
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

4-2020

A new construction for linkable secret handshake A new construction for linkable secret handshake

Yangguang TIAN
Singapore Management University, ygtian@smu.edu.sg

Yingjiu LI

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Nan LI

Guomin YANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
1

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/335609921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yangguang TIAN, Yingjiu LI, Robert H. DENG, Nan LI, Guomin YANG, and Zheng YANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5304

https://ink.library.smu.edu.sg/sis_research/5304

A New Construction for Linkable
Secret Handshake

Yangguang Tian1, Yingjiu Li1, Robert H. Deng1, Nan Li2,
Guomin Yang3 and Zheng Yang∗4

1School of Information Systems, Singapore Management University, Singapore
2School of Electrical Engineering and Computing, University of Newcastle, Australia

3School of Computing and Information Technology, University of Wollongong, Australia
4Information Systems Technology and Design, Singapore University of Technology and

Design, Singapore

Email: zheng−yang@sutd.edu.sg

In this paper, we introduce a new construction for linkable secret handshake that
allows authenticated users to perform handshake anonymously within an allowable
times. We define formal security models for the new construction, and prove
that it can achieve session key security, anonymity, untraceability and linkable
affiliation hiding. In particular, the proposed construction ensures that: 1) anyone
can trace the real identities of dishonest users who perform handshakes for more
than k times; and 2) an optimal communication cost between authorized users is

achieved by exploiting the proof of knowledges.

Keywords: Linkable Secret Handshake, Anonymity, Public Tracing, Communication Cost

1. INTRODUCTION

Secret handshake (SH) [1] is an important privacy-
enhancing technique, and has been recommended by
some standardized cryptographic protocols, such as
TLS and IKE [2]. Specifically, SH allows authorized
users of the same organization to establish a shared key
in an anonymous manner, and the only information
they are able to know is the peer belongs to the
same organization (i.e., membership). To ensure that
authorized users authenticate each other’s membership
simultaneously, the shared key must be derived from a
credential (or group token), which is issued by the same
authority of the organization.

There are two types of SH based on the usage
of credentials: linkable and unlinkable. Linkable
SH (LSH) means that an authorized user performs
multiple handshakes using the same credential. In
particular, user’s anonymity remains secure even if
multiple handshakes from the same user can be linked.
While the unlinkable SH may assume that an authorized
user is given a set of (one-time) credentials and
each credential is supposed to be used once for each
handshake. The unlinkable SH from one-time credential
can easily guarantee that multiple handshakes from the
same user cannot be linked, however, it is unscalable
(e.g., a user may easily deplete her credentials). In
this work, we focus on LSH [3, 4, 5, 6, 7, 8], which
is particularly useful if authorized users wish to be
recognized across different handshake sessions.

The LSH protocols can be further investigated. First,

the credential issuer is given too much power as the
revocation is totally controlled by him (i.e., he can
arbitrarily revoke anonymity). By contrast, public
traceability is a desirable property [9], which is required
in many anonymous authentication systems such as e-
cash [10] and cryptocurrencies [11]. For example, e-
cash scheme allows one to trace a cheating user (or
double-spender) without help from the credential issuer.
Second, while reusing the credentials is desired [12],
none of LSH protocols was ever considered the issue
of restricting the issued credentials. Third, an optimal
communication overhead (or bandwidth) is essential
in real-time communication applications as it will
determine the execution time between authorized users
[8]. Therefore, the main goal of this work is to design
a linkable SH with a k-time reusable credential (kLSH)
while achieving optimal communication overhead. In
particular, user’s anonymity will be publicly revoked if
her credential is used beyond k times.

The kLSH can be applied to various collaborative
and group-based applications, such as ad-hoc mobile
networks. Let us consider an intelligent transport
system where a number of users wish to share real-
time traffic information (or path optimization) among
themselves. First, each user obtains a credential from
a group authority after paying a registration fee that is
proportional to k. Later, the mobile users can form ad-
hoc groups using the k-time credential, and exchange
the relevant traffic information between them. Such
transportation system enjoys the security and privacy
guarantees as the LSH protocol provided. In addition,

The Computer Journal, Vol. ??, No. ??, ????

Published in Computer Journal, 2020 April, 63 (4), 536-548.
https://doi.org/10.1093/comjnl/bxz095

2 1 INTRODUCTION

it can detect any dishonest user who tries to misuse
the k-time credential and continues to form a group
without topping up. Furthermore, the kLSH can also be
implemented in the information-sharing scenarios, such
as covert communications [13] and flow watermarks
[14]. Specifically, the kLSH can provide an enhanced
security/privacy guarantee to the existing end-to-end
communications in the internet.

Our contributions. The main contributions of this
work are summarized as follows.

• New Construction. We propose a new kLSH
construction for linkable secret handshakes such that
anyone is able to trace a dishonest user who uses her
credential beyond the allowed number of times.

• Communication Cost. The proposed kLSH achieves
an optimal communication cost between authorized
users through a variant of the proof of equality of
two discrete logarithms [15]. Optimal means that
a minimal communication cost is achieved to meet
our design goal, which will be shown in the efficiency
analysis.

• Security Models. We present the formal security
definition for linkable secret handshakes with
public tracing. We prove that the proposed
kLSH can achieve session key security, anonymity,
untraceability and linkable affiliation-hiding.

Overview of Techniques. We now explain our key
technical issues. First, to ensure untraceability against
credential issuer (or group authority) [16, 6, 7], we use a
blind signature scheme proposed in [10], which is a blind
version of Schnorr signature scheme [17]. The derived
message-signature pair (m, s) after registration has the
following features: 1) the signature generation requires
the involvement of both user and group authority (i.e.,
neither user nor group authority have exclusive control
over the generation of s); 2) the message m implicitly
includes user’s public key pk, so the user must use
the correct secret key sk when performing handshakes
between authorized users (due to the unforgeability of
blind signature scheme); and 3) the signature s acts
as a secret credential which is later used to derive a
shared session key between authorized users. Once
a user outputs a message-signature pair (m, s), the
registration terminates. Thus, the message-signature
pair can be regarded as public pseudonym id and secret
credential id.cred of an authorized user. We stress that
group authority cannot link user’s public pseudonym id
to her real public key pk due to the blindness of blind
signature scheme.

Second, a shared session key is established between
authorized users after a successful handshake. In
particular, the generation of session key is based on the
implicitly authenticated key exchange such as HMQV
protocol (see Section 3.4). Specifically, if a user i
later receives a message together with a MAC tag that

verifies with respect to the key generated from the
session, then user i is assured that the MAC tag must
have been generated by another authorized user j (with
pseudonym idj) who is also registered to the same group
authority. Since the public pseudonym idi and secret
credential idi.cred pair can be regarded as long-term
public/secret key pair (gsi , si), the correctness of session
key via the HMQV protocol is held.

Moreover, we use Shamir’s secret sharing scheme to
ensure k-time (untraceable) handshakes. The secret to
be shared is a blind factor x (not user’s secret key sk)
which was used in the generation of blind signature.
Two types of insider attacks needed to be addressed:
1) user i uses the incorrect secret for sharing; or 2) user
i uses the inconsistent secret shares (denote one secret
share as f(x)) in a handshake session. We use user i and
user j as an example to illustrate. In the first case, we
let user j verify user i’s secret shares by inputting user
i’s public pseudonym idi for each handshake session.
So user i must use the correct x for secret sharing due
to the unforgeability of blind signature (i.e., gx is also
included in the pseudonym idi). For the second case,
we use the proof of equality of discrete logarithms [18]
to ensure the consistency of secret shares. That is, user
i should not only release her shares but also provide a
proof of correctness for each share released. We note
that multiple handshake sessions from the same user
can be linked, but her real public key (or identity) pk

cannot be traced/identified within k-time handshakes.
Third, to trace a dishonest user (e.g., user i) who

uses the secret credential id.cred beyond k times, we
let user i release the share gf(x) instead of the exponent
f(x), then user j can reconstruct the secret gx if k+1
related shares {gf(x)} are accumulated. As a result,
a dishonest user i’s real public key can be identified
by using the bilinear maps. That is, user i’s public
key pki is linked to her pseudonym idi. We stress
that the bilinear maps is solely used for public tracing,
and all security guarantees we considered in this work
remain secure under the bilinear map due to the SXDH
assumption (see Section 3.1).

