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Abstract

Expressions for periodic Green’s functions for the Helmholtz equation in two and three dimen-

sions are derived via Ewald’s method. The decay rate of the series occurring in these expressions

is analysed and rigorous estimates for the remainder are derived when the series are truncated and

replaced by finite sums. The effect of choosing a control parameter occurring in Ewald’s expres-

sions is discussed and some recommendations for its choice are given based on the aforementioned

estimates. We present various numerical examples for the resulting method for evaluating the

Green’s functions. The results can also be carried over to evaluating the partial derivatives.

1 Introduction

In this article, we carry out a theoretical and numerical analysis of the so-called Ewald’s representation

of the periodic and biperiodic Green’s functions for the Helmholtz equation in two and three spatial
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dimensions. There are applications for these functions from which integral equation formulations for

scattering problems are of particular interest to the authors (Arens, 2010; Sandfort, 2010). The need

to evaluate the Green’s function and its derivatives is often a limiting factor in these approaches.

For the Helmholtz operator and the free-space or half-space geometry, there are simple expressions

for the Green’s functions which can easily be evaluated. For more complicated geometries, including

periodic media, the Green’s functions are usually given formally by series expansions which might

be only slowly convergent or even divergent depending on the values of the problem parameters.

However, to implement efficient numerical schemes for solving the boundary integral equations, it is

essential to have representations of the Green’s functions available which allow the fast and accurate

evaluation for all admissible problem parameters.

In the review article (Linton, 1998), a number of analytical techniques to derive such convenient

expressions for the Green’s function for the two-dimensional Helmholtz equation in periodic domains

are discussed and compared in-depth. One of the best-performing methods presented is Ewald’s

transformation. This transformation was originally derived in (Ewald, 1921) for the computation of

three-dimensional lattice potentials. It splits the series representation of the lattice potential, and

likewise that of the periodic Green’s function, into a sum of two series, of types different from that

of the original series, which are both exponentially convergent. From the big amount of alternative

methods, besides the references given in (Linton, 1998), we also mention (Sadov, 1997) and (Kurkcu

& Reitich, 2009).

Ewald’s method became commonly used in the physics community and is covered predominantly

in the engineering and physics literature, though it is attractive not only from the numerical, but also

the theoretical point of view. In addition to the two-dimensional quasi-periodic Green’s function as

discussed in (Linton, 1998) and references given therein, expressions for the three-dimensional quasi-

biperiodic Green’s function were also derived (Kambe, 1967). However, this function has not been

discussed much further in the literature. For the two-dimensional quasi-periodic Green’s function,

Ewald’s approach has been discussed in a number of articles, e.g. (Jordan et al., 1986) and (Capolino

2



et al., 2005). In all cases known to the authors, asymptotical behaviour of the terms in the series is

discussed and conclusions are backed by some numerical examples.

The present paper contributes to this subject firstly by giving, in Section 3, a detailed and rigorous

derivation of the Ewald representation for the two-dimensional quasi-periodic Green’s function for

the Helmholtz equation, clearly separating technicalities from core arguments. A companion analysis

along similar lines for the three-dimensional bi-quasi-periodic Green’s function is contained in (Arens,

2010).

Secondly, and this is the main novel contribution, we give in Sections 4 and 5 rigorous and com-

putable error bounds for truncated versions of the series both for the two- and the three-dimensional

cases. Provided that cancellation effects do not play a dominant role, these estimates allow the

evaluation of the Green’s functions to a prescribed error.

A further aspect of Ewald’s method is that it involves a parameter that can be used to influence

the speed of convergence of all series. Various authors give recommendations for choosing this

parameter (Jordan et al., 1986; Mathis & Peterson, 1996; Kustepeli & Martin, 2000; Capolino et al.,

2005). The rule of thumb appears to be to choose a constant parameter that gives good numerical

accuracy reliably. However, an optimal choice should minimise the total effort for the evaluation for

a prescribed accuracy. We propose an algorithm that chooses this parameter automatically while

guaranteeing optimality in some sense. As a bad choice of the control parameter will also lead to

cancellation and instability, conditions are formulated that prevent this case. For the two-dimensional

case, the only similar work in this respect appears to be (Capolino et al., 2005) and our results for

the 2D case in this respect only differ in details. For the three-dimensional case, our results appear

to be completely new. A number of numerical examples illustrate the performance of the proposed

methods. The computations were carried out using the program library libewald written by the

authors in the programming language C. The source code of this library, which contains programs to

produce all results presented in this paper, is available at http://libewald.sourceforge.net.

In many applications, including boundary integral equation methods, not only the Green’s func-
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tion, but also its gradient is required. Therefore, in Section 7 we study the gradient of the Ewald’s

representation and corresponding error estimates. Some numerical results are also given.

2 Periodic Green’s Functions

The propagation of time-harmonic acoustic waves with wave number k > 0 is modelled by the

Helmholtz equation

∆u + k2u = 0. (2.1)

Absorption in the medium can be taken into account by allowing wave numbers with arg(k) ∈ [0, π/2).

The fundamental solution, or Green’s function in free-field conditions, of (2.1) is given by

Φ(x, y) =
i

4
H

(1)
0 (k|x − y|), x, y ∈ R

2, x 6= y, (2.2)

in two spatial dimensions, where H
(1)
ν is the Hankel function of the first kind and of order ν, and by

Φ(x, y) =
1

4π

eik |x−y|

|x − y| , x, y ∈ R
3, x 6= y, (2.3)

in three spatial dimensions. Note that through

eikr

r
=

√

kπ

2r
H

(1)
−1/2(kr), r > 0, (2.4)

both fundamental solutions can be expressed via a Hankel function of the first kind.

Consider now a domain Ω ⊆ R
2 which is L-periodic, L > 0, in the x1-direction, i.e. for x ∈ Ω

there holds (x1 + µL, x2)
⊤ ∈ Ω for all µ ∈ Z. If (2.1) is considered in such a domain, it is usual to

consider α-quasi-periodic fields for some α ∈ R. Such fields are L-periodic up to a phase shift,

u(x1 + L, x2) = eiLα u(x1, x2), x ∈ Ω.

A typical example of such a field is a plane wave u(x) = exp(ikd · x) with d a unit vector, which is

kd1-quasi-periodic.

In scattering problems for such L-periodic media, one considers the α-quasi-periodic Green’s

function for the Helmholtz equation Gq2. One possible expression for this function is a series of
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translated point sources,

Gq2(x − y) =
i

4

∑

µ∈Z

eiµαL H
(1)
0









k

∣

∣

∣

∣

∣

∣

∣

∣

x − y − µ









L

0









∣

∣

∣

∣

∣

∣

∣

∣









, (2.5)

where x, y ∈ R
2 such that x − y 6= µ (L, 0)⊤ for all µ ∈ Z. Convergence of the series in (2.5) can be

established from asymptotic decay rates of Hankel functions in the cases where

Im(k) > 0 or

[

k > 0 and α +
2π

L
µ 6= k for all µ ∈ Z

]

(2.6)

is satisfied (see e.g. (Arens, 1999) for explicit calculations). For real k, the terms in (2.5) decay as

|µ|−1/2 so that convergence is rather slow and the series certainly does not converge absolutely. A

faster converging representation of this Green’s function is desirable for numerical purposes.

