6,586 research outputs found

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab

    End to End Deep Neural Network Frequency Demodulation of Speech Signals

    Full text link
    Frequency modulation (FM) is a form of radio broadcasting which is widely used nowadays and has been for almost a century. We suggest a software-defined-radio (SDR) receiver for FM demodulation that adopts an end-to-end learning based approach and utilizes the prior information of transmitted speech message in the demodulation process. The receiver detects and enhances speech from the in-phase and quadrature components of its base band version. The new system yields high performance detection for both acoustical disturbances, and communication channel noise and is foreseen to out-perform the established methods for low signal to noise ratio (SNR) conditions in both mean square error and in perceptual evaluation of speech quality score

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    Flexible Multi-Group Single-Carrier Modulation: Optimal Subcarrier Grouping and Rate Maximization

    Full text link
    Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain equalization (SC-FDE) are two commonly adopted modulation schemes for frequency-selective channels. Compared to SC-FDE, OFDM generally achieves higher data rate, but at the cost of higher transmit signal peak-to-average power ratio (PAPR) that leads to lower power amplifier efficiency. This paper proposes a new modulation scheme, called flexible multi-group single-carrier (FMG-SC), which encapsulates both OFDM and SC-FDE as special cases, thus achieving more flexible rate-PAPR trade-offs between them. Specifically, a set of frequency subcarriers are flexibly divided into orthogonal groups based on their channel gains, and SC-FDE is applied over each of the groups to send different data streams in parallel. We aim to maximize the achievable sum-rate of all groups by optimizing the subcarrier-group mapping. We propose two low-complexity subcarrier grouping methods and show via simulation that they perform very close to the optimal grouping by exhaustive search. Simulation results also show the effectiveness of the proposed FMG-SC modulation scheme with optimized subcarrier grouping in improving the rate-PAPR trade-off over conventional OFDM and SC-FDE.Comment: Submitted for possible conference publicatio

    Advanced Algorithms for Satellite Communication Signal Processing

    Get PDF
    Dizertační práce je zaměřena na softwarově definované přijímače určené k úzkopásmové družicové komunikaci. Komunikační kanály družicových spojů zahrnujících komunikaci s hlubokým vesmírem jsou zatíženy vysokými úrovněmi šumu, typicky modelovaného AWGN, a silným Dopplerovým posuvem signálu způsobeným mimořádnou rychlostí pohybu objektu. Dizertační práce představuje možné postupy řešení výpočetně efektivní digitální downkonverze úzkopásmových signálů a systému odhadu kmitočtu nosné úzkopásmových signálů zatížených Dopplerovým posuvem v řádu násobků šířky pásma signálu. Popis navrhovaných algoritmů zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické hodnocení jejich chování. Algoritmy jsou modelovány v prostředí MATLAB Simulink a tyto modely jsou využity pro ověření vlastností simulacemi. Modely byly také využity k experimentálním testům na reálném signálu přijatém z družice PSAT v laboratoři experimentálních družic na ústavu radioelektroniky.The dissertation is focused on software defined receivers intended for narrowband satellite communication. The satellite communication channel including deep space communication suffers from a high level of noise, typically modeled by AWGN, and from a strong Doppler shift of a signal caused by the unprecedented speed of an object in motion. The dissertation shows possible approaches to the issues of computationally efficient digital downconversion of narrowband signals and the carrier frequency estimation of narrowband signals distorted by the Doppler shift in the order of multiples of the signal bandwidth. The description of the proposed algorithms includes an analytical approach of its development and, if possible, the analytical performance assessment. The algorithms are modeled in MATLAB Simulink and the models are used for validating the performance by the simulation. The models were also used for experimental tests on the real signal received from the PSAT satellite at the laboratory of experimental satellites at the department of radio electronics.
    corecore