel version
of the solver, which can be invoked through the rmpicuik
command. With this tool, the branch-and-prune solver can
be executed in large computer grids, where a “master” CPU
manages the exploration tree, and a number of “slave” CPUs
apply the pruning operations to the assigned boxes. Using this
tool on a cluster with 160 CPUs, it took a few minutes to isolate
two-dimensional C-spaces like the one in the lower part of
Fig. 7. This process would require costly computations using
single-CPU machines or alternative approaches [22].

u1 x u2 x

u2 y

Figure 6. Progress of the branch-and-prune method when computing the
C-space of the robot arm in Fig. 3, when the end-effector can contact any
point on the lower part of the beam, but with a fixed orientation. Configu-
rations for some of the solution boxes are shown in the bottom picture.

C-spaces of robotic systems typically exhibit singularity sub-
sets. These are loci of configurations where problematic losses of
control or dexterity arise [6, 7]. They also reveal the boundaries of
the task and joint workspaces, and all motion barriers that may be



Figure 7. Top: A box approximation of the two-dimensional C-space of
the welding task when the tool can contact the lower part of the beam with
any orientation. The approximation contains about 15000 boxes, which
are here rendered with translucent material. Middle: The cyclooctane
molecule, a ring of eight carbon atoms pairwise connected through ro-
tatable covalent bonds and a box approximation of its two-dimensional
C-space with about 300000 boxes projected on three of the problem vari-
ables. Bottom: Different shapes are obtained by projecting the boxes on
alternative triplets of variables.

encountered in their interior [4]. The ability to compute these loci
is thus essential, not only to anticipate possible problems during
robot operation, but also to provide valuable information to the
robot designer. The CUIK suite can be employed to isolate all
singular configurations of a manipulator by appropriately formu-
lating their equations and passing them to the solver [2, 7]. For
example, Fig. 8 depicts typical forward and inverse singularity
loci obtained by the suite tools on a 3-RRR manipulator, shown
projected to the pose coordinates of the end-effector, x, y, and θ.
The blue surface corresponds to the inverse singularities, which
delimit the boundary of the (x, y, θ) workspace. The red surface
corresponds to the forward singularities, which indicate the con-
figurations where velocity control issues arise.

Figure 8. Top: a picture of a 3-RRR manipulator taken from
http://www.imes.uni-hannover.de. Bottom: typical singular-
ity loci computed for such kind of manipulators.

Continuation methods
Continuation methods generate atlases of the C-space regions

that are connected to a given point. To see how such atlases can
be constructed, let’s assume that F(x) = 0 is any system of equa-
tions encoding the kinematic constraints of the multibody system,
whose solution set constitutes the C-space C under consideration.
Also let xi be an initial configuration satisfying F(xi) = 0. The
points in the tangent space of C at xi, Ti, can be parametrized by

x′
i = xi + Φiu , (1)

where Φi is a matrix providing an orthonormal basis of Ti, and u
is a parameter vector with the same dimension as C. By choosing
a value for u in Eq. (1) we obtain a point x′

i ∈ Ti, which can be
projected to xj , the point in C lying in the normal line through x′

i,
by solving the system{

F(xj) = 0,
Φ>

i (xj − x′
i) = 0,

(2)

as illustrated in Fig. 9-(a). The new configuration xj can be
used to define a new chart that can be coordinated with the
previous chart [Fig. 9-(b)], and the process can be iterated until
the whole component of C reachable from xi gets fully covered
[Fig. 9-(c)]. Every time a new chart is defined, the CUIK suite
checks for the presence of bifurcations of C, and propagates the
atlas construction through such bifurcations in order not to leave
areas unexplored. The command

> cuikatlas welding2D

takes the world file describing the robot welding problem when
the robot can contact the lower part of the beam with any
orientation and a joints file providing the initial configuration.
As output it returns an atlas file including the charts, which can
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Figure 9. (a) A chart is used to obtain new configurations by project-
ing points from the tangent space. (b) When a new chart is defined, the
chart domains are mutually coordinated to keep track of the explored area.
(c) Progress of the atlas construction method on the C-space of the robot
arm in Fig. 3, assuming that the welding tool can contact the lower part
of the beam with any orientation. This C-space is shown projected on
three of the problem variables. Red polygons represent the charts to be
extended in subsequent iterations.

be visualized using

> cuikplotatlas welding2D 0 9 18

> geomview weld2D atlas.gcl

Here, the indices 0, 9, and 18 indicate the three coordinates on
which to represent the atlas. The results of these commands are
shown in the lower part of Fig. 9. In this case, the atlas construc-
tion takes 0.1 seconds on a standard desktop computer, while the
isolation of the same space using branch-and-prune techniques

Figure 10. An optimization problem in the context of grasp synthesis.
Left: The configuration of the hand-object system must satisfy a number of
contact constraints. An initial feasible grasp is computed using the branch-
and-prune methods [25] and is used as the initial configuration from which
to construct an atlas of the relevant C-space subset [24]. Right: The chart
centers of this atlas can be evaluated according to a performance criterion
in order to select the optimal grasp. The red and green colors in the atlas
correspond to low- and high-quality grasps, respectively.

