One of the most popular copulas for modeling dependence structures is
t-copula. Recently the grouped t-copula was generalized to allow each group to
have one member only, so that a priori grouping is not required and the
dependence modeling is more flexible. This paper describes a Markov chain Monte
Carlo (MCMC) method under the Bayesian inference framework for estimating and
choosing t-copula models. Using historical data of foreign exchange (FX) rates
as a case study, we found that Bayesian model choice criteria overwhelmingly
favor the generalized t-copula. In addition, all the criteria also agree on the
second most likely model and these inferences are all consistent with classical
likelihood ratio tests. Finally, we demonstrate the impact of model choice on
the conditional Value-at-Risk for portfolios of six major FX rates