1.1. Related Work

Key Exchange. Burmester and Desmedt (BD)
[19] introduced several key exchange protocols in the
multi-party setting, including star-based, tree-based,
broadcast-based and cyclic-based protocols. Later, a
few generic transformations [20, 21] were proposed to
convert passive-secure group key exchange protocols
into active-secure ones. On the security models for
key exchange protocols, Bellare and Rogaway [22]
introduced the first complexity-theoretic security model
for key exchange in the symmetric-key setting. Canetti
and Krawczyk [23] later proposed a new model, known
as the CK model, which is widely used in the analysis
of many well-known key exchange protocols. Some
variants [24, 25, 26] of CK model have also been

3

proposed to allow the adversary to obtain either long-
term secret key or ephemeral secret key of the challenge
session.

Secret Handshakes. Balfanz et al. [1] introduced
the concept of secret handshake that allows any users
in the same group to generate a shared value secretly
using the long-term credential approach. Afterwards,
Castelluccia et al. [3] constructed a more efficient
scheme under the standard computational Diffie-
Hellman assumption. Both schemes did not provide the
unlinkability property. Then, Xu and Yung [2] provided
an unlinkable scheme with a weaker anonymity: k-
anonymity (including k-unlinkability). That is, an
adversary can infer that a session participant is one out
of certain k users in the worst case.

For achieving the full anonymity, Jarecki et al.
[4] proposed two group secret handshake protocols
using BD protocol [19]. In particular, their second
construction can achieve full unlinkability using a
one-time credential. To prevent any dishonest user
from misusing the one-time credential, Tian et al.
[27] proposed a k-time unlinkable secret handshake
protocol. Specifically, the proposed solution achieves
full unlinkability based on a k-size one-time credentials
set, but the group authority is fully trusted.

The untraceablility against group authority is an-
other privacy guarantee required in secret handshakes.
Kawai et al. [16] split the group authority into (non-
colluding) authorities: one is responsible for registra-
tion and issuing credential, the other is responsible for
tracing users based on protocol transcript. Meanwhile,
Manulis et al. [6] addressed the issue of untraceability
against a group authority. Specifically, they use blinded
RSA signature scheme at Add (or register) stage, and
their solution is based on the construction in [5]. Sim-
ilarly, Manulis et al. [7] proposed a discrete-logarithm
based construction, and used the blinded Schnorr sig-
nature to tackle a group authority.

An independent research line was considering a
practical application, where each user has multiple
membership credentials (i.e., group discovery). In
particular, the linkable secret handshake proposed
by Manulis and Pottering [8] has a log-linear time
complexity O(n · logn) (where n is the number of
group affiliations per user), in contrast to the existing
solutions with linear complexity [28, 29]. It is claimed
to be suitable for resources-constraint devices, but
the expensive operations involved in the handshake
algorithm, since the underlying non-interactive key
distribution scheme is based on pairings.

To highlight our distinction, we compare our
construction with some existing linkable/unlinkable
secret handshake protocols in Table 1: it shows that
our proposed construction has session key security
with forward secrecy, anonymity against insiders,
untraceability against group authority, public tracing
and linkable affiliation-hiding. We stress that the

proposed construction can be regarded as a step forward
from linkable secret handshakes [5, 6, 7, 8] in a single
group setting.

2. SECURITY MODEL

In this section, we present the security models
for linkable secret handshakes. As mentioned in
the introduction, a secure linkable secret handshake
protocol should achieve session key security, anonymity,
untraceability and linkable affiliation hiding.

States. We define a system user set U with n users,
i.e. |U| = n. We say an instance oracle Πi

id (e.g.,
session i of user id) may be used or unused, and a
user has unlimited number of instances called oracles.
The oracle is considered as unused if it has never been
initialized. Each unused oracle Πi

id can be initialized
with a secret key sk. The oracle is initialized as soon
as it becomes part of a group. After the initialization
the oracle is marked as used and turns into the stand-
by state where it waits for an invocation to execute
a protocol operation. Upon receiving such invocation
the oracle Πi

id learns its partner id pidiid and turns
into a processing state where it sends, receives and
processes messages according to the description of
the protocol. During that stage, the internal state
information stateiid is maintained by the oracle. The
oracle Πi

id remains in the processing state until it
collects enough information to compute the session
key SKi

id. As soon as SKi
id is computed Πi

id accepts
and terminates the protocol execution meaning that
it would not send or receive further messages. If the
protocol execution fails then Πi

id terminates without
having accepted. We assume that each user can only
sequentially execute the protocol (i.e., a new session of
a user is activated if and only if the last session of that
user is terminated).

Partnering. We denote the i-th session of a user id
by Πi

id. Let the partner identifier pidiid include the
identities of participating users (including id) in the
i-th session of user with the condition that ∀idj ∈
pidiid. In other words, pidiid is a collection of recognized
participants by the instance oracle Πi

id. Note that the
recognized participants mean that authorized users are
communicating with user at some sessions. We also
define sidiid as the unique session identifier belonging to
user pk of session i. Specifically, sidiid = {mj}nj=1, where
mj ∈ {0, 1}∗ is the message transcript among users in

pidiid. We say two instance oracles Πi
id and Πj

id′ are

partners if and only if pidiid = pidjid′ and sidiid = sidjid′ .

2.1. System Model

A linkable secret handshake protocol consists of the
following algorithms:

• Setup: A group authority (GA) takes security
parameter λ as input, outputs a master public/secret

4 2 SECURITY MODEL

Scheme LIN AKE LAH UT HEA ECC TR

XY [2] × × X × × × ×
JKT [5] X X X × × × ×
MPT [6] X X X X × × ×
MPT [7] X X X X × X ×
MP [8] X X X × X X ×
TZYMY [27] × X × × X X X
Ours X X X X × X X

TABLE 1. The comparison between different functionality of linkable/unlinkable secret handshake protocols. LIN means
linkable SH. AKE means the session key security that includes forward secrecy. LAH means the linkable affiliation hiding
(i.e., group membership is hidden from outsiders). UT means untraceable towards an untrusted group authority. HEA means
the handshake algorithm involves expensive operations (e.g., pairing). ECC means the protocol supports ECC group setting
w.r.t. bandwidth complexity. TR means tracing any dishonest user in public.

key pair (msk, mpk). The GA indicates an untrusted
authority in this work.

• KeyGen: A user takes master public key mpk as input,
outputs a secret/public key pair (sk, pk). GA outputs
an empty pseudonym revocation list L.

• Register: This is an interactive algorithm that
executed between a user and the GA. It takes the
master secret key msk and a public key pk of one
user as input, outputs a public pseudonym and secret
credential pair (id, id.cred) on pk. Note that the user
will become an authorized user after registration, and
the interaction between a user and the TA is assumed
to be authentic.

• Handshake: This is an interactive algorithm that
executed by authorized users. Each user takes her
secret key sk, her credential id.cred, the master
public key mpk and L as input, outputs a shared
secret key SK if and only if her counterparts are non-
revoked and authorized users.

• Tracing: The algorithm takes two handshake
transcripts of one user as input, outputs user’s public
key pk. GA updates the pseudonym revocation list L
by adding a pseudonym id associated with pk.

2.2. Session Key Security

We define the session key security model for LSH
protocols, in which each user obtains a credential
associated with her public key from GA, and establishes
a session key using the given credential. The model is
defined via a game between a probabilistic polynomial
time (PPT) adversary A and a simulator S (i.e.,
challenger). A is an active attacker with full control
of the communication channel among all the users.