A further expression can be obtained by computing the expansion of Gq2 in trigonometric poly-

nomials. We set

αµ =
α + 2πµ/L

k
and βµ =

√

1 − α2
µ, µ ∈ Z,

where the square root function is analytically continued to the complex plane except for a branch

cut along the negative imaginary axis. Then the Fourier series expansion of Gq2 is given by

Gq2(x − y) =
i

2kL

∑

µ∈Z

1

βµ
eik [αµ (x1−y1)+βµ |x2−y2|], (2.7)

again for x, y ∈ R
2 such that x − y 6= µ (L, 0)⊤ for any µ ∈ Z. Expression (2.7) is exponentially

convergent whenever x2 6= y2. However, for real k and x2 = y2 we observe a decay of |µ|−1 of the

terms in the series so convergence is again slow. Also, if 2π/(kL) is small, βµ will be real for a large

range of µ and the growth of its absolute value relatively slow outside this range so that many terms

in (2.7) are required for an accurate numerical evaluation of Gq2.

The second Green’s function under consideration is the three-dimensional analogue of Gq2. We

consider a domain Ω ⊆ R
3 which is assumed to be L1-periodic in the x1-direction and L2-periodic in

the x2-direction. For ease of notation, we define the lattice translation vectors p(µ) and the reciprocal
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lattice vectors q(µ) by

p(µ) =

















µ1L1

µ2L2

0

















and q(µ) =

















µ12π/L1

µ22π/L2

0

















, µ ∈ Z
2,

respectively. Similarly as for the two-dimensional case, we call a field u α-quasi-biperiodic for some

α ∈ R
3, α3 = 0, if

u(x + p(µ)) = eiα·p(µ)
u(x), x ∈ Ω, µ ∈ Z

2.

The α-quasi-biperiodic Green’s function can be expressed formally as (Arens, 2010; Kambe, 1967)

Gq3(x − y) =
1

4π

∑

µ∈Z2

eiα·p(µ) eik|x−y−p(µ)|

|x − y − p(µ)| (2.8)

for x, y ∈ Ω such that x − y 6= p(µ) for any µ ∈ Z
2. Setting

α(µ) =
α + q(µ)

k
and ρµ =

√

1 − |α(µ)|2, µ ∈ Z
2,

an expansion in trigonometric polynomials with respect to both x1 and x2 gives

Gq3(x − y) =
i

2k L1L2

∑

µ∈Z2

1

ρµ
eik[α(µ)·(x̃−ỹ)+ρµ |x3−y3|]. (2.9)

Here, and in all further arguments, we denote for x ∈ R
3 by x̃ the projection onto the x1, x2)-plane,

i.e. x̃ = (x1, x2, 0)
⊤.

For such two-dimensional lattice sums, absolute convergence is required to make the expression

well-defined. In (2.8), this is the case for Im(k) > 0, but not for a real wave number. The expression

(2.9) is absolutely convergent even for real k, but x3 6= y3 is required. Hence, in the case of a

biperiodic grating, an alternative exponentially convergent representation of the Green’s function is

not only desirable for numerical but also for analytical purposes.

3 Ewald’s Method

The principle of Ewald’s method for the derivation of quickly convergent representations of periodic

Green’s functions is rather simple. We heuristically present the idea for a function periodic in one
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direction. Consider a function f : Ω → C which has a singularity at 0 and which is slowly decaying

for large arguments. Next, we define the L-periodic function

F (x) =
∑

µ∈Z

f(x + µLe1), x ∈ Ω,

where e1 is the first coordinate unit vector. Of course, Ω is assumed to be a domain such that

x + µLe1 ∈ Ω for all x ∈ Ω and all µ ∈ Z.

For both the Green’s functions considered in Section 2, a respective f will somehow involve a

Hankel function. As will be shown below, we may split a Hankel function into a singular but quickly

decaying and a smooth but slowly decaying function. In other words, we write f = g+(f −g), where

g has the same singularity at 0 as f and is exponentially decaying for large arguments, to obtain

F (x) =
∑

µ∈Z

g(x + µLe1) +
∑

µ∈Z

(f(x + µLe1) − g(x + µLe1)) , x ∈ Ω.

The second sum in this expression may be rewritten by means of the so-called Poisson summation

formula, which yields

F (x) =
∑

µ∈Z

g(x + µLe1) +
1

L

∑

µ∈Z

[

f̂

(

2πµ

L
,Px

)

− ĝ

(

2πµ

L
,Px

)]

ei(2πµ/L)x1 , (3.1)

for x ∈ Ω, where Px denotes the orthogonal projection of x onto the orthogonal complement of e1

and f̂ denotes the one-dimensional Fourier transform in the direction of p̂,

f̂(ξ, z) =

∫ ∞

−∞
f(z + ηe1) e−iξη dη, ξ ∈ R, z ∈ (span{e1})⊥.

Now, both series appearing in (3.1) are quickly convergent: the function g is exponentially decreasing

itself while f − g is smooth and hence its Fourier transform is quickly decaying for large argument.

Let us first work out the necessary expressions for Gq2 in detail. For the derivation, we will assume

that arg(k) ∈ (0, π/2). In the final result, it is then possible to carry out the limit Im(k) → 0, so

that the representation of the Green’s function we obtain is valid for real k as well.

As shown in detail in (Arens, 2010), though the result can be found in various places in the

literature, from standard expressions for Bessel function one may derive the following representation
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for the Hankel function of the first kind and of order ν ∈ R,

H(1)
ν (kx) =

2

iπ
e−iπν

(

k

2x

)ν ∫

γ1

t−2ν−1 exp

(

−x2t2 +
k2

4t2

)

dt ,

where x > 0 and arg(k) ∈ (0, π/2). Furthermore, γ1 denotes an integration path in the complex plane

that starts at the origin in the direction e−iπ/4 and approaches infinity in the direction ei arg(k)/2, see

Figure 1.

e−iπ/4

γ1

γ2

arg(k)
2 a

Im(z)

Re(z)

Figure 1: Contour paths γ1 and γ2.

The path of integration may deviate from γ1 as long as two conditions are met: The direction

at which the path leaves the origin must not change and the path must go to infinity at a direction

eiϕ with −π/4 < ϕ < π/4. This ensures Re(t2) > 0 so that the integrand decays exponentially for

|t| → ∞. For ν > −1/2, we may even pass to the limit ϕ → −π/4, in which case the integral exists

as an improper integral.

For the application of Ewald’s method, we use a path that connects the origin with a point a > 0

and then continues to infinity along the positive real axis. This integration contour is shown in Figure

1 as γ2.

Let us define the function obtained by an integration along that section of γ2 which coincides

with the real axis,

gν(kx) =
2

iπ
e−iπν

(

k

2x

)ν ∫ ∞

a
t−2ν−1 exp

(

−x2t2 +
k2

4t2

)

dt.
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Note that gν is a continuous function of k and well-defined also for k > 0. For representing Gq2, we

are dealing with the case ν = 0. We can show that g0 has the same type of singularity at the origin

as H
(1)
0 and decays exponentially for large argument.

Lemma 3.1 For x > 0 and arg(k) ∈ [0, π/2), we have

g0(kx) =
1

iπ

(

−C − 2 ln(ax) −
∞
∑

n=1

(−1)n

n n!
(ax)2n

)

J0(kx) + h

(

kx,
k

a

)

,

where h is an analytic function with respect to both arguments, and

|g0(kx)| ≤ 1

π
exp

( |k|2
4a2

)

exp(−(ax)2)

(ax)2
.

Proof: Inserting the power series representation of the exponential function and using the substitu-

tion s = t2/a2, we obtain

g0(kx) =
2

iπ

∞
∑

j=0

1

j!

(

k

2

)2j ∫ ∞

a
t−2j−1 exp

(

−x2t2
)

dt

=
1

iπ

∞
∑

j=0

1

j!

(

k

2a

)2j ∫ ∞

1
s−j−1 exp

(

−(ax)2 s
)

ds.

