680 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Microgrids: Legal and Regulatory Hurdles for a More Resilient Energy Infrastructure

    Get PDF
    Natural disasters and climate change have made it apparent that energy infrastructure needs to be modernized and microgrids are one type of technology that can help the electricity grid become more resilient, reliable, and efficient. Different states have begun developing microgrid pilot projects including California, New York, Connecticut, and Pennsylvania. The City of Pittsburgh, Pennsylvania is the first city to propose implementing “energy districts” of microgrids that will serve as critical infrastructure, in the first phase, and then expand to commercial and community settings. This large project involves many shareholders including public utilities, government agencies, and private entities. Utilizing microgrids on such a large scale raises issues regarding its classification, as energy generation or energy storage, and whether it should be regulated by public utilities, private entities, or municipalities. In a state like Pennsylvania where the energy market has been deregulated, there is strong concern on what the public utilities involvement will be with microgrid projects. This Note focuses on the regulatory issues that are raised with the construction and operation of microgrids at such a large scale in Pittsburgh. It addresses the difficulties that arise when implementing microgrids in a deregulated energy market state such as Pennsylvania, where little to no statutory language exists regarding microgrids. It will give an overview of proposed Pennsylvania legislation that may impact a public utilities’ control over microgrid technology and the benefits and costs when examining the extent of the public utilities’ role regarding ownership and control of microgrids in a deregulated energy market

    Three Network Design Problems for Community Energy Storage

    Full text link
    In this paper, we develop novel mathematical models to optimize utilization of community energy storage (CES) by clustering prosumers and consumers into energy sharing communities/microgrids in the context of a smart city. Three different microgrid configurations are modeled using a unifying mixed-integer linear programming formulation. These configurations represent three different business models, namely: the island model, the interconnected model, and the Energy Service Companies model. The proposed mathematical formulations determine the optimal households' aggregation as well as the location and sizing of CES. To overcome the computational challenges of treating operational decisions within a multi-period decision making framework, we also propose a decomposition approach to accelerate the computational time needed to solve larger instances. We conduct a case study based on real power consumption, power generation, and location network data from Cambridge, MA. Our mathematical models and the underlying algorithmic framework can be used in operational and strategic planning studies on smart grids to incentivize the communitarian distributed renewable energy generation and to improve the self-consumption and self-sufficiency of the energy sharing community. The models are also targeted to policymakers of smart cities, utility companies, and Energy Service Companies as the proposed models support decision making on renewable energy related projects investments

    Demand Side Management Studies on Distributed Energy Resources: A Survey

    Get PDF
    The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented

    Demand side management studies on distributed energy resources: A survey

    Get PDF
    The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented.Universidad Tecnológica de Bolíva

    Enabling flexibility through strategic management of complex engineering systems

    Get PDF
    ”Flexibility is a highly desired attribute of many systems operating in changing or uncertain conditions. It is a common theme in complex systems to identify where flexibility is generated within a system and how to model the processes needed to maintain and sustain flexibility. The key research question that is addressed is: how do we create a new definition of workforce flexibility within a human-technology-artificial intelligence environment? Workforce flexibility is the management of organizational labor capacities and capabilities in operational environments using a broad and diffuse set of tools and approaches to mitigate system imbalances caused by uncertainties or changes. We establish a baseline reference for managers to use in choosing flexibility methods for specific applications and we determine the scope and effectiveness of these traditional flexibility methods. The unique contributions of this research are: a) a new definition of workforce flexibility for a human-technology work environment versus traditional definitions; b) using a system of systems (SoS) approach to create and sustain that flexibility; and c) applying a coordinating strategy for optimal workforce flexibility within the human- technology framework. This dissertation research fills the gap of how we can model flexibility using SoS engineering to show where flexibility emerges and what strategies a manager can use to manage flexibility within this technology construct”--Abstract, page iii

    Agent Based Control of Electric Power Systems with Distributed Generation

    Get PDF

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication
    corecore