• Setup: S first generates a master public/secret key
pair (mpk, msk) for GA and long-term secret/public
key pairs {(ski, pki)}ni=1 for n users by running
the corresponding KeyGen algorithms. In addi-
tion, S generates pseudonym and credential pairs
{idj , idj .cred}nj=1 for all authorized users by running

the Register algorithms. Eventually, S returns all
users’ long-term public key and pseudonym to A. S
also tosses a random coin b which will be used later
in the game.

• Training: A can make the following queries in
arbitrary sequence to S.

– Establish: A is allowed to register a user with public
key pk′i and pseudonym id′i (id′i cannot be identical
to any existing identities). If a user is registered by
A, then we call this user as dishonest ; Otherwise,
it is honest.

– Send: If A issues a send query in the form of
(id, i,m) to simulate a network message for the
i-th session of user id, then S would simulate
the reaction of instance oracle Πi

id upon receiving
message m, and return to A the response that Πi

id

would generate; IfA issues a send query in the form
of (id,′ start′), then S creates a new instance oracle
Πi
id and returns to A the first protocol message.

– Session key reveal: A can issue a session key reveal
query to an accepted instance oracle Πi

id. If the
session is accepted, then S returns the session key
to A; Otherwise, a special symbol ‘⊥’ is returned
to A.

– Ephemeral secret key reveal: If A issues an
ephemeral secret key reveal query to (possibly
unaccepted) instance oracle Πi

id, then S returns
all ephemeral secret values contained in Πi

id at the
moment the query is asked.

– Long-term secret key reveal: If A issues a long-term
secret key reveal query to user i, then S returns
the long-term secret key ski to A.

– Long-term secret credential reveal: If A issues a
long-term secret credential reveal query to user i,
then S returns the secret credential idi.cred to A.

– Master secret key reveal: If A issues a master secret
key reveal query to GA, then S returns the master
secret keys msk to A.

2.4 Untraceability 5

– Test: This query can only be made to an accepted
and fresh (as defined below) session i of a user.
Then S does the following:

∗ If the coin b = 1, S returns the real session key
to the adversary;

∗ Otherwise, a random session key is drawn from
the session key space and returned to A.

A can generate the secret credential idi.cred of
user i after issuing the Master secret key reveal
query to GA. A can continue to issue other queries
after Test query. However, the test session must
maintain fresh throughout the entire game.

Finally, A outputs b′ as its guess for b. If b′ = b, then
S outputs 1; Otherwise, S outputs 0.

Freshness. We say an accepted instance oracle Πi
id is

fresh if A does not perform any of the following actions
during the game:

• A issues Session key reveal query to Πi
id or its accepted

partnered instance oracle Πj
id′ ;

• A issues both Long-term secret credential reveal query
to id′ s.t. id′ ∈ pidiid and Ephemeral secret key reveal
query for an instance Πj

id′ partnered with Πi
id;

• A issues Long-term secret credential reveal query to
user id′ s.t. id′ ∈ pidiid prior to the acceptance of
instance Πi

id and there exists no instance oracle Πj
id′

partnered with Πi
id. Note that the Master secret key

reveal query to GA is equivalent to the Long-term
secret credential reveal to all users in pidiid.

We define the advantage of an adversary A in the above
game as

AdvA(λ) = |Pr[S → 1]− 1/2|.
Definition 2.1. We say a LSH protocol has session

key security if for any PPT A, AdvA(λ) is a negligible
function of the security parameter λ.

2.3. Anonymity

Informally, an insider adversary is not allowed to
identify who are the handshake users, with the
condition that the authorized users authenticate with
each other within k times. The formal anonymity game
between an insider adversary A and a simulator S is
defined as follows:

• Setup: S first generates a master public/secret key
pair (mpk, msk) for GA and long-term secret/public
key pairs {(ski, pki)}ni=1 for n users by running
the corresponding KeyGen algorithms. In addition,
S generates a set of pseudonym and credential
{idj , idj .cred}kj=1 for each user by running the
Register algorithms. Eventually, S returns all users’
long-term public key and pseudonyms to A. S also
tosses a random coin b which will be used later in the
game. We denote the original n authorized users set
as U .

• Training: A is allowed to issue at most n-2 Long term
secret key reveal queries and all other queries to S.
We denote the honest (i.e., uncorrupted) user set as
U ′.

• Challenge: A randomly selects two users pki, pkj ∈ U ′
as challenge candidates, then S removes them from
U ′ and simulates pk∗b to A by either pk∗b = pki if b = 1
or pk∗b = pkj if b = 0.

Let A interact with pk∗b . S is allowed to execute at
most k handshake sessions for pki, pkj throughout the
entire game.

A ⇔ pk∗b =

{
pki b = 1
pkj b = 0

Finally, A outputs b′ as its guess for b. If b′ = b, then
S outputs 1; Otherwise, S outputs 0.

We define the advantage of A in the above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.

Definition 2.2. We say a LSH protocol has
anonymity if for any PPT A, AdvA(λ) is a negligible
function of the security parameter λ.

2.4. Untraceability

Informally, untraceability requires that an adversary
(e.g., untrusted GA) is not able to trace the real
identities of handshake users, with the condition that
the handshake users authenticate with each other
within k times even if the linkable credentials (e.g.,
pseudonyms) are used. We stress that the untrusted
GA is not allowed to enroll a phantom or revoked user
during registration. The formal untraceability game
between an adversary A and a simulator S is defined as
follows.

• Setup: S first generates a master public/secret key
pair (mpk, msk) for GA and long-term secret/public
key pairs {(ski, pki)}ni=1 for n users by running the
corresponding KeyGen algorithms. In addition, S
generates public pseudonym and secret credential
(idi, idi.cred) for n users by running the correspond-
ing Register algorithms. Eventually, S returns all
public keys and pseudonyms to A. S also tosses a
random coin b which will be used later in the game.

• Training: A interacts with all users via a set of
oracle queries (as defined in the session key security
model), and outputs two public keys (pk0, pk1),
where (pk0, pk1) denotes two new distinct and non-
revoked users. In particular, A runs the Register
algorithms on these two users (pk0, pk1) which are
admitted to become authorized users, outputs the
public pseudonyms (id0, id1), respectively. The game
does not proceed until the corresponding Register
algorithms on behalf of pk0 and pk1 outputs the secret
credentials (id0.cred, id1.cred).

6 3 PRELIMINARIES

• Challenge: A is given the challenge public pseudonym
idb, and A continues to interact with all users via all
oracle queries until it terminates and outputs the bit
b′. In particular, S is allowed to execute at most
k handshake sessions with regard to the challenge
pseudonym idb. We define the advantage of A in the
above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.

Definition 2.3. We say a LSH protocol has
untraceability if for any PPT A, AdvA(λ) is a negligible
function of the security parameter λ.

Remark. Untraceability means that the real identities
of authorized users cannot be recognized by any parties
(including untrusted GA) within k times handshake
sessions. That is, authorized user’s real identities are
not linked to their credentials within k times handshake
sessions, even if their long-term secret keys are leaked to
adversaries (this is prohibited in the anonymity model).

2.5. Linkable Affiliation Hiding

Informally, an outsider adversary aims to learn
the handshake users’ affiliation by corrupting users
and by learning certain handshake sessions were
successful. The linkable affiliation hiding (LAH)
model is simulation-based [5, 6]. That is, the real
protocol execution is indistinguishable from an idealized
one performed by a simulator SIM that simulates
handshake executions without knowing participants’
affiliation. We formally define a linkable affiliation-
hiding LAH security game between an adversary A and
a simulator S (with help of another simulator SIM) as
follows.