We define the generalised exponential integral Ij(τ) =

∫ ∞

1
s−j−1e−τs ds, j = 0, 1, 2, . . ., and the

coefficients

cj,l =
(−1)l

∏l−1
m=0(j − m)

, j = 0, 1, 2, . . . , l = 0, . . . , j .

Integration by parts yields

Ij+1(τ) =
e−τ

j + 1
− τ

j + 1
Ij(τ), j = 0, 1, 2, . . . , (3.2)

and a simple induction argument leads to the explicit formula

Ij(τ) = cj,j τ j I0(τ) −
(

j
∑

l=1

cj,l τ
l−1

)

e−τ , j = 0, 1, 2, . . .

Hence

g0(kx) =
1

iπ



I0((ax)2)

∞
∑

j=0

cj,j

j!

(

kx

2

)2j

− e−(ax)2
∞
∑

j=0

j
∑

l=1

cj,l

j!

(

k

2a

)2j

(ax)2(l−1)



 ,
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which we rewrite slightly as

g0(kx) =
1

iπ



I0((ax)2)
∞
∑

j=0

cj,j

j!

(

kx

2

)2j

− e−(ax)2
∞
∑

l=0

(

kx

2

)2l ∞
∑

j=1

cj+l,l+1

(j + l)!

(

k

2a

)2j


 .

Note that cj,j = (−1)j/j!, j = 0, 1, 2, . . ., so that we can substitute

∞
∑

j=0

cj,j

j!

(

kx

2

)2j

=

∞
∑

j=0

(−1)j

(j!)2

(

kx

2

)2j

= J0(kx),

where J0 denotes the Bessel function of order 0 (see (Abramowitz & Stegun, 1965, formula 9.1.10)).

For I0, we obtain from (Abramowitz & Stegun, 1965, formulae 5.1.1 and 5.1.12)

I0(τ) = E1(τ) = −C − ln τ −
∞
∑

n=1

(−1)n

n n!
τn,

where C is Euler’s constant and E1 denotes the exponential integral function. Hence

g0(kx) =
1

iπ

[(

−C − 2 ln(ax) −
∞
∑

n=1

(−1)n

n n!
(ax)2n

)

J0(kx)

− e−(ax)2
∞
∑

l=0

(

kx

2

)2l ∞
∑

j=1

cj+l,l+1

(j + l)!

(

k

2a

)2j


 ,

which is the first part of the assertion.

For j = 0, 1, 2, . . ., we can further estimate

∫ ∞

1
s−j−1 exp(−(ax)2s) ds ≤

∫ ∞

1
exp(−(ax)2s) ds =

exp(−(ax)2)

(ax)2
.

Thus,

|g0(kx)| ≤ 1

π

∞
∑

j=0

1

j!

∣

∣

∣

∣

k

2a

∣

∣

∣

∣

2j exp(−(ax)2)

(ax)2
=

1

π
exp

( |k|2
4a2

)

exp(−(ax)2)

(ax)2

and the proof is complete.

We now start from (2.5) replacing the Hankel function by g0 and define for z ∈ R
2, z 6= 0,

F
(1)
q2 (z) =

i

4

∑

µ∈Z

eiµαL g0(k|z − µLe1|)),

=
∑

µ∈Z

eiµαL

4π

∞
∑

j=0

1

j!

(

k

2a

)2j ∫ ∞

1
s−j−1 e−(a|z−µLe1|)2 s ds. (3.3)
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The heuristic arguments show a possibility to obtain a quickly convergent representation of

F
(2)
q2 (z) := Gq2(z) − F

(1)
q2 (z). (3.4)

We set

h0(kx) = H
(1)
0 (kx) − g0(kx) =

2

iπ

∫

γ̃2

t−1 exp

(

−x2t2 +
k2

4t2

)

dt,

where γ̃2 denotes that part of γ2 which is not the interval (a,∞). From the Fourier transform

∫ ∞

−∞
exp

(

−η2t2
)

exp (−iξη) dη = e−ξ2/(4t2)

∫ ∞

−∞
exp

(

−
(

ηt +
iξ

2t

)2
)

dη = e−ξ2/(4t2)

√
π

t
,

where the last equality follows from an application of Cauchy’s integral theorem, we obtain

∫ ∞

−∞
h0(k|x|) e−ix1sdx1 =

2

i
√

π

∫

γ̃4

t−2 e−x2
2t2 exp

(

k2 − s2

4t2

)

dt.

After compensating for the factor eiµαL, we can now apply Poisson’s summation formula to conclude

F
(2)
q2 (z) =

2

i
√

π L

∑

µ∈Z

ei kαµ z1

∫

γ̃2

t−2 e−(z2)2t2 exp

(

k2β2
µ

4t2

)

dt.

A further simplification of this expression can be achieved, starting from the substitution u = 1/t.

Setting γ3 = {z ∈ C : u = 1/t, t ∈ γ̃2} gives

F
(2)
q2 (z) =

2

i
√

π L

∑

µ∈Z

ei kαµ z1

∫

γ3

exp

(

− z2
2

u2
+

u2k2β2
µ

4

)

du.

We have to distinguish cases depending on the sign of Re(k2β2
µ). Suppose first that Re(k2β2

µ) < 0. In

this case, the path of integration can be shifted to the interval (1/a,∞) and (Abramowitz & Stegun,

1965, equation 7.4.33) yields

∫

γ3

e−
z2
2

u2 +
u2k2β2

µ
4 du =

i
√

π

2 kβµ

(

e−i kβµ z2 erfc

(

az2 − i
kβµ

2a

)

+ ei kβµ z2 erfc

(

−az2 − i
kβµ

2a

))

.

In the case Re(k2β2
µ) > 0 we perform another substitution s = −iu and then apply (Abramowitz &

Stegun, 1965, equation 7.4.33) to end up with the same result. The case Re(k2β2
µ) = 0 is obtained

from the other two by continuity. Concluding, we have obtained the expression

F
(2)
q2 (z) =

i

4L

∑

µ∈Z

1

kβµ
ei kαµ z1

(

e−i kβµ z2 erfc

(

az2 − i
kβµ

2a

)

+ ei kβµ z2 erfc

(

−az2 − i
kβµ

2a

))
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for the function defined in (3.4). It will be beneficial for subsequent arguments to write this function

as two separate series which differ only in the sign of some arguments,

F
(2,±)
q2 (z) =

i

4L

∑

µ∈Z

1

kβµ
ei kαµ z1 e∓i kβµ z2 erfc

(

±az2 − i
kβµ

2a

)

.

From Lemma 3.1, we see that the terms in the representation of F
(1)
q2 are exponentially decaying.

We prove the same for F
(2)
q2 .

Lemma 3.2 Choose µ0 ∈ Z such that |kαµ0 | ≤ |kαµ| for all µ ∈ Z. Then there exists M ∈ N

dependent on k, α and z2 such that for all µ ∈ Z with |µ| ≥ M ,

∣

∣

∣

∣

e∓i kβµ0+µ z2 erfc

(

±az2 − i
kβµ0+µ

2a

)∣

∣

∣

∣

≤ exp

( |k|2
4a2

− a2z2
2 − π2

(aL)2
(|µ| − 1)2

)

.

