6,007 research outputs found

    An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks

    Get PDF
    The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks

    Get PDF
    International audienceThis paper deals with the design of the low complexity and efficient dynamic spectrum learning and access (DSLA) scheme for next-generation heterogeneous decentralized Cognitive Radio Networks (CRNs) such as Long Term Evolution-Advanced and 5G. Existing DSLA schemes for decentralized CRNs are focused predominantly on the decision making policies which perform the task of orthogonalization of secondary users to optimum vacant subbands of fixed bandwidth. The focus of this paper is the design of DSLA scheme for decentralized CRNs to support the tunable vacant bandwidth requirements of the secondary users while minimizing the computationally intensive subband switchings. We first propose a new low complexity VDF which is designed by modifying second order frequency transformation and subsequently combining it with the interpolation technique. It is referred to as Interpolation and Modified Frequency Transformation based VDF (IMFT-VDF) and it provides tunable bandpass responses anywhere over Nyquist band with complete control over the bandwidth as well as the center frequency. Second, we propose a tunable decision making policy, ρt_randρt_rand, consisting of learning and access unit, and is designed to take full advantage of exclusive frequency response control offered by IMFT-VDF. The simulation results verify the superiority of the proposed DSLA scheme over the existing DSLA schemes while complexity comparisons indicate total gate count savings from 11% to as high as 87% over various existing schemes. Also, lower number of subband switchings make the proposed scheme power-efficient and suitable for battery-operated cognitive radio terminals
    • 

    corecore