• Setup: The simulator S first chooses a secret bit b
at random, and answers A’s queries according to the
bit b. We call a group as trivially intrudable is the
group was not Setup honestly or if A corrupted some
pseudonyms id generated in response to some Register
queries. When b = 1, S answers A’s queries by
following the protocol specification faithfully. Below
we show that the SIM helps the simulator S to
answer queries made by A when b = 0, such that
simulating the handshake sessions on behalf of honest
pseudonyms only if they are not trivially intrudable.

– Register and Long-term secret key reveal: These
queries are answered honestly without involving
SIM unless there exists some still running
handshake session sid which is not trivially
intrudable. In this later case, Register and Long-
term secret key reveal queries are ignored if their
input is such that after processing there queries
the group becomes trivially intrudable.

– Handshake: If the group is trivially intrudable,
then S answers the query to the invoked session

correctly (denote the invokes session as case-1
session). If the group is not trivially intrudable,
then S invokes SIM and relays its reply (denote
the invoked session as case-2 session).

– Send: If the send query involves a case-1 session sid,
then S correctly answers its query. S simulates
session key SK as follows: If there exists a
partnering session sid′, then the session key is set
as SK ′ (i.e., session key of sid′); Otherwise, if sid
is fresh (as defined in the session key security),
then the session key is set as SK ∈ {0, 1}λ (a
random key is drawn from the session key space);
Otherwise, S sets the session key of sid according to
the protocol specification. If sid is a case-2 session,
then S invokes SIM and relays its reply.

– Session key reveal: If the session key reveal query to
a case-1 session sid and the session is accepted, then
S returns the session key correctly; if session sid is
not accepted, then S returns ‘⊥′. If the session key
reveal query to a case-2 session sid, the session is
accepted and there exists a partnering session sid′,
then S performs as follows: if session sid is not set
but sid′ is, then returns SK ′ to A; If both sessions
sid and sid′ are not set, then returns SK ∈ {0, 1}λ
to A.

We define the advantage of an adversary A in the
above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.

Definition 2.4. We say a LSH protocol has linkable
affiliation hiding if for any PPT A, AdvA(λ) is a
negligible function of the security parameter λ.

3. PRELIMINARIES

3.1. Complexity Assumptions

Decisional Diffie-Hellman (DDH) Problem. Let
G denote a cyclic group with prime order q and
generator g. Given g, ga, gb and a random element
Z ∈ G, where (randomly chosen) a, b ∈ Zq, decide

Z
?
= gab.

Bilinear Symmetric External Diffie-Hellman
(SXDH) Assumption [30]: Given two generators
g1, g2 and a bilinear maps ê : G1 × G2 → GT, the
advantage of the adversary A in solving a bilinear
SXDH problem is defined as

AdvA(λ) = Pr[w ∈ {0, 1},A(gi, g
a
i , g

b
i , Tw = gabi ,

T1−w ∈ Gi) = w]

where a, b ∈ Zq and i ∈ [1, 2]. The bilinear SXDH
assumption holds if for any PPT A, AdvA(λ) is a
negligible function of the security parameter λ.

Knowledge of Exponent Assumption (KEA)
[31]. Given a cyclic group G of prime order q, for

3.4 Implicitly Authenticated Key Exchange 7

any adversary A that takes input (q, g, ga) and returns
(B,Z) with Z = Ba, there exists an “extractor” A′,
which given the same inputs as A returns b such that
gb = B.

3.2. Equality of Discrete Logarithms

First, we present the proof of knowledge of equality of
representation module two primes, which is introduced
by Chaum and Pederson [15], the goal is to prove that
logg1h1 = logg2h2, for generators g1, g2, h1, h2 ∈ G. We
denote it as DLEQ(g1, h1, g2, h2), and the interaction
between prover and verifier is described as follows.

• The prover sends R1 = gw1 and R2 = gw2 , where
w ∈ Zq.

• The verifier sends a challenge e ∈ Zq to the prover.

• The prover sends p = w − x · e, where x = logg1h1.

• The verifier checks that R1
?
=gp1 · he1 and R2

?
=gp2 · he2.

If the verification passes, it outputs “1”, otherwise, it
outputs “0”.

Non-Interactive Version. We then show the non-
interactive version of DLEQ(g1, h1, g2, h2) by applying
the Fiat-Shamir’s technique [32].

• The prover sends a challenge-response value pair
(e, p) to the verifier, where e = H(h1, h2, R1, R2).

• The verifier checks that e
?
=H(h1, h2, R

′
1, R

′
2), where

R′1 = gp1 · he1 and R′2 = gp2 · he2.

3.3. Blind Signature

The blind signature (BS) scheme is executed between
a user and a singer, and the output of BS scheme
includes a message/signature pair, which will be used
in the Register algorithm. The message and signature
will be regarded as authorized user’s pseudonym and
credential, respectively.

Definition 3.1 (Blindness [33]). The game is
involved two users and a (adversary controlled) signer
which is running as follows. Firstly, the singer
is running the KeyGen algorithm to obtain (pk, sk);
Secondly, the signer outputs a pair of messages
(m0,m1); Thirdly, the signer engages in two parallel
(and arbitrarily interleaved) interactive protocols with
two users, with inputs mb and m1−b respectively (b
is a random bit which is hidden from the signer). If
both users output valid signatures on their respective
messages, then the signer is also given these two
signatures; Otherwise, output fail (we do not insist this
happens). Eventually, the signer outputs a bit b′ as
its guess for b. We define the advantage of user in the
above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.

A BS scheme is said to have blindness if for any PPT
A, AdvA(λ) is a negligible function of the security
parameter λ. Meanwhile, the formal definition on the
unforgeability of BS scheme is referred to [33], we omit
it here.

3.4. Implicitly Authenticated Key Exchange

We assume that user i (with pseudonym idi) and user j
(with pseudonym idj) wish to establish a shared secret
key, implicit authentication means that user i knows
that the only other party who could compute the shared
secret key as her is user j (and vice versa). It is worth
noting that, the implicit authentication is a novel and
efficient solution to the Diffie-Hellman protocol which
secures against man-in-the-middle attacks, in contrast
to the method that signs all protocol messages using
digital signatures [20]. We do not give a survey on the
implicitly AKE protocols, we just present a variant of
well-known HMQV protocol [24] below. It takes user
i’s ephemeral secret key and long-term secret key, and
user j’s ephemeral public key and long-term public key
as input, outputs a shared secret key between user i and
user j.

• User i and user j exchange ephemeral public key
Ri = gti and Rj = gtj , respectively;

• User i computes σi = (Rj · pkej)(ti+d·ski), user j

computes σj = (Rj · pkdi)(rj+e·skj), where d =
H(Ri, idj), e = H(Rj , idi);

• Both users generate: SKi/j
AKE←−−− H′(sidi/j , σi/j),

where sidi/j = (idi, idj , Ri, Rj). Here sidi/j denote
user i or user j’s session identifier; the same for σi/j
and SKi/j .

Remark. The NAXOS technique may be implemented
to the HMQV protocol, so that achieving an extended
CK (eCK) security [25]. Specifically, user i sends an
ephemeral public key in the form of Ri = gH(ti,ski) to
user j (and the same method is applied to user j).
The detailed description of eCK model and NAXOS
technique are referred to [25].

4. THE PROPOSED CONSTRUCTION

In this section, we present the detailed construction of
kLSH.

• Setup: GA takes security parameter λ as input,
outputs master secret key msk = (y, f, h) and master
public key mpk = (gy, g1, g2, g

y
1 , g

y
2), where g1 =

gf , g2 = gh. GA also generates the hash functions
H1 : {0, 1}∗ → G, H2 : G → Zq, H3 : {0, 1}∗ × G →
{0, 1}2λ. Let ê : G1×G2 → GT be the bilinear maps.

• KeyGen: User i generate a long-term secret/public
key pair (ski, pki) = (xi, g

xi
1). GA publishes an

empty pseudonym revocation list L.