Proof: The complementary error function can be expressed using the Faddeeva function w (see

(Abramowitz & Stegun, 1965, Formula 7.1.3)). Thus, the terms in the expression for F
(2)
q2 can be

written as

e∓i kβµ z2 erfc

(

±az2 − i
kβµ

2a

)

= e
−a2z2

2+
“

kβµ
2a

”2

w

(

±iaz2 +
kβµ

2a

)

. (3.5)

If the absolute value of µ is large enough, we have arg(±iaz2 + kβµ/(2a)) ∈ [0, π/2). For such

arguments, the absolute value of the Faddeeva function is bounded by 1. Indeed, for x ∈ R, y ∈ R>0,

|w(x + iy)|2 =
4

π
e−2x2+2y2

∣

∣

∣

∣

2√
π

∫ ∞

y−ix
e−t2 dt

∣

∣

∣

∣

2

=
4

π
e−2x2+2y2

∣

∣

∣

∣

∫ ∞

0
e−(s+y−ix)2 ds

∣

∣

∣

∣

2

=
4

π

∣

∣

∣

∣

∫ ∞

0
e−2s(y−ix)−s2

ds

∣

∣

∣

∣

2

=
4

π

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0
e−2(s+t)y+2i(s−t)x−s2−t2 ds dt

∣

∣

∣

∣

≤ 4

π

∫ ∞

0

∫ ∞

0
e−s2−t2 ds dt = 1.

We further have for µ ∈ Z \ {0} and s ∈ {−1, 0, 1}

(

α +
2π

L
(µ0 + µ)

)2

≥ 4π

L

(

α +
2π

L
(µ0 + s)

)

(µ − s) +
4π2

L2
(µ − s)2

and hence
(

α +
2π

L
(µ0 + µ)

)2

≥ 4π2

L2
(|µ| − 1)2 .
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As

k2β2
µ+µ0

= k2 −
(

α +
2π

L
(µ0 + µ)

)2

,

combining the above estimate with (3.5) and the bound for the Faddeeva function yields the assertion.

The statements made in Lemmas 3.1 and 3.2 have been observed frequently in the literature, most

often expressed using asymptotic formulae. Although these estimates give the qualitative behaviour

of the series obtained by Ewald’s method, they are not enough, however, to guarantee a given error

tolerance in the numerical evaluation.

4 Numerical Evaluation of the Ewald Representation

It is the pupose of this section to analyse the difference between the partial sums

F
(1)
q2,M (z) =

µ0+M
∑

µ=µ0−M

eiµαL

4π

∞
∑

j=0

1

j!

(

k

2a

)2j ∫ ∞

1
s−j−1 e−(a|z−µLe1|)2 s ds, (4.1)

F
(2,±)
q2,M (z) =

i

4L

µ0+M
∑

µ=µ0−M

1

kβµ
ei kαµ z1 e∓i kβµ z2 erfc

(

±az2 − i
kβµ

2a

)

, (4.2)

and the full series, respectively, and to discuss the computation of numeric values for these series.

The parameter µ0 should be chosen to center the corresponding partial sum on the dominating terms

in the series. Our results below will include reasonable choices.

We first address the series remaining in (4.1). Defining

F (1)
aux(R,κ, ν) =

∞
∑

j=0

1

j!
κj

∫ ∞

1
s−j−νe−Rs ds.

the first function can be rewritten as

F
(1)
q2,M (z) =

M
∑

µ=−M

eiµαL

4π
F (1)

aux

(

a2|z − µLe1|2,
(

k

2a

)2

, 1

)

.

For most of the remaining discussion we will assume that we can evaluate F
(1)
aux exactly, just as any

other standard or special function used in our expressions. However, the following lemma gives us

some essential properties of this function.

13



Lemma 4.1 For R > 0, arg(κ) ∈ [0, π/2) and ν ≥ 0 we have

∣

∣

∣
F (1)

aux(R,κ, ν)
∣

∣

∣
≤ exp(|κ| − R)

R
,

and additionally for all M ∈ N, ν > 0,

∣

∣

∣

∣

∣

∣

F (1)
aux(R,κ, ν) −

M
∑

j=0

1

j!
κj

∫ ∞

1
s−j−νe−Rs ds

∣

∣

∣

∣

∣

∣

≤ e|κ|−R

M + ν

( |κ|
M + 1

)M+1

.

Proof: The first estimate is elementary. The estimate for the remainder can be obtained from the

observation that the integral in the expression for F
(1)
aux is equal to a generalised exponential integral.

From (Hopf, 1934, page 26) we obtain

e−R

R + p
<

∫ ∞

1
s−pe−Rs ds ≤ e−R

R + p − 1
, R, p > 0 .

Hence

∣

∣

∣

∣

∣

∣

∞
∑

j=M+1

1

j!
κj

∫ ∞

1
s−j−νe−Rs ds

∣

∣

∣

∣

∣

∣

≤ e−R

R + M + ν

∞
∑

j=M+1

1

j!
|κ|j ≤ e|κ|−R

M + ν

( |κ|
M + 1

)M+1

.

It is now fairly simple to estimate the remainder for F
(1)
q2 .

Theorem 4.2 Define µ0 ∈ Z by z1 − µ0L ∈ (−L/2, L/2] and let M ∈ N. Then

∣

∣

∣F
(1)
q2 (z) − F

(1)
q2,M (z)

∣

∣

∣ ≤
exp

(

|k|2/(4a2) − a2z2
2

)

2π a2
(

z2
2 + (ML)2

)

(1 − exp(−2a2ML2))
e−(aML)2 .

Proof: From the first estimate in Lemma 4.1 we have

∣

∣

∣
F

(1)
q2 (z) − F

(1)
q2,M (z)

∣

∣

∣
≤ 1

4π

∑

|µ−µ0|≥M+1

∣

∣

∣

∣

∣

F (1)
aux

(

a2
(

(z1 − µL)2 + z2
2

)

,

(

k

2a

)2

, 1

)∣

∣

∣

∣

∣

≤ exp
(

|k2|/(4a2) − a2z2
2

)

4π

∑

|µ−µ0|≥M+1

exp
(

−a2(z1 − µL)2
)

a2
(

(z1 − µL)2 + z2
2

) .

For |µ − µ0| ≥ M + 1, we find

(z1 − µL)2 ≥ (z1 − µ0L ± (M + 1)L)2 + 2L (z1 − µ0 ± (M + 1)L) (µ0 − µ ∓ (M + 1)),
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from which we conclude

(z1 − µL)2 ≥ M2L2 + 2ML2 (|µ0 − µ| − (M + 1)) ≥ M2L2 .

Thus

∑

|µ−µ0|≥M+1

exp
(

−a2(z1 − µL)2
)

a2((z1 − µL)2 + z2
2)

≤ 2 exp(−(aML)2)

a2
(

(ML)2 + z2
2

)

∞
∑

µ=M+1

e−2ML2a2(µ−(M+1)) .

The assertion now follows using the geometric series.

The analysis of the two functions representing F
(2)
q2 is slightly more complicated. One way to

evaluate the complementary error function is through (3.5) using the Faddeeva function. However,

in the case ±az2 + Im(kβµ/(2a)) < 0 a numerical evaluation of the right-hand side of (3.5) may not

be stable. In this case, we use the elementary formula

w(z) = w(−z) = 2 e−z2 − w(z)

to obtain

e−i kβµ z2 erfc

(

az2 − i
kβµ

2a

)

= 2e−i kβµ z2 − e
−a2z2

2+
“

kβµ
2a

”2

w

(

−iaz2 +
kβµ

2a

)

. (4.3)

The representations (3.5) and (4.3) also lead to separate error estimates valid for different ranges of

cut-off indices.

Theorem 4.3 Choose µ0 as in Lemma 3.2 and set M0 = |kLαµ0/(2π)|. Then, for M ≥ M0 satis-

fying also min Im(kβµ0±M) > 0 and ±az2 + Im(kβµ0+M/(2a)) ≥ 0,

∣

∣

∣
F

(2,±)
q2 (z) − F

(2,±)
q2,M (z)

∣

∣

∣
≤

exp
(

∣

∣

k
2a

∣

∣

2 − a2z2
2 − 2π2 (M−M0)

a2L2

)

2L min Im(kβµ0±M )
(

1 − exp
(

−2π2 (M−M0)
a2L2

)) e−
π2

a2L2 (M−M0)2 .

