1,219 research outputs found

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing

    Bayesian Model Choice of Grouped t-copula

    Full text link
    One of the most popular copulas for modeling dependence structures is t-copula. Recently the grouped t-copula was generalized to allow each group to have one member only, so that a priori grouping is not required and the dependence modeling is more flexible. This paper describes a Markov chain Monte Carlo (MCMC) method under the Bayesian inference framework for estimating and choosing t-copula models. Using historical data of foreign exchange (FX) rates as a case study, we found that Bayesian model choice criteria overwhelmingly favor the generalized t-copula. In addition, all the criteria also agree on the second most likely model and these inferences are all consistent with classical likelihood ratio tests. Finally, we demonstrate the impact of model choice on the conditional Value-at-Risk for portfolios of six major FX rates

    Price Calibration of basket default swap: Evidence from Japanese market

    Get PDF
    The aim of this paper is the price calibration of basket default swap from Japanese market data. The value of this instruments depend on the number of factors including credit rating of the obligors in the basket, recovery rates, intensity of default, basket size and the correlation of obligors in the basket. A fundamental part of the pricing framework is the estimation of the instantaneous default probabilities for each obligor. Because default probabilities depend on the credit quality of the considered obligor, well-calibrated credit curves are a main ingredient for constructing default times. The calibration of credit curves take into account internal information on credit migrations and default history. We refer to Japan Credit Rating Agency to obtain rating transition matrix and cumulative default rates. Default risk is often considered as a rare-event and then, many studies have shown that many distributions have fatter tails than those captured by the normal distribution. Subsequently, the choice of copula and the choice of procedures for rare-event simulation govern the pricing of basket credit derivatives. Joshi and Kainth (2004) introduced an Importance Sampling technique for rare-event that forces a predetermined number of defaults to occur on each path. We consider using Gaussian copula and t-student copula and study their impact on basket credit derivative prices. We will present an application of the Canonical Maximum Likelihood Method (CML) for calibrating t-student copula to Japanese market data.Basket Default Swaps, Credit Curve, Monte Carlo method, Gaussian copula, t-student copula, Japanese market data, CML, Importance Sampling

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing.Dependence structure, Extremal values, Copula modeling, Copula review

    Upside and Downside Risk Exposures of Currency Carry Trades via Tail Dependence

    Full text link
    Currency carry trade is the investment strategy that involves selling low interest rate currencies in order to purchase higher interest rate currencies, thus profiting from the interest rate differentials. This is a well known financial puzzle to explain, since assuming foreign exchange risk is uninhibited and the markets have rational risk-neutral investors, then one would not expect profits from such strategies. That is, according to uncovered interest rate parity (UIP), changes in the related exchange rates should offset the potential to profit from such interest rate differentials. However, it has been shown empirically, that investors can earn profits on average by borrowing in a country with a lower interest rate, exchanging for foreign currency, and investing in a foreign country with a higher interest rate, whilst allowing for any losses from exchanging back to their domestic currency at maturity. This paper explores the financial risk that trading strategies seeking to exploit a violation of the UIP condition are exposed to with respect to multivariate tail dependence present in both the funding and investment currency baskets. It will outline in what contexts these portfolio risk exposures will benefit accumulated portfolio returns and under what conditions such tail exposures will reduce portfolio returns.Comment: arXiv admin note: substantial text overlap with arXiv:1303.431

    CDO and HAC

    Get PDF
    Modelling portfolio credit risk is one of the crucial challenges faced by financial services industry in the last few years. We propose the valuation model of collateralized debt obligations (CDO) based on copula functions with up to three parameters, with default intensities estimated from market data and with a random loss given default that is correlated with default times. The methods presented are used to reproduce the spreads of the iTraxx Europe tranches. We apply hierarchical Archimedean copulae (HAC) whose construction allows for the fact that the risky assets of the CDO pool are chosen from six different industry sectors. The dependence among the assets from the same group is specified with the higher value of the copula parameter, otherwise the lower value of the parameter is ascribed. The copula with two and three parameters models the relation between the loss given default and the default times. Our approach describes the market prices better than the standard pricing procedure based on the Gaussian distribution.CDO, CDS, multivariate distributions, Copulae, correlation smile, loss given default
    • 

    corecore