8 5 SECURITY ANALYSIS AND EFFICIENCY ANALYSIS

• Register: A user i and GA perform an interactive
algorithm that described in Figure. 1. Eventually,
user i outputs a public pseudonym idi ← (αi, βi, ri)
and a secret credential idi.cred← si (underline part).

• Handshake: We use two authorized users (i, j) to
illustrate our handshake algorithm. The description
of algorithm is shown in Figure. 2.

• Tracing: Suppose a public pseudonym idi =
(αi, βi, ri) is used by a dishonest user for k+1
times. Then, anyone can get k+1 correct
shares about the secret g

x(i,1)

2 . That means if
user i misused her credential, then user i’s real
identity can be revealed (i.e., her real identity
is linked to her public pseudonym). Specifi-

cally, ê(gxi
1 , g

x(i,1)

2)
?
=ê(g

xi·x(i,1)

1 , g2), where g
xi·x(i,1)

1 =

βi/g
x(i,1)

2 . Eventually, GA updates the pseudonym
revocation list L by including idi.

Correctness. The verification of the blind signature
si in the Register algorithm is shown as follows.

H1(αi, βi) = β−sii · αH2(H1(αi,βi),ri)
i · ri

= (gxi
1 · g2)x(i,1)·(−b·y·m′i−b·k−a)

·(gxi
1 · g2)y·x(i,1)·b·m′i ·mi · (gxi

1 · g2)x(i,1)·a

·(gxi
1 · g2)k·b·x(i,1) = mi

where αi ← (gxi
1 · g2)y·x(i,1) = (gy1)xi·x(i,1) · (gy2)x(i,1) .

Next, we show the detailed techniques used in the
Handshake algorithm, including the proof of knowledges
(PoK) and authenticated key exchanges (AKE).

1. PoK: The proof of knowledge is used to guarantee
the correctness and the authenticity of secret shares.

• User i chooses a random polynomial f of degree
at most k with coefficients {al} ∈ Zq, for 1 ≤ l ≤
k, and publishes the related k-size commitments
Cl = (gxi

1 · g2)al , for 1 ≤ l ≤ k. Specifically,

f(x)
k←− a0 +

∑k
l=1 al · xl.

• User i (prover) runs the non-interactive equal-
ity of discrete logarithms to obtain a proof:
Fi = (e(i,1), p(i,0), p(i,1)) ← DLEQ((gxi

1 ·
g2), (gxi

1 · g2)f(xi), g2, g
f(xi)
2). Specifically, e(i,1) =

H2(Xi, Yi, ai, bi), where ai ← (gxi
1 · g2)wi , bi ←

Rwi
j , p(i,1) ← wi − f(xi) · e(i,1), p(i,0) =

p(i,1)/x(i,1), wi ∈ Zq and f(xi)
k←− x(i,1) + a1 · xi +

a2 · x2i + · · ·+ ak · xki , xi = H2(g
ti·tj
2).

• User j (verifier) computes a′i ← β
p(i,0)
i ·

Xi
e(i,1) , b′i ← R

p(i,1)
j · Y e(i,1)i and verifies that

e(i,1)
?
=H2(Xi, Yi, a

′
i, b
′
i). It outputs “1” if the

verification passes (we denote it as Verify(Fi) = 1);
Otherwise, it outputs “0”. In particular, the value

Xi ← (gxi
1 · g2)f(xi) is computed from public

commitments {Cl} and βi ∈ idi), more concretely

βi

k∏
l=1

C
xl
i

l = (gxi
1 · g2)x(i,1) · (gxi

1 · g2)a1·xi

·(gxi
1 · g2)a2·x

2
i · · · (gxi

1 · g2)ak·x
k
i

= (gxi
1 · g2)f(xi).

2. AKE: Authenticated users rely on the implicitly
authenticated key exchange protocol to derive a
shared session key. The correctness of the shared
session key SK(i,j) is shown below.

(SK(i,j), µi) = H3[sidi, σi]

= H3[sidi, (Rj · H1(αj , βj)
ei)ti+di·si]

= H3[sidi, (g
tj
2 ·m

ej
j)ti+di·si]

= H3[sidi, g
(tj+ej ·sj)·(ti+di·si)
2]

where ej = H2(Rj , idi), di = H2(Ri, idj) and mj =
g
sj
2 .

5. SECURITY ANALYSIS AND EFFI-
CIENCY ANALYSIS

Theorem 5.1. The proposed kLSH protocol achieves
session key security in the random oracle model if the
underlying HMQV protocol is session key secure.

Proof. We define a sequence of games Gi, i = 0, · · · , 3
and let AdvLSHi denote the advantage of the adversary
in game Gi. Assume that A activates at most n(λ)
sessions in each game. For simplicity, we ignore the key
confirmation for perfect forward security (PFS) in the
following and subsequent proofs.

• G0 This is original game for session key security.

• G1 This game is identical to game G0 except that S
will output a random bit if user i and user j accept,
but pidi 6= pidj , sidi 6= sidj . Since n users involved in
this game, we have:∣∣AdvkLSH0 − AdvkLSH1

∣∣ ≤ n · n(λ)2/2λ (1)

• G2 This game is identical to game G1 except the
following difference: S randomly chooses g ∈ [1,m]
as a guess for the index of the test session. S will
output a random bit if A’s test query does not occur
in the g-th session. Therefore we have

AdvkLSH1 = n(λ) · AdvkLSH2 (2)

• G3 This game is identical to game G2 except that in
the g-th session, S replaces the real session key by a
random key. Below we show the difference between
G2 and G3 is negligible under the assumption that
HMQV is eCK secure (with weak PFS).

9

User i GA

Input :(ski, pki) Input :(msk, mpk)

(δ1, δ2) = (gk, (g
xi
1 · g2)

k) where k ∈ Zq

δ1, δ2←−−−−−−−−
x(i,1), a, b ∈ Zq

αi ← (g
xi
1 · g2)

y·x(i,1) , βi ← (g
xi
1 · g2)

x(i,1)

mi ← H1(αi, βi), ri ← mi · βa
i · δ

b·x(i,1)
2

m′i = H2(mi, ri)/b

m
′
i−−−−−−−−−−→

s′i = k + y ·m′i
s
′
i←−−−−−−−−−

If gs
′
i 6= gy·m

′
i · δ1, then reject

si = s′i · b+ a
Output : idi ← αi, βi, ri

idi.cred← si

FIGURE 1. Register.

User i User j

Input :(idi, idi.cred) Input :(idj , idj .cred)

ti ∈ Zq, Ri ← g
ti
2 tj ∈ Zq, Rj ← g

tj
2

Rj , idj←−−−−−−−−−−−−−
f(xi)

k←− x(i,1)

Xi ← (g
xi
1 · g2)

f(xi), Yi ← R
f(xi)

j

Fi
PoK←−−− {(f(xi)) : Xi ∧ Yi}

(SK(i,j), µi)
AKE←−−− H3(sidi, σi)

Ri, idi, Yi, Fi, µi−−−−−−−−−−−−−→
(SK(i,j), µj)

AKE←−−− H3(sidj , σj)
If Verify(Fi) 6= “1” or µi 6= µj ,

then abort

p(xj)
k←− x(j,1)

Xj ← (g
xj
1 · g2)

f(xj), Yj ← R
f(xj)

i

Fj
PoK←−−− {(f(xj)) : Xj ∧ Yj}

Yj , Fj , µj←−−−−−−−−−−−−−−−
If Verify(Fj) 6= “1” or µi 6= µj ,

then abort

FIGURE 2. Handshake. idi/j /∈ L, sidi/j = (idi, idj , Ri, Rj , Yi, Yj) and xi/j = H2(g
ti·tj
2). Here idi/j denote user i or user j’s

session identifier; the same for sidi/j and xi/j ; SK(i,j) denote the shared session key between user i and user j.