Proof: Recall that

(kβµ)2 = k2 −
(

α +
2πµ

L

)2

.

With arguments similar to those at the end of the proof of Lemma 3.2, we obtain for any integer

M ≥ M0 and any µ ≥ 0,

(

α +
2π (µ0 ± (M + µ))

L

)2

≥ 4π2

L2
[M − M0 + µ]2 ≥ 4π2

L2

[

(M − M0)
2 + 2(M − M0)µ

]

.
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Hence, from (3.5) and the bound on the Faddeeva function,

∣

∣

∣F
(2,±)
q2 (z) − F

(2,±)
q2,M (z)

∣

∣

∣ =
1

4L

∣

∣

∣

∣

∣

∣

∑

|µ−µ0|>M

1

kβµ
ei kαµ z1e∓i kβµ z2 erfc

(

±az2 − i
kβµ

2a

)

∣

∣

∣

∣

∣

∣

≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
2

)

4L

∑

|µ−µ0|>M

1

|kβµ|
exp

(

−(α + 2πµ/L)2

4a2

)

≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
2 − π2 (M−M0)2

a2L2

)

2L min Im(kβµ0±M )

∞
∑

µ=1

exp

(

−2π2 (M − M0)

a2L2
µ

)

=
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
2 − π2 (M−M0)2

a2L2

)

2L min Im(kβµ0±M )

exp
(

−2π2 (M−M0)
a2L2

)

1 − exp
(

−2π2 (M−M0)
a2L2

) .

In the case ±az2 + Im(kβµ0+M/(2a)) < 0, we require some additional estimates. For any µ ∈ Z

such that k2α2
µ ≥ Re(k2) we have

|kβµ|2 = |k2β2
µ| ≥ |Re(k2β2

µ)| = |Re(k2) − k2α2
µ| = k2α2

µ − Re(k2) . (4.4)

Choose µ0 and M0 as in Lemma 3.2 and Theorem 4.3 and set

M1 = M0 +























L

2π

√

Re(k2), Re(k2) ≥ 0 ,

0, otherwise.

Then for |µ − µ0| > M1 and if also k2α2
µ ≥ Re(k2), using (4.4),

|kβµ|2 ≥
(

2π

L
(|µ − µ0| − M1) +

2π

L
M1 −

∣

∣

∣

∣

α +
2π

L
µ0

∣

∣

∣

∣

)2

− Re(k2)

≥ 4π2

L2
(|µ − µ0| − M1)

2 +
4π2

L2
(M1 − M0)

2 − Re(k2) ≥ 4π2

L2
(|µ − µ0| − M1)

2 . (4.5)

Note furthermore that k2α2
µ ≥ Re(k2) if and only if Re(kβµ) ≤ Im(kβµ).

Theorem 4.4 Choose µ0, M0 and M1 as above. Then, for M ≥ M1 satisfying also Im(kβµ0±M ) ≥

Re(kβµ0±M ),

∣

∣

∣
F

(2,±)
q2 (z) − F

(2,±)
q2,M (z)

∣

∣

∣
≤

exp
(

∣

∣

k
2a

∣

∣

2 − a2z2
2 − 2π2 (M−M0)

a2L2

)

2L min Im(kβµ0±M)
(

1 − exp
(

−2π2 (M−M0)
a2L2

)) e−
π2

a2L2 (M−M0)2

+
1

L min Im(kβµ0±M )

e
− 2π |z2|√

2 L

1 − e
− 2π |z2|√

2 L

e
− 2π√

2 L
(M−M1) |z2| .
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Proof: From (4.5) and the assumptions on M , we have for µ > 0,

(

Im(kβµ0±(M+µ))
)2 ≥ 1

2
|kβµ0±(M+µ)|2 ≥ 2π2

L2
(M + µ − M1)

2 .

Denote by M the set of those µ ∈ Z for which ±az2 + Im(kβµ/(2a)) < 0. Then, using (3.5) and

(4.3),

∣

∣

∣

∣

∣

∣

∑

|µ−µ0|>M

1

kβµ
ei kαµ z1ei kβµ z2 erfc

(

−az2 − i
kβµ

2a

)

∣

∣

∣

∣

∣

∣

≤
∑

|µ−µ0|>M
µ∈M

2

|kβµ|
e− Im(kβµ) |z2| + e| k

2a |2−a2z2
2

∑

|µ−µ0|>M

1

|kβµ|
e−

(α+2πµ/L)2

4a2

≤ 4 e
− 2π√

2 L
(M−M1) |z2|

min Im(kβµ0±M )

e
− 2π |z2|√

2 L

1 − e
− 2π |z2|√

2 L

+
2e|

k
2a |2−a2z2

2− π2

a2L2 (M−M0)2

min Im(kβµ0±M)

e−
2π2

a2L2 (M−M0)

1 − e−
2π2

a2L2 (M−M0)
.

By Theorem 4.3, the final estimate holds for ±az2 + Im(kβµ/(2a)) ≥ 0 as well.

The estimate in Theorem 4.3 corresponds to the asymptotic decay rate of the terms in the series.

The bound in Theorem 4.4 contains an additional term which decays at a slower rate. However,

particularly in cases where az2 is negative and has small absolute value, only using Theorem 4.3 for

deciding how many terms in the series to use for the approximation may lead to an unnecessarily

large number of terms being used.

5 The Three-Dimensional Setting

Similarly as for the case of the quasi-periodic Green’s function in two dimensions, Ewald’s method

may be applied to derive expressions for the quasi-biperiodic Green’s function in three dimensions.

The derivation, starting from (2.8), is similar to that in the two-dimensional case and it is carried

out in (Arens, 2010) in detail. We obtain

Gq3(z) = F
(1)
q3 (z) + F

(2)
q3 (z), z ∈ R

3 \ {0} , (5.1)
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where

F
(1)
q3 (z) =

a

4π3/2

∑

µ∈Z2

ei α·p(µ)
∞
∑

j=0

1

j!

(

k

2a

)2j ∫ ∞

1
s−j−1/2e−a2|z−p(µ)|2s ds ,

F
(2,±)
q3 (z) =

i

4L1 L2

∑

µ∈Z2

1

kρµ
eik α(µ)·z e∓i kρµ z3 erfc

(

±a z3 − i
kρµ

2a

)

.

The equivalent of Lemma 3.1 is also shown in (Arens, 2010). The partial sums used for the evaluation

will be written in the form

F
(1)
q3,M (z) =

a

4π3/2

M
∑

m=0

∑

|µ−µ0|∞=m

eiα·p(µ)

4π
F (1)

aux

(

a2|z − p(µ)|2,
(

k

2a

)2

,
1

2

)

, (5.2)

F
(2,±)
q3,M (z) =

i

4L1 L2

M
∑

m=0

∑

|µ−µ0|∞=m

1

kρµ
eik α(µ)·z e∓i kρµ z3 erfc

(

±a z3 − i
kρµ

2a

)

. (5.3)

Estimates for the remainders in the series can be obtained in a similar way to that used for the

two-dimensional case. For their formulation, we will abbreviate L = minj=1,2 Lj .

Theorem 5.1 Define µ0 ∈ Z
2 by z − p(µ0) ∈ (−L1/2, L1/2] × (−L2/2, L2/2] × R and let M ∈ N.

Then

∣

∣

∣F
(1)
q3 (z) − F

(1)
q3,M(z)

∣

∣

∣ ≤
8 exp

(

|k|2/(4a2) − a2z2
3

)

π3/2 aML2 (1 − exp(−2a2ML2))
e−(aML)2 .

