8 research outputs found

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    Model-based symbolic design space exploration at the electronic system level: a systematic approach

    Get PDF
    In this thesis, a novel, fully systematic approach is proposed that addresses the automated design space exploration at the electronic system level. The problem is formulated as multi-objective optimization problem and is encoded symbolically using Answer Set Programming (ASP). Several specialized solvers are tightly coupled as background theories with the foreground ASP solver under the ASP modulo Theories (ASPmT) paradigm. By utilizing the ASPmT paradigm, the search is executed entirely systematically and the disparate synthesis steps can be coupled to explore the search space effectively.In dieser Arbeit wird ein vollständig systematischer Ansatz präsentiert, der sich mit der Entwurfsraumexploration auf der elektronischen Systemebene befasst. Das Problem wird als multikriterielles Optimierungsproblem formuliert und symbolisch mit Hilfe von Answer Set Programming (ASP) kodiert. Spezialisierte Solver sind im Rahmen des ASP modulo Theories (ASPmT) Paradigmas als Hintergrundtheorien eng mit dem ASP Solver gekoppelt. Durch die Verwendung von ASPmT wird die Suche systematisch ausgeführt und die individuellen Schritte können gekoppelt werden, um den Suchraum effektiv zu durchsuchen

    Efficient design space exploration for application specific systems-on-a-chip

    No full text
    A reduction in the time-to-market has led to widespread use of pre-designed parametric architectural solutions known as system-on-a-chip (SoC) platforms. A system designer has to configure the platform in such a way as to optimize it for the execution of a specific application. Very frequently, however, the space of possible configurations that can be mapped onto a SoC platform is huge and the computational effort needed to evaluate a single system configuration can be very costly. In this paper we propose an approach which tackles the problem of design space exploration (DSE) in both of the fronts of the reduction of the number of system configurations to be simulated and the reduction of the time required to evaluate (i.e., simulate) a system configuration. More precisely, we propose the use of Multi-objective Evolutionary Algorithms as optimization technique and Fuzzy Systems for the estimation of the performance indexes to be optimized. The proposed approach is applied on a highly parameterized SoC platform based on a parameterized VLIW processor and a parameterized memory hierarchy for the optimization of performance and power dissipation. The approach is evaluated in terms of both accuracy and efficiency and compared with several established DSE approaches. The results obtained for a set of multimedia applications show an improvement in both accuracy and exploration time

    Architekturen fĂĽr Ethernet-basierte Teilnehmerzugangsnetzwerke und deren Umsetzung in Hardware

    Get PDF
    Die zunehmende Komplexität makroskopischer Telekommunikationsnetze und mikroskopischer On-Chip-Kommunikationsstrukturen resultiert in zahlreichen Problemen, z.B. bzgl. Sicherheit und Skalierbarkeit. Diese Arbeit stellt einerseits verschiedene Mechanismen für Ethernet-basierte Internet-Teilnehmerzugangsnetze vor. Andererseits wurde eine Network-on-Chip-basierte Kommunikationsstruktur entwickelt, welche in System-on-Chip-Hardwaresystemen zur performanten und skalierbaren Datenverarbeitung genutzt wird. Alle Ansätze werden als voll funktionsfähige Prototypen auf FPGA-Basis präsentiert

    Exploration of cyber-physical systems for GPGPU computer vision-based detection of biological viruses

    Get PDF
    This work presents a method for a computer vision-based detection of biological viruses in PAMONO sensor images and, related to this, methods to explore cyber-physical systems such as those consisting of the PAMONO sensor, the detection software, and processing hardware. The focus is especially on an exploration of Graphics Processing Units (GPU) hardware for “General-Purpose computing on Graphics Processing Units” (GPGPU) software and the targeted systems are high performance servers, desktop systems, mobile systems, and hand-held systems. The first problem that is addressed and solved in this work is to automatically detect biological viruses in PAMONO sensor images. PAMONO is short for “Plasmon Assisted Microscopy Of Nano-sized Objects”. The images from the PAMONO sensor are very challenging to process. The signal magnitude and spatial extension from attaching viruses is small, and it is not visible to the human eye on raw sensor images. Compared to the signal, the noise magnitude in the images is large, resulting in a small Signal-to-Noise Ratio (SNR). With the VirusDetectionCL method for a computer vision-based detection of viruses, presented in this work, an automatic detection and counting of individual viruses in PAMONO sensor images has been made possible. A data set of 4000 images can be evaluated in less than three minutes, whereas a manual evaluation by an expert can take up to two days. As the most important result, sensor signals with a median SNR of two can be handled. This enables the detection of particles down to 100 nm. The VirusDetectionCL method has been realized as a GPGPU software. The PAMONO sensor, the detection software, and the processing hardware form a so called cyber-physical system. For different PAMONO scenarios, e.g., using the PAMONO sensor in laboratories, hospitals, airports, and in mobile scenarios, one or more cyber-physical systems need to be explored. Depending on the particular use case, the demands toward the cyber-physical system differ. This leads to the second problem for which a solution is presented in this work: how can existing software with several degrees of freedom be automatically mapped to a selection of hardware architectures with several hardware configurations to fulfill the demands to the system? Answering this question is a difficult task. Especially, when several possibly conflicting objectives, e.g., quality of the results, energy consumption, and execution time have to be optimized. An extensive exploration of different software and hardware configurations is expensive and time-consuming. Sometimes it is not even possible, e.g., if the desired architecture is not yet available on the market or the design space is too big to be explored manually in reasonable time. A Pareto optimal selection of software parameters, hardware architectures, and hardware configurations has to be found. To achieve this, three parameter and design space exploration methods have been developed. These are named SOG-PSE, SOG-DSE, and MOGEA-DSE. MOGEA-DSE is the most advanced method of these three. It enables a multi-objective, energy-aware, measurement-based or simulation-based exploration of cyber-physical systems. This can be done in a hardware/software codesign manner. In addition, offloading of tasks to a server and approximate computing can be taken into account. With the simulation-based exploration, systems that do not exist can be explored. This is useful if a system should be equipped, e.g., with the next generation of GPUs. Such an exploration can reveal bottlenecks of the existing software before new GPUs are bought. With MOGEA-DSE the overall goal—to develop a method to automatically explore suitable cyber-physical systems for different PAMONO scenarios—could be achieved. As a result, a rapid, reliable detection and counting of viruses in PAMONO sensor data using high-performance, desktop, laptop, down to hand-held systems has been made possible. The fact that this could be achieved even for a small, hand-held device is the most important result of MOGEA-DSE. With the automatic parameter and design space exploration 84% energy could be saved on the hand-held device compared to a baseline measurement. At the same time, a speedup of four and an F-1 quality score of 0.995 could be obtained. The speedup enables live processing of the sensor data on the embedded system with a very high detection quality. With this result, viruses can be detected and counted on a mobile, hand-held device in less than three minutes and with real-time visualization of results. This opens up completely new possibilities for biological virus detection that were not possible before
    corecore