Let S denotes an attacker against the HMQV
protocol, who is given corresponding oracles in the
sense of eCK security, aims to distinguish a real
session key from a random key. S simulates the game
for A as follows.

– Setup: S sets up the game for A by creating
n users with the corresponding public/secret key
pairs {(pki, ski)} from his oracle queries (i.e., long-
term secret key query). S honestly generates
master public/secret key pair (mpk, msk) for GA.
In addition, S generates user’s pseudonym and
credential by running the Register algorithms
honestly. Eventually, S sends all public keys and
pseudonyms to A.

– S answers A’s queries as follows.

∗ If A issues a send query in the form of (Rj , idj)
to user i, then S will perform the simulation as
follows.

· Forward Rj to his challenger and obtain an
ephemeral public key Ri from his send oracle.

· Generate a proof Fi (as the Handshake
algorithm described) on a secret share which
is derived from the simulated credential.

· Return (Ri, idi, Yi, Fi) to A as the response.

· Simulate the final session key using either
session key reveal oracle or test oracle w.r.t.
g-th session, and sid = (idi, idj , Ri, Rj , Yi, Yj).

Note that if A issues a send query in the form
of (idi,

′ start′) to user i, then S returns (R′, idi)
to A, where R′ is randomly chosen by S.

∗ If A issues an ephemeral key reveal query to S,
then S makes an ephemeral key reveal query to
its own oracle to get ti and returns it to A.

∗ If A issues a long-term key reveal query to user
i, then S returns ski to A. If A issues a master
secret key reveal query to S, then S returns msk

10 5 SECURITY ANALYSIS AND EFFICIENCY ANALYSIS

to A.

∗ S answers the session key reveal query and test
query by using the session key SKi it has derived
during the protocol simulation described above.

Note that in the test session S will get either a
real session key or a random key from his own
test oracle. If it is the real session key, then the
simulation is consistent with G2; Otherwise, the
simulation is consistent with G3. Therefore, if
the advantage of A is significantly different in G2

and G3, S can break the eCK security of HMQV
protocol. Hence, we have∣∣AdvkLSH2 − AdvkLSH3

∣∣ ≤ Adv
HMQV
S (λ) (3)

Combining the above results together, we have

AdvkLSHA (λ) = n · n(λ)2/2λ + n(λ) · AdvHMQV
S (λ).

Theorem 5.2. The proposed kLSH protocol achieves
anonymity if the SXDH assumption is held in the
underlying group G1.

Proof. Let S denote a SXDH problem distinguisher,
who is given (g1, g

a
1 , g

b
1, g

z
1) and a bilinear maps ê :

G1 × G2 → GT, aims to distinguish gab1 and Z
R←− G1.

S simulates the game for A as follows.

• Setup: S generates master public/secret key pair
(y, f, h ∈ Zq) by running the Setup algorithm
honestly. S also generates the long-term public key
of challenge user pki as gxi

1 (xi ∈ Zq is chosen by S),
and sets the long-term public key of challenge user
pkj as gb·e1 (e ∈ Zq is chosen by S).

• Register: S simulates the Register algorithm on
challenge users (pki, pkj) as follows.

– For user pki, S simulates a k-size pseudonym and
credential set {idi, idi.cred} honestly using user’s
secret key xi.

– For user pkj , S simulates it as follows.

∗ Upon receiving a pair (δ1, δ2) = (gk, (gb·e1 ·
g2)k), S first executes the extractor defined in
the KEA assumption to extract the value k.

Then, S computes αj = gz·e·r·y1 · ga·r·y·h/f1 , βj =

gz·e·r1 · ga·r·h/f1 ,mj = H1(αj , βj). Note that the
randomness implicitly sets as x(j,1) = a · r and

g = gf
−1

1 , g2 = g
h/f
1 , where r ∈ Zq is chosen by

S.

∗ S chooses blind factors aj , bj ∈ Zq, computes

rj = mj · (gz·e·r1 · ga·r·h/f1)aj · (gz·e·r1 ·
g
a·r·h/f
1)bj ·k,m′j = H2(mj , rj)/bj and sends m′j

to A.

∗ On receiving idj .cred
′ from A, S computes

idj .cred = idj .cred
′ · bj + aj and stores

(αj , βj , rj , idj .cred) as a valid pseudonym and
credential pair.

In the end, S will generate two pseudonym and
credential set {idi, idi.cred} and {idj , idj .cred} for
user pki and user pkj , respectively.

• Training: It is easy to see that all queries to users
can be simulated perfectly using the long-term secret
credentials and master secret keys.

• Challenge: Upon receiving (R∗, idj) (R∗ = gt
∗

2 , t
∗ ∈

Zq) from S as an authentication request, A then
issues a send query in the form of (R, id, Y, F) to user
j, where R = gt2, then S performs the simulation as
follows

– computes f(xj)
k←− idj .cred+a1 ·xi+a2 ·x2i + · · ·+

ak · xki and xj = H2(Rt
∗
).

– computes X∗ ← (gb·e1 · g2)f(xj), Y ∗ ← Rf(xj).

– generates a proof Fj
PoK←−−− {(f(xj)) : X∗ ∧ Y ∗}.

– sends (Y ∗, Fj) to A as the response.

Similarly, S can simulate the interaction with user
i using the same method as described above. In
particular, S can perfectly simulate the shared session
keys between challenge users and adversary A using
the simulated secret credentials.

Finally, S outputs whatever A outputs. If A guesses
the random bit correctly, then S could break the SXDH
problem.

Theorem 5.3. The proposed kLSH protocol achieves
untraceability if the BS scheme has the blindness.

Proof. We let S denote an attacker against the blindness
of BS scheme, who is given the public/secret key pair
of Signer (pk∗, sk∗) and two interactive Signer and User
oracles, aims to break the blindness property. Since
Handshake sessions are completely independent of the
challenge users when running them, and depends solely
on the given public pseudonym id and secret credential
id.cred. Even the long-term secret key reveal query
to user’s long-term public key pk does not reveal the
owning user of given pseudonym id. Therefore, we
mainly analyze the Register algorithm below.

• Setup: S generates long-term public/secret key pair
(pki, ski) for n users by running the corresponding
KeyGen algorithms. S sets master public/secret key
pair of GA as (mpk, msk) = (pk∗, sk∗). S generates
public pseudonym and secret credential (idi, idi.cred)
for n users by running the corresponding Register
algorithms. Eventually, S publishes all user’s public
keys and pseudonyms.

• S can simulate all queries to the existing users
made by A using master secret key and user’s long-
term secret keys. When A issues Register algorithm
on two distinct users (pk0, pk1), then S randomly
chooses two messages (m0,m1) with respect to two
new users, and invokes his challenger (i.e., two

11

parallel interactive Signer and User oracles) to obtain
two signatures (or credentials) (s(mb), s(m1−b)). In
particular, S computes the corresponding public
pseudonyms (idb, id1−b)← F (s(mb), s(m1−b)) where
F denotes an efficient key generation function (e.g.,
idb ← gs(mb)). S picks one of public pseudonyms as
challenge idb and forwards it toA. We also allowA to
access both s(mb) and s(m1−b) during the challenge
stage.

Finally, S outputs whatever A outputs. If A guesses the
random bit correctly, then S could break the blindness
property of BS scheme.

Theorem 5.4. The proposed LSH protocol achieves
the linkable affiliation hiding in the random oracle
model if the underlying HMQV protocol is session key
secure and the BS scheme is unforgeable.

Proof. The security proof is similar to the proof of
linkable affiliation hiding described in [6, 7]. Recall
that when b = 0, we let SIM simulate the protocol
executions without knowing honest participants’ affilia-
tion (or credentials). Specifically, SIM will answer the
Handshake, Send and Session key reveal queries made by
A.