Proof: From Lemma 4.1 we have

∣

∣

∣F
(1)
q3 (z) − F

(1)
q3,M(z)

∣

∣

∣ ≤
a exp

(

|k2|/(4a2) − a2z2
3

)

4π3/2

∞
∑

m=M+1

∑

|µ|∞=m

exp
(

−a2 |z̃ − p(µ)|2
)

a2 |z − p(µ)|2 .

For µ ∈ Z
2 such that |µ − µ0|∞ = m we choose j0 ∈ {1, 2} such that |µj0 − µ0,j0| = m. As in the

proof of Theorem 4.2, we can then estimate for |µ − µ0|∞ = m ≥ M + 1,

|z̃ − p(µ)|2 ≥ (zj0 − µj0Lj0)
2 ≥ M2L2 + 2ML2 (m − (M + 1)) ≥ M2L2 .

We also have

|z − p(µ)|2 ≥ (zj0 − µj0Lj0)
2 ≥ (µj0 − µ0,j0)

2

(

Lj0 −
zj0 − µ0,j0Lj0

µj0 − µ0,j0

)2

≥ m2 L2

4
≥ M m

L2

4
.

Note further that for m ∈ N there are 8 different µ ∈ Z
2 such that |µ|∞ = m. Hence

∣

∣

∣
F

(1)
q3 (z) − F

(1)
q3,M (z)

∣

∣

∣
≤

8a exp
(

|k2|
4a2 − a2z2

3 − M2L2
)

π3/2 a2M L2

∞
∑

m=M+1

exp
(

−2ML2a2 (m − (M + 1))
)

.
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The assertion now follows using the geometric series.

For F
(2,±)
q3,M , we define µ0 ∈ Z

2 by |α(µ0)|∞ ≤ |α(µ)|∞ for all µ ∈ Z
2 and set

M0 = max

{∣

∣

∣

∣

L1α1

2π
+ µ0,1

∣

∣

∣

∣

,

∣

∣

∣

∣

L2α2

2π
+ µ0,2

∣

∣

∣

∣

}

.

We also set

M1 = M0 +























L

2π

√

Re(k2), Re(k2) ≥ 0 ,

0, otherwise.

Theorem 5.2 Let µ0, M0 and M1 be defined as above and let M ≥ M1 such that also Im(kρµ) ≥

Re(kρµ) for all µ ∈ Z
2 with |µ − µ0|∞ > M . Then

∣

∣

∣F
(2,±)
q3 (z) − F

(2,±)
q3,M (z)

∣

∣

∣ ≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
3 − 2π2 (M−M0)

a2L2

)

π maxj=1,2 Lj

(

1 − exp
(

−2π2 (M−M0)
a2L2

)) e−
π2

a2L2 (M−M0)2

+
exp

(

−
√

2π |z3|
L

)

π maxj=1,2 Lj

(

1 − exp
(

−
√

2π |z3|
L

)) e−
√

2π
L

|z3| (M−M1) .

If additionally ±az3 + Im(kρµ/(2a)) ≥ 0 for all µ ∈ Z
2 with |µ − µ0|∞ > M , then

∣

∣

∣F
(2,±)
q3 (z) − F

(2,±)
q3,M (z)

∣

∣

∣ ≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
3 − 2π2 (M−M0)

a2L2

)

π maxj=1,2 Lj

(

1 − exp
(

−2π2 (M−M0)
a2L2

)) e−
π2

a2L2 (M−M0)2 .

Proof: In the case ±az3 + Im(kρµ/(2a)) ≥ 0 for |µ − µ0|∞ = m > M , we use (3.5) to estimate

∣

∣

∣
F

(2,±)
q3 (z) − F

(2,±)
q3,M (z)

∣

∣

∣

=
1

4L1 L2

∣

∣

∣

∣

∣

∣

∞
∑

m=M+1

∑

|µ−µ0|∞=m

1

kρµ
eik α(µ)·z e∓i kρµ z3 erfc

(

±a z3 − i
kρµ

2a

)

∣

∣

∣

∣

∣

∣

≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
3

)

4L1 L2

∞
∑

m=M+1

∑

|µ−µ0|=m

1

|kρµ|
exp

(

−|α + q(µ)|2
4a2

)

.

As in the proof of Theorem 4.3, we obtain

|α + q(µ)|2 ≥ 4π2

maxj=1,2 Lj

[

(M − M0)
2 + 2(M − M0) (m − M)

]

and for Im(kρµ) ≥ Re(kρµ) as in (4.4) and (4.5) that

|kρµ|2 ≥ 4π2

maxj=1,2 Lj
(m − M1)

2 ≥ 4π2

maxj=1,2 Lj
(m − M)2 .
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Hence

∣

∣

∣F
(2,±)
q3 (z) − F

(2,±)
q3,M (z)

∣

∣

∣

≤
L exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
3 − π2 (M−M0)2

a2L2

)

π L1 L2

∞
∑

m=M+1

exp

(

− 2π2

a2L2
(M − M0) (m − M)

)

≤
exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
3 − π2 (M−M0)2

a2L2

)

π maxj=1,2 Lj

exp
(

−2π2 (M−M0)
a2L2

)

1 − exp
(

−2π2 (M−M0)
a2L2

) .

To treat the general case we derive as in (4.4) and (4.5) that for |µ − µ0|∞ = m > M ,

Im(kρµ) ≥
√

2π

maxj=1,2 Lj
(m − M1) .

As in the proof of Theorem 4.4, we obtain an additional series, which we estimate by

∞
∑

m=M+1

∑

|µ−µ0|∞=m

exp(− Im(kρµ) |z3|)
4L1 L2 |kρµ|

≤ maxj=1,2 Lj

π L1 L2

∞
∑

m=M+1

exp

(

−
√

2π

L
(m − M1) |z3|

)

≤ 1

π L
exp

(

−
√

2π

L
(M − M1) |z3|

)

exp
(

−
√

2π |z3|
L

)

1 − exp
(

−
√

2π |z3|
L

) .

6 Choosing a

To evaluate the periodic Green’s function for a given set of parameters using Ewald’s method, some

value for the free parameter a needs to be chosen. Such a choice should minimise the cost for the

evaluation of the function up to a required accuracy. This goal amounts to an a-priori balancing in

the number of terms evaluated in the two truncated series.

To be able to judge the costs for the evaluation of the series fairly, as a prerequisite for choosing

a, the time for an accurate evaluation of each term in should be bounded. For the case of F
(1)
∗ , this

means bounding the time for an efficient evaluation of F
(1)
aux. To this end, we fix a value of M and

prescribe that given an ε > 0, a should be chosen such that

( |k|2
4a2 (M + 1)

)M+1

≤ ε ,
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Figure 2: ε against the right-hand side of (6.2) for M = 15 and ν = 1

which amounts to the lower bound for a,

a ≥ |k|
√

M + 1 ε
2

M+1

. (6.1)

For any a satisfying this lower bound, we have by Lemma 4.1 that

∣

∣

∣

∣

∣

∣

F (1)
aux

(

R,
k2

4a2
, ν

)

−
M
∑

j=0

1

j!

(

k2

4a2

)j ∫ ∞

1
s−j−νe−Rs ds

∣

∣

∣

∣

∣

∣

≤ e(M+1) ε1/(M+1)
ε

M + ν
. (6.2)

Figure 2 shows a plot of ε against the right-hand side of (6.2), demonstrating a good correspondence.

A second issue in choosing a is that care has to be taken to avoid instability and cancella-

tion effects. The bounds on the terms in the series derived in Sections 3–5 all contain a factor

exp
(

|k|2/(4a2) − a2 z2
j

)

, j = 2 or j = 3. The control parameter a has to be chosen so that this

expression is of the same order of magnitude as the expected value of the Green’s function to avoid

cancellation effects.

