1,457 research outputs found

    Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors

    Full text link
    Sparsity has become a key concept for solving of high-dimensional inverse problems using variational regularization techniques. Recently, using similar sparsity-constraints in the Bayesian framework for inverse problems by encoding them in the prior distribution has attracted attention. Important questions about the relation between regularization theory and Bayesian inference still need to be addressed when using sparsity promoting inversion. A practical obstacle for these examinations is the lack of fast posterior sampling algorithms for sparse, high-dimensional Bayesian inversion: Accessing the full range of Bayesian inference methods requires being able to draw samples from the posterior probability distribution in a fast and efficient way. This is usually done using Markov chain Monte Carlo (MCMC) sampling algorithms. In this article, we develop and examine a new implementation of a single component Gibbs MCMC sampler for sparse priors relying on L1-norms. We demonstrate that the efficiency of our Gibbs sampler increases when the level of sparsity or the dimension of the unknowns is increased. This property is contrary to the properties of the most commonly applied Metropolis-Hastings (MH) sampling schemes: We demonstrate that the efficiency of MH schemes for L1-type priors dramatically decreases when the level of sparsity or the dimension of the unknowns is increased. Practically, Bayesian inversion for L1-type priors using MH samplers is not feasible at all. As this is commonly believed to be an intrinsic feature of MCMC sampling, the performance of our Gibbs sampler also challenges common beliefs about the applicability of sample based Bayesian inference.Comment: 33 pages, 14 figure

    Size dependent electronic properties of silicon quantum dots - an analysis with hybrid, screened hybrid and local density functional theory

    Full text link
    We use an efficient projection scheme for the Fock operator to analyze the size dependence of silicon quantum dots (QDs) electronic properties. We compare the behavior of hybrid, screened hybrid and local density functionals as a function of the dot size up to \sim800 silicon atoms and volume of up to \sim20nm3^3. This allows comparing the calculations of hybrid and screened hybrid functionals to experimental results over a wide range of QD sizes. We demonstrate the size dependent behavior of the band gap, density of states, ionization potential and HOMO level shift after ionization. Those results are compared to experiment and to other theoretical approaches, such as tight-binding, empirical pseudopotentials, TDDFT and GW

    Analysing Ewald\u27s Method for the Evaluation of Green\u27s Functions for Periodic Media

    Get PDF
    Expressions for periodic Green\u27s functions for the Helmholtz equation in two and three dimensions are derived via Ewald\u27s method. The decay rate of the series occurring in these expressions is analysed and rigorous estimates for the remainder are derived when the series are truncated and replaced by finite sums. The effect of choosing a control parameter occurring in Ewald\u27s expressions is discussed and some recommendations for its choice are given based on the aforementioned estimates. We present various numerical examples for the resulting method for evaluating the Green\u27s functions. The results can also be carried over to evaluating the partial derivatives
    corecore