• Handshake. SIM chooses idi.cred ← si ∈R Zq as
user i’s secret credential. SIM outputs the state
(idi, ski, idi.cred). Note that SIM can simulate the
pseudonym/credential pair (idi, idi.cred) successfully
using the same method as described in [17] (i.e.,
simulate the signing oracle), and user i’s secret key
ski is known to SIM.

• Send. SIM chooses µi ∈R Zq and outputs
(Ri, idi, Yi, Fi, µi), where Fi is honestly generated
by SIM since user i’s secret key ski is known
to SIM. Meanwhile, SIM can successfully
simulate the shared session keys using the simulated
pseudonym/credential pair according to the protocol
specification.

We stress that SIM simulates the handshake
sessions that are run on behalf of honest pseudonyms in
the groups that are intact (i.e., not trivially intrudable).
The difference between real protocol run and simulated
run by SIM is presented as follows:

1. The simulated secret credential idi.cred might differ.
The difference between two methods to generate
secret credential is bounded by the probability of
adversary to forge a BS scheme, which is negligible
in λ. Therefore, the advantage of adversary in this
case is reduce to AdvBSA (λ).

2. The simulated session keys SKi might be inconsis-
tent with real ones. This difference is bounded by
the session key security of underlying HMQV proto-
col such that no outsider adversary can distinguish

a real session key from random, unless adversary ac-
tively takes part in protocol sessions as a participant
of the group (such attack is disallowed in the LAH
model since SIM only simulates the intact groups).
Therefore, the advantage of adversary in this case is
reduce to Adv

HMQV
A (λ).

3. The simulated key confirmation message µi might
differ. Since the key confirmation message µi derived
from the underlying HQMV protocol which is secure,
the difference is only bounded by the probability of
adversary to find a collision in a collision-resistant
hash function. Therefore, the advantage of adversary
is reduced to AdvHA(λ).

By combing the above cases together, we have

AdvkLSHA (λ) = AdvBSA (λ) + Adv
HMQV
A (λ) + AdvHA(λ).

Therefore, the adversary cannot distinguish the real
protocol executions from the simulated ones.

Efficiency Analysis. We evaluate the total number of
transferred bits when running the Handshake algorithm.
In practice security parameters λ = 80, and λ′ = 1024
(standard group setting) or λ′ = 160 (ECC group
setting) would be chosen. The length of user i’s
pseudonym idi is 3 · λ′ bits, proof of knowledge Fi is
3 · λ′ bits and Diffie-Hellman instance Ri is λ′ bits.
So the total number of transferred bits between user
i and user j is 2× (8 · λ′ + λ) (including a transmitted
Yi whose length is λ′ bit, and a key confirmation
message µi whose length is λ). If q < 2160, then the
overall communication cost (without key confirmation
messages) is 320 bytes. The communication cost is not
only a constant value, but also the smallest (or optimal)
one to achieve our complete design goal. We then
compare our kLSH with a closely related LSH protocol
[7], who was also claimed the smallest (and constant)
bandwidth complexity. Specifically, the total number of
transferred bits in [7] is 2 × (2 · λ′ + λ), and our kLSH
requires more λ′ bits because: 1) it has pseudonym size
three times the pseudonym in [7]; and 2) the proof of
knowledge is required due to the Shamir’s secret sharing
scheme for public tracing.

For the computational cost, if user i releases secret

share f(xi)
k←− x(i,1), then her computational cost

would increase because two secrets need to be shared
for the Tracing algorithm. Specifically, user i runs
Shamir’s secret sharing scheme on her secrets (x(i,1),xi ·
x(i,1)), then user j verifies them based on two sets
of commitments and pseudonym idi. In contrast, we
let user i run Shamir’s secret sharing scheme once by
taking the secret x(i,1) as input, and transmit a secret

share in the form of g
f(xi)
2 which can be replaced by a

group based on ECC. In particular, user i publishes (or
transmits) one set of commitments only, which in turns
prove the optimal communication cost as we claimed
in this work. Then user j verifies it based on one set

12 6 CONCLUSION

of commitments and the proof of equality of discrete
logarithms. Furthermore, the expensive operation such
as pairing is performed in the Tracing algorithm, so
the computational cost when running the Handshake
algorithm is not affected by the pairing operations,
which makes it efficient and suitable for devices having
limited amount of computational resources.

Performance Analysis. The experiment was running
on a desktop computer (Inter Core i7 at 2.9Ghz, 6GB
RAM). We use a hash function SHA-256 (with 256-bit
output size). We also use the Java PBC library [34],
and the security level is 160-bit (i.e., key size in the
ECC setting). The cryptographic primitives involved
in the kLSH protocol include blind digital signature
[10] (BS), HMQV protocol [24], PoK and secret sharing
scheme [35] (SSS). During the register stage, the signing
procedure of BS takes 42ms, while the verification takes
10ms to complete. In the handshake stage, each user
takes 10ms to complete HMQV, 52ms to complete PoK
(the prover takes 25ms for generating the proof while
the verifier takes 27ms to verify the proof) and 1.6ms
to complete SSS (the dealer takes 1ms to distribute
the secret while the reconstruct algorithm takes 0.6
ms to complete, and we use a (k, n) = (7, 10) SSS as
an example). Therefore, we estimate that the total
running time of Handshake algorithm by each user takes
approximately 63ms.

6. CONCLUSION

In this work, we have proposed a secure and private
(yet efficient) construction of linkable secret handshake
based on a blind signature scheme [10] and proof of
equality of discrete logarithms [18]. The proposed
construction achieves anonymity and untraceability
against insiders (including the group authority)
within a k-time handshakes, and linkable affiliation-
hiding against outsiders. In addition, the proposed
construction supports an optimal communication cost
between handshake users. As for the future work,
we would like to design: 1) a new construction for
linkable secret handshake in a multi-group setting which
is supporting an efficient group discovery [28, 8]; and 2)
a generic framework for linkable secret handshakes that
can trace any dishonest users.

ACKNOWLEDGEMENTS

The work is supported by the Singapore National
Research Foundation under NCR Award Number
NRF2014NCR-NCR001-012. It is also supported by
AXA Research Fund and National Science Foundation
of China under Grant No. 61872264.

REFERENCES

[1] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana
Smetters, Jessica Staddon, and Hao-Chi Wong. Secret
handshakes from pairing-based key agreements. In

2003 Symposium on Security and Privacy, Berkeley,
CA, USA, 11-14 May, pages 180–196. IEEE, 2003.

[2] Shouhuai Xu and Moti Yung. K-anonymous secret
handshakes with reusable credentials. In Proceedings
of the 11th ACM conference on Computer and
communications security, Washington DC, USA, 25-29
October, pages 158–167. ACM, New York, NY, USA,
2004.

[3] Claude Castelluccia, Stanis law Jarecki, and Gene
Tsudik. Secret handshakes from ca-oblivious encryp-
tion. In International Conference on the Theory and
Application of Cryptology and Information Security,
Jeju Island, Korea, 5-9 December, pages 293–307.
Springer, Berlin, Heidelberg, 2004.

[4] Stanis law Jarecki, Jihye Kim, and Gene Tsudik. Group
secret handshakes or affiliation-hiding authenticated
group key agreement. In Cryptographers’ Track at
the RSA Conference, San Francisco, CA, USA, 5-9
February, pages 287–308. Springer, Berlin, Heidelberg,
2007.

[5] Stanis law Jarecki, Jihye Kim, and Gene Tsudik. Be-
yond secret handshakes: Affiliation-hiding authenti-
cated key exchange. In Cryptographers’ Track at the
RSA Conference, San Francisco, CA, USA, 8-11 April,
pages 352–369. Springer, Berlin, Heidelberg, 2008.

[6] Mark Manulis, Bertram Poettering, and Gene Tsudik.
Affiliation-hiding key exchange with untrusted group
authorities. In International Conference on Applied
Cryptography and Network Security, Beijing, China,
22-25 June, pages 402–419. Springer, Berlin, Heidel-
berg, 2010.