Crude estimates of the order of magnitude of the value of the Green’s function can be obtained

from (2.5) or (2.8). Choosing µ0 as in Theorems 4.2 and 5.1, respectively, one can define

Gq2,est(z) =
i

2

µ0+p
∑

µ=µ0−p

eiµαL H
(1)
0









k

∣

∣

∣

∣

∣

∣

∣

∣

z − µ









L

0









∣

∣

∣

∣

∣

∣

∣

∣









,

Gq3,est(z) =
1

2π

∑

|µ−µ0|∞≤p

eiα·p(µ) eik|z−p(µ)|

|z − p(µ)| ,
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for some small value of p, i.e. twice the value of truncated series of point sources. The condition

exp

( |k|2
4a2

− a2 z2
j

)

≤ |Gqj,est(z)| (6.3)

can be used for computing a lower bound for sensible values of a. Assuming |zj | > 0, we obtain

a2 ≥

√

|k|2
4

+

(

log |Gqj,est(z)|
2 |zj |2

)2

− log |Gqj,est(z)|
2 |zj |2

. (6.4)

Note, however, that (6.3) cannot be satisfied for any value of a if zj = 0 and |Gqj,est(z)| < 1. For

small values of |zj | the lower bound (6.4) may also require a value of a far from a value considered

optimal for the reasons outlined below. These situations reflect cases in which we can only guarantee

an absolute, but not a relative error in the value computed for the Green’s function, as individual

terms in both of the series in Ewald’s expression will be larger than its value. One way to deal with

this case is to use special computer arithmetic, but we don not pursue this approach here.

We now return to the question of an optimal choice for a, bearing in mind the necessity to satisfy

the lower bounds (6.1) and (6.4). Given the complexity of error estimates, the exact optimal a for a

given parameter set is hard to obtain. However, the dominating factor influenceable by choosing a

in Theorems 4.2 and 5.1 is exp
(

− a2L2 M (1)2
)

, where M (1) denotes the cut-off index of the series.

Similarly, the dominating factor in both Theorem 4.3 and the second estimate in Theorem 5.2 is

exp
(

− −π2

a2L2 (M (2) − M0)
2
)

. Note that the slower decaying term in Theorem 4.4 and in the first

estimate in Theorem 5.2 is independent of a.

For the two-dimensional case, minimising M (1)+M (2) while ensuring that both dominating terms

are equal to a prescribed value ε leads to the condition

a =

√
π

L
.

This is the same value as recommended in (Capolino et al., 2005). An optimal choice of a is thus the

maximum of this value and the lower bounds in (6.1) and (6.4).

We have carried out a number of numerical tests to study the effect of this choice of a. Figures 3

and 4 in the left-hand column show the effect varying a has on the accuracy of the calculation. The

22



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−14

10
−6

10
2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10
−5

10
−3

10
−1

(a) z2 = 0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−14

10
−6

10
2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10
−5

10
−3

10
−1

(b) z2 = 0.125

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−14

10
−6

10
2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10
−5

10
−3

10
−1
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Figure 3: Plots of difference to value computed for recommended a against a (left) and computation

time per Green’s function evaluation against a in seconds (right). All examples use k =
√

2, z1 = 0.02,

α =
√

3/4 and L = 2π.
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(f) z2 = 0

Figure 4: Plots of difference to value computed for recommended a against a (left) and computation

time per Green’s function evaluation against a in seconds (right). All examples use k =
√

2, z1 = 0.02,

α =
√

3/4 and L = 8π.

distance from the horizontal line z2 = 0 is different from picture to picture while all other parameters

stay constant. Figure 3 uses a period of 2π while Figure 4 uses one of 8π. Partial sums of the series

representing the Green’s functions were calculated up to a point where the estimates given in the

previous sections guarantee an absolute error of less than 10−12, indicated by the red dashed line.

The dotted vertical line signifies the location of the recommended value of a. The plotted accuracy

corresponds to the absolute difference to the value obtained for the recommended value of a. In all

cases, our recommended value stays well clear of the range of a where cancellation effects occur and

the calculation becomes unstable.

On the right hand column of both figures, the effect that varying a has on the computational

time is displayed. The red circle indicates the location and computational time for the recommended

value of a. The computational time required for this a is never significantly higher than the minimal
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time among all calculations. However, for the two-dimensional Green’s function, the effect of varying

a on computational time is not very pronounced.

For the three-dimensional case, balancing the costs of the series evaluations is more complicated,

as these costs grow quadratically in M (l), l = 1, 2. Thus, the value of M0 becomes important. Again

equating the dominating terms to ε, we minimse

M (1)2 + M (2)2 =
log(1/ε)

a2L2
+

(

aL
√

log(1/ε)

π
+ M0

)2

.

This leads to the equation

a4 +
M0π

L
√

log(1/ε)
a3 − π2

L4
= 0 .

The left-hand side is a strictly monotonic function for positive a and has a single root. We recommend

to choose a as the maximum of this root and the lower bounds in (6.1) and (6.4).

Results analogous to those for the two-dimensional case are presented in Figure 5. The overall

results are quite similar, though the effect of choosing a on the total cost of the evaluation is much

more pronounced. The recommended value does again not lead to significantly higher costs than

the minimal value obtained using these tests. More results along these lines are presented in (Arens,

2010).

Having given an answer to the question of the choice of a, recommendations should also be given

on when to use Ewald’s representation rather than a different one. The obvious alternative is the

modal representation which consists only of functions that are relatively simple to evaluate, and it

is exponentially convergent for z2 6= 0 and z3 6= 0, respectively.

Tests have been carried out for the two-dimensional case for various values of k, L and z2 com-

paring computation times. For each combination of parameters, 1000 (for small values of z2) or 5000

(for large values of z2) random values of z1 were generated. The Green’s function was evaluated

both using Ewald’s representation with the recommended value of a and using the modal represen-

tation (2.7). In the case of Ewald’s representation, the series were evaluated up to a guaranteed

error of 10−12 using the bounds in Theorems 4.2, 4.3 and 4.4. For the modal representation, the
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Figure 5: Plots of difference to value computed for recommended a against a (left) and computation

time per Green’s function evaluation against a in seconds (right). All examples use k =
√

2, z1 = 0,

z2 = 0.02, α1 = α2 =
√

3/4 and L1 = L2 = 2π.
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first partial sum having a value within a 10−11-neighborhood of the value computed using Ewald’s

method was evaluated. This methodology contains a bias towards the modal representation in that

the modal representation is computed to a slightly less accurate level, that no error estimators need

to be computed and that there are no influences due to a possibly pessimistic error estimator.

The results are displayed in Figure 6. Firstly, it appears that the computation times using Ewald’s

representation remain fairly constant when z1 is varied. In contrast, for small z2, the computation

time using the modal expansion roughly increases by a factor of 2 if z2 is divided by 2. This increase

is observable in all examples, uniformly for all parameter choices. For large z2, the computation time

using the modal expansion also becomes constant. This behaviour corresponds to the fact that for

large z2 only the plane wave terms form an observable contribution to the Green’s function value.

Ewald’s method is more efficient only in a small neighborhood of the z2 axis. At larger distance,

the evaluation is more costly than the modal expansion by a factor ranging between 10 and 50.

However, it must be noted that points with a distance of less than 0.16 from the origin, where the

singularity is located, were excluded from being chosen for evaluation as the modal expansion did

not reliably converge for such points. Our conclusion is to recommend the use of Ewald’s method for

points close to the z2-axis. A value of |z2| = 0.2 seems to be a reasonable choice.

The observations are similar but much more pronounced for the three-dimensional case. Corre-

sponding numerical results are presented in (Arens, 2010).

