767 research outputs found

    Indexing the Earth Mover's Distance Using Normal Distributions

    Full text link
    Querying uncertain data sets (represented as probability distributions) presents many challenges due to the large amount of data involved and the difficulties comparing uncertainty between distributions. The Earth Mover's Distance (EMD) has increasingly been employed to compare uncertain data due to its ability to effectively capture the differences between two distributions. Computing the EMD entails finding a solution to the transportation problem, which is computationally intensive. In this paper, we propose a new lower bound to the EMD and an index structure to significantly improve the performance of EMD based K-nearest neighbor (K-NN) queries on uncertain databases. We propose a new lower bound to the EMD that approximates the EMD on a projection vector. Each distribution is projected onto a vector and approximated by a normal distribution, as well as an accompanying error term. We then represent each normal as a point in a Hough transformed space. We then use the concept of stochastic dominance to implement an efficient index structure in the transformed space. We show that our method significantly decreases K-NN query time on uncertain databases. The index structure also scales well with database cardinality. It is well suited for heterogeneous data sets, helping to keep EMD based queries tractable as uncertain data sets become larger and more complex.Comment: VLDB201

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    DCMS: A data analytics and management system for molecular simulation

    Get PDF
    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface (i.e., SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression

    PolyFit: Polynomial-based Indexing Approach for Fast Approximate Range Aggregate Queries

    Get PDF
    Range aggregate queries find frequent application in data analytics. In some use cases, approximate results are preferred over accurate results if they can be computed rapidly and satisfy approximation guarantees. Inspired by a recent indexing approach, we provide means of representing a discrete point data set by continuous functions that can then serve as compact index structures. More specifically, we develop a polynomial-based indexing approach, called PolyFit, for processing approximate range aggregate queries. PolyFit is capable of supporting multiple types of range aggregate queries, including COUNT, SUM, MIN and MAX aggregates, with guaranteed absolute and relative error bounds. Experiment results show that PolyFit is faster and more accurate and compact than existing learned index structures.Comment: 13 page
    • …
    corecore