[7] Mark Manulis, Bertram Poettering, and Gene Tsudik.
Taming big brother ambitions: More privacy for
secret handshakes. In International Symposium on
Privacy Enhancing Technologies Symposium, Berlin,
Germany, 21-23 July, pages 149–165. Springer, Berlin,
Heidelberg, 2010.

[8] Mark Manulis and Bertram Poettering. Affiliation-
hiding authentication with minimal bandwidth con-
sumption. In IFIP International Workshop on In-
formation Security Theory and Practices, Heraklion,
Crete, Greece, 1-3 June, pages 85–99. Springer, Berlin,
Heidelberg, 2011.

[9] Isamu Teranishi, Jun Furukawa, and Kazue Sako. K-
times anonymous authentication. In International
Conference on the Theory and Application of Cryptol-
ogy and Information Security, Jeju Island, Korea, 5-9
December, pages 308–322. Springer, Berlin, Heidelberg,
2004.

[10] Stefan Brands. Untraceable off-line cash in wallet
with observers. In Annual international cryptology
conference, Santa Barbara, California, USA, 22?6
August, pages 302–318. Springer, Berlin, Heidelberg,
1993.

[11] Yannan Li, Guomin Yang, Willy Susilo, Yong
Yu, Man Ho Au, and Dongxi Liu. Traceable
monero: Anonymous cryptocurrency with enhanced
accountability. IEEE Transactions on Dependable and
Secure Computing, doi: 10.1109/TDSC.2019.2910058,
2019.

[12] Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing
big brother: an abuse-resilient transaction escrow

13

scheme. In International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken,
Switzerland, 2-6 May, pages 590–608. Springer, Berlin,
Heidelberg, 2004.

[13] Xiapu Luo, Edmond WW Chan, Peng Zhou, and
Rocky KC Chang. Robust network covert communi-
cations based on tcp and enumerative combinatorics.
IEEE Transactions on Dependable and Secure Comput-
ing, 9(6):890–902, 2012.

[14] Xiapu Luo, Junjie Zhang, Roberto Perdisci, and
Wenke Lee. On the secrecy of spread-spectrum flow
watermarks. In European Symposium on Research in
Computer Security, Athens, Greece, 20-22 September,
pages 232–248. Springer, Berlin, Heidelberg, 2010.

[15] David Chaum and Torben Pryds Pedersen. Transferred
cash grows in size. In Workshop on the Theory
and Application of of Cryptographic Techniques,
Balatonfred, Hungary, 24-28 May, pages 390–407.
Springer, Berlin, Heidelberg, 1992.

[16] Yutaka Kawai, Kazuki Yoneyama, and Kazuo Ohta.
Secret handshake: Strong anonymity definition and
construction. In International Conference on Informa-
tion Security Practice and Experience, Xi’an, China,
13-15 April, pages 219–229. Springer, Berlin, Heidel-
berg, 2009.

[17] Claus-Peter Schnorr. Efficient identification and
signatures for smart cards. In Conference on the
Theory and Application of Cryptology, Santa Barbara,
CA, USA, 20-24 August, pages 239–252. Springer, New
York, NY, 1989.

[18] Berry Schoenmakers. A simple publicly verifiable se-
cret sharing scheme and its application to electronic
voting. In Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, 15-19 August,
pages 148–164. Springer, Berlin, Heidelberg, 1999.

[19] Mike Burmester and Yvo G Desmedt. Efficient and
secure conference-key distribution. In International
Workshop on Security Protocols, United Kingdom, 10?2
April, pages 119–129. Springer, Berlin, Heidelberg,
1996.

[20] Jonathan Katz and Moti Yung. Scalable protocols
for authenticated group key exchange. In Annual
International Cryptology Conference, Santa Barbara,
California, USA, 17-21 August, pages 110–125.
Springer, Berlin, Heidelberg, 2003.

[21] Jonathan Katz and Ji Sun Shin. Modeling insider
attacks on group key-exchange protocols. In
Proceedings of the 12th ACM conference on Computer
and communications security, Alexandria, VA, USA,
07-11 November, pages 180–189. ACM, New York, NY,
USA, 2005.

[22] Mihir Bellare and Phillip Rogaway. Entity authenti-
cation and key distribution. In Annual international
cryptology conference, Santa Barbara, California, USA,
22?6 August, pages 232–249. Springer, Berlin, Heidel-
berg, 1993.

[23] Ran Canetti and Hugo Krawczyk. Analysis of
key-exchange protocols and their use for building
secure channels. In International Conference on the
Theory and Applications of Cryptographic Techniques,
Innsbruck, Austria, 6?0 May, pages 453–474. Springer,
Berlin, Heidelberg, 2001.

[24] Hugo Krawczyk. HMQV: A high-performance secure
diffie-hellman protocol. In Annual International
Cryptology Conference, Santa Barbara, California,
USA, 14-18 August, pages 546–566. Springer, Berlin,
Heidelberg, 2005.

[25] Brian LaMacchia, Kristin Lauter, and Anton Mityagin.
Stronger security of authenticated key exchange.
In International conference on provable security,
Wollongong, Australia, 1-2 November, pages 1–16.
Springer, Berlin, Heidelberg, 2007.

[26] Zheng Yang, Yu Chen, and Song Luo. Two-message
key exchange with strong security from ideal lattices.
In Cryptographers’ Track at the RSA Conference,
San Francisco, CA, USA, 16-20 April, pages 98–115.
Springer, Cham, 2018.

[27] Yangguang Tian, Shiwei Zhang, Guomin Yang, Yi Mu,
and Yong Yu. Privacy-preserving k-time authenticated
secret handshakes. In Australasian Conference on
Information Security and Privacy, Auckland, New
Zealand, 3 July, pages 281–300. Springer, Cham, 2017.

[28] Stanis law Jarecki and Xiaomin Liu. Affiliation-
hiding envelope and authentication schemes with
efficient support for multiple credentials. In
International Colloquium on Automata, Languages,
and Programming, Reykjavik, Iceland, 7-11 July, pages
715–726. Springer, Berlin, Heidelberg, 2008.

[29] Mark Manulis, Benny Pinkas, and Bertram Poetter-
ing. Privacy-preserving group discovery with linear
complexity. In International Conference on Applied
Cryptography and Network Security, Beijing, China,
22-25 June, pages 420–437. Springer, Berlin, Heidel-
berg, 2010.

[30] Ron D Rothblum. On the circular security of bit-
encryption. In Theory of Cryptography Conference,
Tokyo, Japan, 3-6 March, pages 579–598. Springer,
Berlin, Heidelberg, 2013.

[31] Mihir Bellare and Adriana Palacio. The knowledge-
of-exponent assumptions and 3-round zero-knowledge
protocols. In Annual International Cryptology
Conference, Santa Barbara, California, USA, 15-19
August, pages 273–289, 2004.

[32] Amos Fiat and Adi Shamir. How to prove
yourself: Practical solutions to identification and
signature problems. In Conference on the Theory
and Application of Cryptographic Techniques, Santa
Barbara, California, USA, 11-15 August, pages 186–
194. Springer, Berlin, Heidelberg, 1986.

[33] Ari Juels, Michael Luby, and Rafail Ostrovsky.
Security of blind digital signatures. In Annual
International Cryptology Conference, Santa Barbara,
California, USA, 17-21 August, pages 150–164.
Springer, Berlin, Heidelberg, 1997.

[34] Angelo De Caro and Vincenzo Iovino. jpbc: Java
pairing based cryptography. In IEEE symposium on
computers and communications, Kerkyra, Greece, 28
June-1 July, pages 850–855. IEEE, 2011.

[35] Adi Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, 1979.

	A new construction for linkable secret handshake
	Citation
	Author

	tmp.1602134661.pdf.4_SOd

