436 research outputs found

    Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes

    Full text link
    A successive cancellation (SC) decoder with inactivations is proposed as an efficient implementation of SC list (SCL) decoding over the binary erasure channel. The proposed decoder assigns a dummy variable to an information bit whenever it is erased during SC decoding and continues with decoding. Inactivated bits are resolved using information gathered from decoding frozen bits. This decoder leverages the structure of the Hadamard matrix, but can be applied to any linear code by representing it as a polar code with dynamic frozen bits. SCL decoders are partially characterized using density evolution to compute the average number of inactivations required to achieve the maximum a-posteriori decoding performance. The proposed measure quantifies the performance vs. complexity trade-off and provides new insight into dynamics of the number of paths in SCL decoding. The technique is applied to analyze Reed-Muller (RM) codes with dynamic frozen bits. It is shown that these modified RM codes perform close to extended BCH codes.Comment: Accepted at the 2020 ISI

    Efficiently decoding Reed-Muller codes from random errors

    Full text link
    Reed-Muller codes encode an mm-variate polynomial of degree rr by evaluating it on all points in {0,1}m\{0,1\}^m. We denote this code by RM(m,r)RM(m,r). The minimal distance of RM(m,r)RM(m,r) is 2mr2^{m-r} and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this work we give an efficient algorithm (in the block length n=2mn=2^m) for decoding random errors in Reed-Muller codes far beyond the minimal distance. Specifically, for low rate codes (of degree r=o(m)r=o(\sqrt{m})) we can correct a random set of (1/2o(1))n(1/2-o(1))n errors with high probability. For high rate codes (of degree mrm-r for r=o(m/logm)r=o(\sqrt{m/\log m})), we can correct roughly mr/2m^{r/2} errors. More generally, for any integer rr, our algorithm can correct any error pattern in RM(m,m(2r+2))RM(m,m-(2r+2)) for which the same erasure pattern can be corrected in RM(m,m(r+1))RM(m,m-(r+1)). The results above are obtained by applying recent results of Abbe, Shpilka and Wigderson (STOC, 2015), Kumar and Pfister (2015) and Kudekar et al. (2015) regarding the ability of Reed-Muller codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding Reed-Muller codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the famous Berlekamp-Welch algorithm for decoding Reed-Solomon codes.Comment: 18 pages, 2 figure

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Magic state distillation with punctured polar codes

    Get PDF
    We present a scheme for magic state distillation using punctured polar codes. Our results build on some recent work by Bardet et al. (ISIT, 2016) who discovered that polar codes can be described algebraically as decreasing monomial codes. Using this powerful framework, we construct tri-orthogonal quantum codes (Bravyi et al., PRA, 2012) that can be used to distill magic states for the TT gate. An advantage of these codes is that they permit the use of the successive cancellation decoder whose time complexity scales as O(Nlog(N))O(N\log(N)). We supplement this with numerical simulations for the erasure channel and dephasing channel. We obtain estimates for the dimensions and error rates for the resulting codes for block sizes up to 2202^{20} for the erasure channel and 2162^{16} for the dephasing channel. The dimension of the triply-even codes we obtain is shown to scale like O(N0.8)O(N^{0.8}) for the binary erasure channel at noise rate 0.010.01 and O(N0.84)O(N^{0.84}) for the dephasing channel at noise rate 0.0010.001. The corresponding bit error rates drop to roughly 8×10288\times10^{-28} for the erasure channel and 7×10157 \times 10^{-15} for the dephasing channel respectively.Comment: 18 pages, 4 figure

    From Polar to Reed-Muller Codes: a Technique to Improve the Finite-Length Performance

    Full text link
    We explore the relationship between polar and RM codes and we describe a coding scheme which improves upon the performance of the standard polar code at practical block lengths. Our starting point is the experimental observation that RM codes have a smaller error probability than polar codes under MAP decoding. This motivates us to introduce a family of codes that "interpolates" between RM and polar codes, call this family Cinter={Cα:α[0,1]}{\mathcal C}_{\rm inter} = \{C_{\alpha} : \alpha \in [0, 1]\}, where Cαα=1C_{\alpha} \big |_{\alpha = 1} is the original polar code, and Cαα=0C_{\alpha} \big |_{\alpha = 0} is an RM code. Based on numerical observations, we remark that the error probability under MAP decoding is an increasing function of α\alpha. MAP decoding has in general exponential complexity, but empirically the performance of polar codes at finite block lengths is boosted by moving along the family Cinter{\mathcal C}_{\rm inter} even under low-complexity decoding schemes such as, for instance, belief propagation or successive cancellation list decoder. We demonstrate the performance gain via numerical simulations for transmission over the erasure channel as well as the Gaussian channel.Comment: 8 pages, 7 figures, in IEEE Transactions on Communications, 2014 and in ISIT'1

    Polar Codes with Dynamic Frozen Symbols and Their Decoding by Directed Search

    Full text link
    A novel construction of polar codes with dynamic frozen symbols is proposed. The proposed codes are subcodes of extended BCH codes, which ensure sufficiently high minimum distance. Furthermore, a decoding algorithm is proposed, which employs estimates of the not-yet-processed bit channel error probabilities to perform directed search in code tree, reducing thus the total number of iterations.Comment: Accepted to ITW201

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<Sd < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than S|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure
    corecore