1,229 research outputs found

    Hybrid-space reconstruction with add-on distortion correction for simultaneous multi-slab diffusion MRI

    Full text link
    Purpose: This study aims to propose a model-based reconstruction algorithm for simultaneous multi-slab diffusion MRI acquired with blipped-CAIPI gradients (blipped-SMSlab), which can also incorporate distortion correction. Methods: We formulate blipped-SMSlab in a 4D k-space with kz gradients for the intra-slab slice encoding and km (blipped-CAIPI) gradients for the inter-slab encoding. Because kz and km gradients share the same physical axis, the blipped-CAIPI gradients introduce phase interference in the z-km domain while motion induces phase variations in the kz-m domain. Thus, our previous k-space-based reconstruction would need multiple steps to transform data back and forth between k-space and image space for phase correction. Here we propose a model-based hybrid-space reconstruction algorithm to correct the phase errors simultaneously. Moreover, the proposed algorithm is combined with distortion correction, and jointly reconstructs data acquired with the blip-up/down acquisition to reduce the g-factor penalty. Results: The blipped-CAIPI-induced phase interference is corrected by the hybrid-space reconstruction. Blipped-CAIPI can reduce the g-factor penalty compared to the non-blipped acquisition in the basic reconstruction. Additionally, the joint reconstruction simultaneously corrects the image distortions and improves the 1/g-factors by around 50%. Furthermore, through the joint reconstruction, SMSlab acquisitions without the blipped-CAIPI gradients also show comparable correction performance with blipped-SMSlab. Conclusion: The proposed model-based hybrid-space reconstruction can reconstruct blipped-SMSlab diffusion MRI successfully. Its extension to a joint reconstruction of the blip-up/down acquisition can correct EPI distortions and further reduce the g-factor penalty compared with the separate reconstruction.Comment: 10 figures+tables, 8 supplementary figure

    Mitigating susceptibility-induced distortions in high-resolution 3DEPI fMRI at 7T

    Get PDF
    Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI

    Three-dimensional echo-shifted EPI with simultaneous blip-up and blip-down acquisitions for correcting geometric distortion

    Full text link
    Purpose: Echo-planar imaging (EPI) with blip-up/down acquisition (BUDA) can provide high-quality images with minimal distortions by using two readout trains with opposing phase-encoding gradients. Because of the need for two separate acquisitions, BUDA doubles the scan time and degrades the temporal resolution when compared to single-shot EPI, presenting a major challenge for many applications, particularly functional MRI (fMRI). This study aims at overcoming this challenge by developing an echo-shifted EPI BUDA (esEPI-BUDA) technique to acquire both blip-up and blip-down datasets in a single shot. Methods: A three-dimensional (3D) esEPI-BUDA pulse sequence was designed by using an echo-shifting strategy to produce two EPI readout trains. These readout trains produced a pair of k-space datasets whose k-space trajectories were interleaved with opposite phase-encoding gradient directions. The two k-space datasets were separately reconstructed using a 3D SENSE algorithm, from which time-resolved B0-field maps were derived using TOPUP in FSL and then input into a forward model of joint parallel imaging reconstruction to correct for geometric distortion. In addition, Hankel structured low-rank constraint was incorporated into the reconstruction framework to improve image quality by mitigating the phase errors between the two interleaved k-space datasets. Results: The 3D esEPI-BUDA technique was demonstrated in a phantom and an fMRI study on healthy human subjects. Geometric distortions were effectively corrected in both phantom and human brain images. In the fMRI study, the visual activation volumes and their BOLD responses were comparable to those from conventional 3D echo-planar images. Conclusion: The improved imaging efficiency and dynamic distortion correction capability afforded by 3D esEPI-BUDA are expected to benefit many EPI applications.Comment: 8 figures, peer-reviewed journal pape

