278 research outputs found

    Sufficient condition for ephemeral key-leakage resilient tripartite key exchange

    Get PDF
    17th Australasian Conference on Information Security and Privacy, ACISP 2012; Wollongong, NSW; Australia; 9 July 2012 through 11 July 2012Tripartite (Diffie-Hellman) Key Exchange (3KE), introduced by Joux (ANTS-IV 2000), represents today the only known class of group key exchange protocols, in which computation of unauthenticated session keys requires one round and proceeds with minimal computation and communication overhead. The first one-round authenticated 3KE version that preserved the unique efficiency properties of the original protocol and strengthened its security towards resilience against leakage of ephemeral (session-dependent) secrets was proposed recently by Manulis, Suzuki, and Ustaoglu (ICISC 2009). In this work we explore sufficient conditions for building such protocols. We define a set of admissible polynomials and show how their construction generically implies 3KE protocols with the desired security and efficiency properties. Our result generalizes the previous 3KE protocol and gives rise to many new authenticated constructions, all of which enjoy forward secrecy and resilience to ephemeral key-leakage under the gap Bilinear Diffie-Hellman assumption in the random oracle model. © 2012 Springer-Verlag

    Review on Leakage Resilient Key Exchange Security Model

    Get PDF
    In leakage resilient cryptography, leakage resilient key exchange protocols are constructed to defend against leakage attacks. Then, the key exchange protocol is proved with leakage resilient security model to determine whether its security proof can provide the security properties it claimed or to find out any unexamined flaw during protocol building. It is an interesting work to review the meaningful security properties provided by these security models. This work review how a leakage resilient security model for a key exchange protocol has been evolved over years according to the increasing security requirement which covers a different range of attacks. The relationship on how an adversary capability in the leakage resilient security model can be related to real-world attack scenarios is studied. The analysis work for each leakage resilient security model here enables a better knowledge on how an adversary query addresses different leakage attacks setting, thereby understand the motive of design for a cryptographic primitive in the security model

    On the Relations Between Diffie-Hellman and ID-Based Key Agreement from Pairings

    Get PDF
    This paper studies the relationships between the traditional Diffie-Hellman key agreement protocol and the identity-based (ID-based) key agreement protocol from pairings. For the Sakai-Ohgishi-Kasahara (SOK) ID-based key construction, we show that identical to the Diffie-Hellman protocol, the SOK key agreement protocol also has three variants, namely \emph{ephemeral}, \emph{semi-static} and \emph{static} versions. Upon this, we build solid relations between authenticated Diffie-Hellman (Auth-DH) protocols and ID-based authenticated key agreement (IB-AK) protocols, whereby we present two \emph{substitution rules} for this two types of protocols. The rules enable a conversion between the two types of protocols. In particular, we obtain the \emph{real} ID-based version of the well-known MQV (and HMQV) protocol. Similarly, for the Sakai-Kasahara (SK) key construction, we show that the key transport protocol underlining the SK ID-based encryption scheme (which we call the "SK protocol") has its non-ID counterpart, namely the Hughes protocol. Based on this observation, we establish relations between corresponding ID-based and non-ID-based protocols. In particular, we propose a highly enhanced version of the McCullagh-Barreto protocol

    Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS (extended version)

    Get PDF
    Updated (extended) and corrected version; see "Errata" and "Revisions" in the appendix for a summary of changes.LaMacchia, Lauter and Mityagin recently presented a strong security definition for authenticated key agreement strengthening the well-known Canetti-Krawczyk definition. They also described a protocol, called NAXOS, that enjoys a simple security proof in the new model. Compared to MQV and HMQV, NAXOS is less efficient and cannot be readily modified to obtain a one-pass protocol. On the other hand MQV does not have a security proof, and the HMQV security proof is extremely complicated. This paper proposes a new authenticated key agreement protocol, called CMQV (`Combined' MQV), which incorporates design principles from MQV, HMQV and NAXOS. The new protocol achieves the efficiency of HMQV and admits a natural one-pass variant. Moreover, we present a simple and intuitive proof that CMQV is secure in the LaMacchia-Lauter-Mityagin model

    Efficient key exchange with tight security reduction

    Get PDF
    In this paper, we propose two authenticated key exchange (AKE) protocols, SMEN and SMEN−, which have efficient online computation and tight security proof in the extended Canetti-Krawczyk (eCK) model. SMEN takes 1.25 exponentiations in online computation, close to that (1.17 exponentiations) of the most efficient AKEs MQV and its variants HMQV and CMQV. SMEN has a security reduction as tight as that of NAXOS, which is the first AKE having a tight security reduction in the eCK model. As a comparison, MQV does not have a security proof; both HMQV and CMQV have a highly non-tight security reduction, and HMQV needs a non-standard assumption; NAXOS takes 2.17 exponentiations in online computation; NETS, a NAXOS variant, takes two online exponentiations in online computation. SMEN simultaneously achieves online efficiency and a tight security proof at a cost of 0.17 more exponentiations in offline computation and the restriction that one party is not allowed to establish a key with itself. SMEN− takes 1.29 exponentiations in online computation, but SMEN− does not use the static private key to compute the ephemeral public key (as does in SMEN, NAXOS, CMQV, and NETS), and hence reduces the risk of leaking the static private key

    A new construction for linkable secret handshake

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing
    corecore