7 Evaluation of Derivatives

Applications such as boundary integral equation methods also require the evaluation of derivatives of

the Green’s functions. Lemmas 3.1 and 3.2 show that the series representing F
(1)
q2 and F

(2,±)
q2 converge

uniformly on compact subsets of R
2. Hence, expressions for partial derivatives can be obtained by

term by term differentiation of these series. The same arguments hold for F
(1)
q3 and F

(2,±)
q3 . Also
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Figure 6: Plots of computation time against z2 for Ewald’s method using the recommended value of

a (blue crosses) and for the modal expansion (red circles). Between 1000 and 5000 random values for

z1 are used and computation times are averaged. Values using Ewald’s representation are computed

up to a guaranteed error of 10−12, values using the modal expansion up to a difference of 10−11 to

the value for Ewald’s method. All examples use α =
√

3/4.
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noting

∂

∂R
F (1)

aux(R,κ, ν) = −F (1)
aux(R,κ, ν − 1) for ν ≥ 1 ,

we obtain the expressions

∇F
(1)
q2 (z) = − a2

2π

∑

µ∈Z

eiµαL (z − µLe1)F (1)
aux

(

a2|z − µLe1|2,
( k

2a

)2
, 0

)

,

∇F
(2,±)
q2 (z) =

i

4L

∑

µ∈Z

1

kβµ
eıkαµz1 e∓ıkβµz2

[









ikαµ

∓ikβµ









erfc
(

± az2 − i
kβµ

2a

)

− 2√
π









0

±a









exp

(

−
(

± az2 − i
kβµ

2a

)2
)]

,

as well as

∇F
(1)
q3 (z) = − a3

2π3/2

∑

µ∈Z2

ei α·p(µ)
(z − p(µ))F (1)

aux

(

a2|z − p(µ)|2,
( k

2a

)2
,−1

2

)

,

∇F
(2,±)
q3 (z) =

i

4L1 L2

∑

µ∈Z2

1

kρµ
eik α(µ)·z e∓i kρµ z3

































ikα
(µ)
1

ikα
(µ)
2

∓ikρµ

















erfc

(

±a z3 − i
kρµ

2a

)

− 2√
π

















0

0

±a

















exp

(

−
(

± az3 − i
kρµ

2a

)2
)

















.

For the remainder of this section we will only treat the 2D case. The biperiodic functions are easy

to treat in the same way.

Truncated versions of the series denoted by ∇F
(1)
q2,M and ∇F

(2,±)
q2,M are defined by replacing the

series in the expressions above by summations
∑µ0+M

µ=µ0−M . The following theorems give estimates for

the remainders.

Theorem 7.1 Define µ0 ∈ Z by z1 − µ0L ∈ (−L/2, L/2] and let M ∈ N. Then there holds

∥

∥

∥
∇F

(1)
q2 (z) −∇F

(1)
q2,M(z)

∥

∥

∞ ≤ exp (|k|2/(4a2) − a2z2
2)

π
√

(ML)2 + z2
2 (1 − exp (−2a2ML2))

e−(aML)2 .
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Proof: Exactly as in the proof of Theorem 4.2, we estimate

∥

∥

∥
∇F

(1)
q2 (z) −∇F

(1)
q2,M(z)

∥

∥

∥

∞
≤ a2 exp (|k|2/(2a)2 − a2z2

2)

2π

∑

|µ−µ0|≥M+1

exp (−a2(z1 − µL)2)

a2
√

(z1 − µL)2 + z2
2

≤ exp (|k|2/(2a)2 − a2z2
2)

π

exp (−a2(ML)2)
√

(ML)2 + z2
2

∞
∑

µ=M+1

e−2ML2a2(µ−(M+1)) .

A geometric series argument then gives the assertion.

Theorem 7.2 Let the assumptions of Theorem 4.3 hold and, in addition, let K be defined by

K =























max
µ∈Z

|1 − 1/α2
µ|−1/2, if Re(k2) > Im(k2),

1, otherwise.

Then

∥

∥

∥∇F
(2,±)
q2 (z) −∇F

(2,±)
q2,M (z)

∥

∥

∥

∞

≤
(

K +
2a√

π min Im (kβµ0±M)

) exp

(

∣

∣

k
2a

∣

∣

2 − a2z2
2 − 2π2 (M−M0)

a2L2

)

2L

(

1 − exp
(

− 2π2 (M−M0)
a2L2

)

) e−
π2

a2L2 (M−M0)2 .

Proof: We start with the reformulation

∥

∥

∥∇F
(2,±)
q2 (z) −∇F

(2,±)
q2,M (z)

∥

∥

∥

∞
=

1

4L

∥

∥

∥

∥

∥

∑

|µ−µ0|>M

1

kβµ
eikαµz1

[









ikαµ

∓ikβµ









T±
1,µ +









0

±a









T±
2,µ

]

∥

∥

∥

∥

∥

∞

where

T±
1,µ = e∓ikβµz2 erfc

(

± az2 − i
kβµ

2a

)

, T±
2,µ =

2√
π

e∓ikβµz2 exp

(

−
(

± az2 − i
kβµ

2a

)2
)

.

Observing that
∣

∣

∣

∣

αµ

βµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

1 − 1
α2

µ

∣

∣

∣

∣

∣

1/2

≤ K , µ ∈ Z ,

we conclude

∥

∥

∥
∇F

(2,±)
q2 −∇F

(2,±)
q2,M

∥

∥

∥

∞
≤ 1

4L

∑

|µ−µ0|>M

(

K |T±
1,µ| +

a

|kβµ|
|T±

2,µ|
)

.

Similar to the argument in the proof of Theorem 4.3, we estimate |T±
1,µ| by

|T±
1,µ| ≤ exp

(

∣

∣

∣

k

2a

∣

∣

∣

2
− a2z2

2

)

exp

(

−(α + 2πµ/L)2

4a2

)

.
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Figure 7: Plots of difference to value computed for recommended a against a for evaluation of the

Green’s function’s gradient. Blue crosses indicate the derivative with respect to z1, magenta diamonds

those with respect to z2. All examples use k =
√

2, α =
√

3/4 and L = 2π.

Obviously, |T±
2,µ| can be bounded by

|T±
2,µ| ≤

2√
π

∣

∣

∣

∣

exp

(

(kβµ

2a

)2
− a2z2

2

)∣

∣

∣

∣

≤ 2√
π

exp

(

∣

∣

∣

k

2a

∣

∣

∣

2
− a2z2

2

)

exp

(

−(α + 2πµ/L)2

4a2

)

.

Inserting these bounds in the reformulation above and rearranging terms yields

∥

∥

∥
∇F

(2,±)
q2 (z) −∇F

(2,±)
q2,M (z)

∥

∥

∥

∞
≤
(

K +
2a√

π min Im (kβµ0±M )

)

[

1

4L
exp

(

∣

∣

∣

k

2a

∣

∣

∣

2
− a2z2

2

)

×
∑

|µ−µ0|>M

exp

(

−(α + 2πµ/L)2

4a2

)]

.

We now derive the assertion by arguing as in the proof of Theorem 4.3.

The considerations for the choice of a remain the same for the evaluation of the gradient. Figure

7 displays some results for computing the partial derivatives. In all computations a guaranteed

accuracy of 10−12 (indicated by the dashed horizontal line) was prescribed and achieved except for

those values of a where cancellation errors dominate. The recommended value of a is denoted by the

dotted vertical line. Results for computational times are also very similar to those for computing the

Green’s function itself and hence we omit presenting them.

An estimate analogous to that given in Theorem 4.4 can also be established for the derivatives of

31



F
(2,±)
q2 . However, the principles being clear from what has been shown, we do not present the details

here.
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