    Optimizing and method development for clinical MR imaging near metallic implants

    Get PDF
    Metallic hip prosthesis is an implant that gets more common and comes with problems like metallosis (inflammation due to metallic debris). Magnetic resonance imaging (MRI) which is a superior method when imaging soft tissue (compared to other medical imaging techniques) is affected by metal implants and will result in a distorted image. View Angle Tilting (VAT) and Slice Encoding for Metal Artifact Correction (SEMAC) are techniques which can reduce both in-plane and through-plane distortions. Unfortunately do the SEMAC technique come with a drawback of increased scan times. To acheive more acceptable scan times in the clinic,a new method, called Compressed Sensing can be used in combinationwith VAT and SEMAC. This method which reconstructs data using fewersamples than before thought was required will reduce the scan time. A phantom (hip prosthesis surrounded with agarose gel) was used toinvestigate how much the sampling can be reduced, while still retainingan image with good quality. The data was presented in different domainswhich were individually investigated for an optimized performance of thereconstruction algorithm. Fully sampled data was imported into Matlaband afterwards undersampled. Compressed Sensing was used to reconstructthe images and a comparison was done with the original images. Even with low sampling (40% data) Compressed Sensing can reconstructimages with no significant loss of image quality. SEMAC imagestoday fit the restriction of Compressed Sensing and by implementing themethod the SEMAC technique can be more acessible in clinical practice,thereby improving the diagnosis of patients with metallic prosteses

    Joint B0 and image estimation integrated with model based reconstruction for field map update and distortion correction in prostate diffusion MRI

    Get PDF
    In prostate Diffusion Weighted MRI, differences in susceptibility values exist at the interface between the prostate and rectal-air. This can result in off-resonance magnetic field leading to geometric distortions including signal stretching and signal pile-up in the reconstructed images. Using a set of EPI data acquired with blip-up and blip-down phase encoding gradient directions, model based reconstruction has recently been proposed that can correct these distortions by using a B0 field estimated from a separate B0 scan. However, change in the size of the rectal air region across time can occur that can result in a mismatch of the B0 field to the EPI scan. Also, the measured B0 field itself can be erroneous in regions of low Signal to Noise ratio around the prostate rectal air interface. In this work, using a set of single shot EPI data acquired with blip-up and blip-down phase encoding gradient directions, a novel joint model based reconstruction is proposed that can account for changes in the off resonance effects between the B0 and EPI scans. For ten prostate patients, using a measured B0 field as an initial B0 estimate, on a 5-point scale (1-5) image quality scores evaluated by an experienced radiologist, the proposed framework achieved scores of 3.50+/-0.85 and 3.40+/-0.51 for bvalues of 0 and 500 s/mm2, respectively compared to 3.40+/-0.70 and 3.30+/-0.67 for model based reconstruction. The proposed framework is also capable of estimating a distortion corrected EPI image even without an initial B0 field estimate in situations where a separate B0 scan cannot be obtained due to time constraint

    Advanced three-dimensional tailored RF pulse for signal recovery in T 2 *-weighted functional magnetic resonance imaging

    Full text link
    T 2 * -weighted functional MR images are plagued by signal loss artifacts caused by susceptibility-induced through-plane dephasing. We present major advances to the original three-dimensional tailored RF (3DTRF) pulse method that pre-compensates the dephasing using three-dimensional selective excitation. The proposed 3DTRF pulses are designed iteratively with off-resonance incorporation and with a novel echo-volumar trajectory that frequency-encodes in z and phase-encodes in x,y . We also propose a computational scheme to accelerate the pulse design process. We demonstrate effective signal recovery in a 5-mm slice in both phantom and inferior brain, using 3DTRF pulses that are only 15.4 ms long. Compared to the original method, the new approach leads to significantly reduced pulse length and enhancement in slice selectivity. 3D images of the slice volume confirm fidelity of the excited phase pattern and slice profile. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55837/1/21048_ftp.pd

    Doctor of Philosophy

    Get PDF
    dissertationMagnetic resonance imaging (MRI) techniques are widely applied in various disease diagnoses and scientific research projects as noninvasive methods. However, lower signal-to-noise ratio (SNR), B1 inhomogeneity, motion-related artifact, susceptibility artifact, chemical shift artifact and Gibbs ring still play a negative role in image quality improvement. Various techniques and methods were developed to minimize and remove the degradation of image quality originating from artifacts. In the first part of this dissertation, a motion artifact reduction technique based on a novel real time self-gated pulse sequence is presented. Diffusion weighted and diffusion tensor magnetic resonance imaging techniques are generally performed with signal averaging of multiple measurements to improve the signal-to-noise ratio and the accuracy of diffusion measurement. Any discrepancy in images between different averages causes errors that reduce the accuracy of diffusion MRI measurements. The new scheme is capable of detecting a subject's motion and reacquiring motion-corrupted data in real time and helps to improve the accuracy of diffusion MRI measurements. In the second part of this dissertation, a rapid T1 mapping technique (two dimensional singleshot spin echo stimulated echo planar image--2D ss-SESTEPI), which is an EPI-based singleshot imaging technique that simultaneously acquires a spin-EPI (SEPI) and a stimulated-EPI (STEPI) after a single RF excitation, is discussed. The magnitudes of SEPI and STEPI differ by T1 decay for perfect 90o RF pulses and can be used to rapidly measure the T1 relaxation time. However, the spatial variation of B1 amplitude induces uneven splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Therefore, correction for B1 inhomogeneity is critical for 2D ss-SESTEPI to be used for T1 measurement. In general, the EPI-based pulse sequence suffers from geometric distortion around the boundary of air-tissue or bone tissue. In the third part of this dissertation, a novel pulse sequence is discussed, which was developed based on three dimensional singleshot diffusion weighted stimulated echo planar imaging (3D ss-DWSTEPI). A parallel imaging technique was combined with 3D ss-DWSTEPI to reduce the image distortion, and the secondary spin echo formed by three RF pulses (900-1800-900) is used to improve the SNR. Image quality is improved

