8,737 research outputs found

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    Numerical modelling of the aerodynamic interference between helicopter and ground obstacles

    Get PDF
    Helicopters are frequently operating in confined areas where the complex flow fields that develop in windy conditions may result in dangerous situations. Tools to analyse the interaction between rotorcraft wakes and ground obstacles are therefore essential. This work, carried out within the activity of the GARTEUR Action Group 22 on “Forces on Obstacles in Rotor Wake”, attempts to assess numerical models for this problem. In particular, a helicopter operating in hover above a building as well as in its wake, one main rotor diameter above the ground, has been analysed. Recent tests conducted at Politecnico di Milano provide a basis for comparison with unsteady simulations performed, with and without wind. The helicopter rotor has been modelled using steady and unsteady actuator disk methods, as well as with fully resolved blade simulations. The results identify the most efficient aerodynamic model that captures the wakes interaction, so that real-time coupled simulations can be made possible. Previous studies have already proved that the wake superposition technique cannot guarantee accurate results if the helicopter is close to the obstacle. The validity of that conclusion has been further investigated in this work to determine the minimum distance between helicopter and building at which minimal wake interference occurs

    Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions

    Get PDF
    The prediction capabilities of unstructured primitive-variable and vorticity-transport-based Navier-Stokes solvers have been compared for rotorcraft-fuselage interaction. Their accuracies have been assessed using the NASA Langley ROBIN series of experiments. Correlation of steady pressure on the isolated fuselage delineates the differences between the viscous and inviscid solvers. The influence of the individual blade passage, model supports, and viscous effects on the unsteady pressure loading has been studied. Smoke visualization from the ROBIN experiment has been used to determine the ability of the codes to predict the wake geometry. The two computational methods are observed to provide similar results within the context of their physical assumptions and simplifications in the test configuration

    Applications on emerging paradigms in parallel computing

    Get PDF
    The area of computing is seeing parallelism increasingly being incorporated at various levels: from the lowest levels of vector processing units following Single Instruction Multiple Data (SIMD) processing, Simultaneous Multi-threading (SMT) architectures, and multi/many-cores with thread-level shared memory and SIMT parallelism, to the higher levels of distributed memory parallelism as in supercomputers and clusters, and scaling them to large distributed systems as server farms and clouds. All together these form a large hierarchy of parallelism. Developing high-performance parallel algorithms and efficient software tools, which make use of the available parallelism, is inevitable in order to harness the raw computational power these emerging systems have to offer. In the work presented in this thesis, we develop architecture-aware parallel techniques on such emerging paradigms in parallel computing, specifically, parallelism offered by the emerging multi- and many-core architectures, as well as the emerging area of cloud computing, to target large scientific applications. First, we develop efficient parallel algorithms to compute optimal pairwise alignments of genomic sequences on heterogeneous multi-core processors, and demonstrate them on the IBM Cell Broadband Engine. Then, we develop parallel techniques for scheduling all-pairs computations on heterogeneous systems, including clusters of Cell processors, and NVIDIA graphics processors. We compare the performance of our strategies on Cell, GPU and Intel Nehalem multi-core processors. Further, we apply our algorithms to specific applications taken from the areas of systems biology, fluid dynamics and materials science: pairwise Mutual Information computations for reconstruction of gene regulatory networks; pairwise Lp-norm distance computations for coherent structures discovery in the design of flapping-wing Micro Air Vehicles, and construction of stochastic models for a set of properties of heterogeneous materials. Lastly, in the area of cloud computing, we propose and develop an abstract framework to enable computations in parallel on large tree structures, to facilitate easy development of a class of scientific applications based on trees. Our framework, in the style of Google\u27s MapReduce paradigm, is based on two generic user-defined functions through which a user writes an application. We implement our framework as a generic programming library for a large cluster of homogeneous multi-core processor, and demonstrate its applicability through two applications: all-k-nearest neighbors computations, and Fast Multipole Method (FMM) based simulations

