197 research outputs found

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Advanced Symbolic Analysis Tools for Fault-Tolerant Integrated Distributed Systems

    Get PDF
    The project aims to develop advanced model-checking algorithms and tools to automate the verification of fault-tolerant distributed systems for avionics. We present a new method called Property-Directed K-Induction (PD-KIND) for synthesizing K-inductive invariants of state-transition systems. PD-KIND builds upon Satifiability Modulo Theories (SMT) to generalize Bradley's IC3 method and its variants. This method is implemented in a new tool called SALLY. Case studies show that PD-KIND can automatically verify fault-tolerant algorithms under a variety of fault models and that SALLY is competitive with other SMT-based model checkers

    Verified AIG Algorithms in ACL2

    Full text link
    And-Inverter Graphs (AIGs) are a popular way to represent Boolean functions (like circuits). AIG simplification algorithms can dramatically reduce an AIG, and play an important role in modern hardware verification tools like equivalence checkers. In practice, these tricky algorithms are implemented with optimized C or C++ routines with no guarantee of correctness. Meanwhile, many interactive theorem provers can now employ SAT or SMT solvers to automatically solve finite goals, but no theorem prover makes use of these advanced, AIG-based approaches. We have developed two ways to represent AIGs within the ACL2 theorem prover. One representation, Hons-AIGs, is especially convenient to use and reason about. The other, Aignet, is the opposite; it is styled after modern AIG packages and allows for efficient algorithms. We have implemented functions for converting between these representations, random vector simulation, conversion to CNF, etc., and developed reasoning strategies for verifying these algorithms. Aside from these contributions towards verifying AIG algorithms, this work has an immediate, practical benefit for ACL2 users who are using GL to bit-blast finite ACL2 theorems: they can now optionally trust an off-the-shelf SAT solver to carry out the proof, instead of using the built-in BDD package. Looking to the future, it is a first step toward implementing verified AIG simplification algorithms that might further improve GL performance.Comment: In Proceedings ACL2 2013, arXiv:1304.712
    • …
    corecore