    Motion Compensation for Free-Breathing Abdominal Diffusion-Weighted Imaging (MoCo DWI)

    Get PDF
    Diffusion-weighted imaging (DWI) is a common technique in medical diagnostics. One challenge of thoracic and abdominal DWI is respiratory motion which can result in motion artifacts. To eliminate these artifacts, a new kind of retrospective, respiratory motion compensation for DWI was developed and tested. This new technique — MoCo DWI — is the first in DWI which provides fully-deformable motion compensation. To enable this, despite the low image quality of DWI, two free-breathing sequences were used: (1) a gradient echo sequence (GRE) with a configuration for optimal respiratory motion estimation and (2) a DWI in a configuration of clinical interest. The DWI acquisition was gated into 10 motion phases. Each motion phase was then co-aligned with the motion estimation. The implementation was tested with eleven volunteers. The results showed that MoCo DWI can reduce motion blurring in single b-value images, especially at the liver-lung interface. The improvement of ADC-maps was even more prominent. Individual slices showed motion induced artifacts which could be reduced or even eliminated by MoCo DWI. This was also reflected by expected more homogeneous ADC values in the liver in all data sets. These results promise to reduce measurements with limited diagnostic value while keeping or increasing patient comfort

    Neural Representations of Visual Motion Processing in the Human Brain Using Laminar Imaging at 9.4 Tesla

    Get PDF
    During natural behavior, much of the motion signal falling into our eyes is due to our own movements. Therefore, in order to correctly perceive motion in our environment, it is important to parse visual motion signals into those caused by self-motion such as eye- or head-movements and those caused by external motion. Neural mechanisms underlying this task, which are also required to allow for a stable perception of the world during pursuit eye movements, are not fully understood. Both, perceptual stability as well as perception of real-world (i.e. objective) motion are the product of integration between motion signals on the retina and efference copies of eye movements. The central aim of this thesis is to examine whether different levels of cortical depth or distinct columnar structures of visual motion regions are differentially involved in disentangling signals related to self-motion, objective, or object motion. Based on previous studies reporting segregated populations of voxels in high level visual areas such as V3A, V6, and MST responding predominantly to either retinal or extra- retinal (‘real’) motion, we speculated such voxels to reside within laminar or columnar functional units. We used ultra-high field (9.4T) fMRI along with an experimental paradigm that independently manipulated retinal and extra-retinal motion signals (smooth pursuit) while controlling for effects of eye-movements, to investigate whether processing of real world motion in human V5/MT, putative MST (pMST), and V1 is associated to differential laminar signal intensities. We also examined motion integration across cortical depths in human motion areas V3A and V6 that have strong objective motion responses. We found a unique, condition specific laminar profile in human area V6, showing reduced mid-layer responses for retinal motion only, suggestive of an inhibitory retinal contribution to motion integration in mid layers or alternatively an excitatory contribution in deep and superficial layers. We also found evidence indicating that in V5/MT and pMST, processing related to retinal, objective, and pursuit motion are either integrated or colocalized at the scale of our resolution. In contrast, in V1, independent functional processes seem to be driving the response to retinal and objective motion on the one hand, and to pursuit signals on the other. The lack of differential signals across depth in these regions suggests either that a columnar rather than laminar segregation governs these functions in these areas, or that the methods used were unable to detect differential neural laminar processing. Furthermore, the thesis provides a thorough analysis of the relevant technical modalities used for data acquisition and data analysis at ultra-high field in the context of laminar fMRI. Relying on our technical implementations we were able to conduct two high-resolution fMRI experiments that helped us to further investigate the laminar organization of self-induced and externally induced motion cues in human high-level visual areas and to form speculations about the site and the mechanisms of their integration
    • …
    corecore