    Optimal Propulsion System Design for a Micro Quad Rotor

    Get PDF
    Currently a 50 gram micro quad rotor vehicle is being developed in collaboration with Daedalus Flight Systems. Optimization of the design at this scale requires a systematic study to be carried out to investigate the factors that affect the vehicles performance. Endurance of hovering vehicles at this scale is severely limited by the low efficiencies of their propulsion systems and rotor design and optimization has been performed in the past in an attempt to increase endurance, but proper coupling of the rotor with the motor has been lacking. The current study chose to investigate the factors that had the greatest effect on the vehicle's endurance through analysis of the propulsion system. Therefore, a coupled aerodynamic and structural analysis was carried out that incorporated low Reynolds number airfoil table lookup in order to predict micro rotor performance. A parametric study on rotor design was performed further determine the effect of different rotor designs on hover performance. The experiments performed showed that airfoil camber had the biggest impact on rotor efficiency and other factors such as leading edge shape, number of blades, max camber location, and blade planform taper only had negligible influence on performance. Systematic studies of the interactions between micro rotor blades operating in close proximity to each other were performed in order to determine the changes in rotor efficiency that might occur in a compact quad rotor design. Tests done on the effect of rotor separation demonstrated that there is a negligible interaction between rotors operating near each other. Brushless motors were also tested systematically and characterized by their torque, rpm, and efficiency. It was found that the maximum efficiency of the motors tested was only 60%, which has significant effects on the efficiency of the coupled system. A method for rotor and motor coupling was also established that utilized the motor efficiency curves and the known torque and rotational speed of the rotors at their operating thrust. Through this, it was found that propulsion system efficiency could be increased by 10% by simply using the proper motor and rotor combination. Further, coupled design would have additional benefits and could increase vehicle efficiency further

    Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows

    Get PDF
    This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    CFD Analysis of a Slatted UH-60 Rotor in Hover

    Get PDF
    The effect of leading-edge slats (LE) on the performance of a UH-60A rotor in hover was studied using the OverTURNS CFD solver. The objective of the study was to quantify the effect of LE slats on the hover stall boundary and analyze the reasons for any potential improvement/penalty. CFD predictions of 2-D slatted airfoil aerodynamics were validated against available wind tunnel measurements for steady angle of attack variations. The 3-D CFD framework was validated by comparing predictions for the baseline UH-60A rotor against available experimental values. Subsequent computations were performed on a slatted UH-60A rotor blade with a 40\%-span slatted airfoil section and two different slat configurations. The effect of the slat root and tip vortices as they convect over the main blade element was captured using appropriately refined main element meshes and their impact on the slatted rotor performance was analyzed. It was found that the accurate capture of the slat root and tip vortices using the refined meshes made a significant difference to the performance predictions for the slatted rotors. The calculations were performed over a range of thrust values and it was observed that the slatted rotor incurred a slight performance penalty at lower thrust and was comparable to the baseline rotor at higher thrust conditions. It was also found that shock induced separation near the blade tip was the limiting factor for the baseline UH-60 rotor in hover, causing an increase in rotor power and resulting in a reduction of figure of merit for the baseline rotor at higher thrust values. The shock induced separation occured outboard of the slat tip and therefore limited the performance of the slatted rotors as well. Overall, the study provides useful insights into effects of leading edge slats on rotor hover performance, aerodynamics and wake behavior

    Modeling and Simulation of Coaxial Helicopter Rotor Aerodynamics

    Get PDF
    A framework is developed for the computational fluid dynamics (CFD) analyses of a series of helicopter rotor flowfields in hover and in forward flight. The methodology is based on the unsteady solutions of the three-dimensional, compressible Navier-Stokes equations recast in a rotating frame of reference. The simulations are carried out by solving the developed mathematical model on hybrid meshes that aim to optimally exploit the benefits of both the structured and the unstructured grids around complex configurations. The computer code is prepared for parallel processing with distributed memory utilization in order to significantly reduce the computational time and the memory requirements. The developed model and the simulation methodology are validated for single-rotor-in-hover flowfields by comparing the present results with the published experimental data. The predictive merit of different turbulence models for complex helicopter aerodynamics are tested extensively. All but the κ-ω and LES results demonstrate acceptable agreement with the experimental data. It was deemed best to use the one-equation Spalart-Allmaras turbulence model for the subsequent rotor flowfield computations. First, the flowfield around a single rotor in forward flight is simulated. These time—accurate computations help to analyze an adverse effect of increasing the forward flight speed. A dissymmetry of the lift on the advancing and the retreating blades is observed for six different advance ratios. Since the coaxial rotor is proposed to mitigate the dissymmetry, it is selected as the next logical step of the present investigation. The time—accurate simulations are successfully obtained for the flowfields generated by first a hovering then a forward-flying coaxial rotor. The results for the coaxial rotor in forward flight verify the aerodynamic balance proposed by the previously published advancing blade concept. The final set of analyses aims to investigate if the gap between the two rotors of the coaxial configuration has any significant effect on the generated forces. The present results indicate either little or no such effect on the lift
    corecore