Figure 11. Left: A singularity-free path planning problem on a 3-RRR
manipulator [3]. The gray area is the constant-orientation workspace of the
manipulator, and the red curves correspond to the forward singularity locus
to be avoided during the move. Right: The solution path computed by the
CUIK suite, in green, projected on three variables relevant to the problem.
The red charts correspond to configurations that are almost singular.

requires about 45 seconds. Such a remarkable speed-up comes
at the expense of neglecting other connected components, but
allows tackling difficult optimization problems involving large
multibody systems (Fig. 10).

To solve path planning problems, the CUIK suite exploits the
fact that an atlas implicitly defines a roadmap of the C-space,
whose nodes and edges are, respectively, the chart centers and
and the collision-free transitions between neighboring charts.
The collisions to avoid can be specified in the world files. The
roadmap can be readily used to resolve multiple planning queries
between different configurations. For cases where only one
query needs to be resolved, though, it is better to employ the
cuikatlasAstar tool, which constructs only those charts leading to
the shortest path between the given configurations. Based on this
tool, singularity-free path planners for general closed-chain [3]
and cable-driven manipulators [5] have been developed, solving
problems for which no alternative satisfactory solution had been
given to date (Fig. 11). Trading off optimality for efficiency,
the cuikatlasGBF tool provides a path planner that implements a
greedy best first strategy to connect the query configurations [19].

Both the cuikatlasAstar and the cuikatlasGBF tools can be
inefficient in cluttered environments, and they do not scale
gracefully to higher dimensions. To avoid these weaknesses, the
CUIK suite includes the cuikatlasrrt tool, which implements



Figure 12. A RRT and a partial atlas solving a path planning query over
the C-space manifold of the welding robot when the tool can contact the
lower part of the beam with any orientation. In this problem, the robot
has to avoid to collide with the beam. The path over the RRT solving the
planning query is shown in green.

Figure 13. Different stages of the execution of a path allowing to put a
pitcher in a fridge that is initially closed.

a sampling method where a partial atlas is used to extend a
rapidly-exploring random tree (RRT), which in turn is exploited
to decide expansion directions for the atlas [13]. For instance,
after specifying the start and goal configurations in the joints file,
the sequence of commands

> cuikatlasrrt welding2D

> cuikplotatlas welding2D 0 9 18

> cuikplotrrt welding2D 0 9 18

> geomview welding2D rrt.gcl welding2D atlas.gcl

produces an RRT and an atlas like those shown in Fig. 12. The
motion of the robot along the path solving the planning problem
can be visualized executing

> cuikplayer welding2D welding2D path

Using this technique, it is possible to solve problems in pretty
high dimensions. Fig. 13, for example, shows three snapshots
of the path computed by this method in a manipulation problem
involving a PR2 robot. The robot has to carry a pitcher without
tilting it, and put it in a fridge that is initially closed. The two
arms are open-chain robots, but their configurations are restricted
by task and contact constraints, respectively, which make the
planning problem rather difficult. The C-space is 8-dimensional,
but it takes less than three seconds to determine the solution path.

Figure 14. A low-cost path (in blue) computed in the conformational space
of a loop of the FTSJ protein of Escherichia Coli (in ribbon diagram in the
bottom). The cost is the potential energy of each conformation. The insets
show the initial conformation, the transition state (i.e., the conformation
with the highest potential energy along the path), and the final conforma-
tion. Only the atoms in the loop are shown in such conformations. The
plot shows the energy profile along the transition path.

Paths generated with RRT-like algorithms might be costly or
unnecessarily long. To address these issues, the CUIK suite in-
cludes procedures to generate near-optimal paths when there is
a cost function related to the C-space. If the cost is defined for
each configuration, one can use the cuikatlastrrt tool, which im-
plements an extended version of the T-RRT algorithm in [11].
For instance, Fig. 14 shows a low cost path computed with this
method in the case of a short loop of the FTSJ protein of Es-
cherichia Coli, where the cost function is the potential energy of
each protein conformation [18]. If the cost is the length of the
path, the cuikatlasrrtstar tool can be used instead, which is an
adaptation of the RRT* asymptotically-optimal path planner to
the case of implicitly-defined C-spaces [12].

Conclusions
This paper has described the CUIK suite, a comprehensive

set of tools to analyze C-spaces implicitly defined by systems
of kinematic constraints. We provided a brief account of the
underlying techniques and the commands used to invoke them.
Since problems involving kinematic constraints are ubiquitous in
Robotics, the suite may potentially be used in contexts beyond



those described in the paper, including mobile robot localization
and mapping [17], motion analysis and synthesis of robot for-
mations, tensegrity and deployable structures, or programmable
surfaces, to name a few.

In the future we plan to extend the suite to also accommodate
the dynamics of multibody systems, in order to facilitate a di-
rect interfacing with robots operating under high accelerations.
However, the suite is an open source package under continuous
development, and hence we invite the community to use it and
to help us to improve it by sending feedback and suggestions on
new functionalities to include.
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