4 research outputs found

    Improved Dropout for Shallow and Deep Learning

    Full text link
    Dropout has been witnessed with great success in training deep neural networks by independently zeroing out the outputs of neurons at random. It has also received a surge of interest for shallow learning, e.g., logistic regression. However, the independent sampling for dropout could be suboptimal for the sake of convergence. In this paper, we propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to a multinomial distribution with different probabilities for different features/neurons. To exhibit the optimal dropout probabilities, we analyze the shallow learning with multinomial dropout and establish the risk bound for stochastic optimization. By minimizing a sampling dependent factor in the risk bound, we obtain a distribution-dependent dropout with sampling probabilities dependent on the second order statistics of the data distribution. To tackle the issue of evolving distribution of neurons in deep learning, we propose an efficient adaptive dropout (named \textbf{evolutional dropout}) that computes the sampling probabilities on-the-fly from a mini-batch of examples. Empirical studies on several benchmark datasets demonstrate that the proposed dropouts achieve not only much faster convergence and but also a smaller testing error than the standard dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves relative improvements over 10\% on the prediction performance and over 50\% on the convergence speed compared to the standard dropout.Comment: In NIPS 201

    Dropout distillation

    Get PDF
    Dropout is a popular stochastic regularization technique for deep neural networks that works by randomly dropping (i.e. zeroing) units from the network during training. This randomization process allows to implicitly train an ensemble of exponentially many networks sharing the same parametrization, which should be averaged at test time to deliver the final prediction. A typical workaround for this intractable averaging operation consists in scaling the layers undergoing dropout randomization. This simple rule called ’standard dropout’ is efficient, but might degrade the accuracy of the prediction. In this work we introduce a novel approach, coined ’dropout distillation’, that allows us to train a predictor in a way to better approximate the intractable, but preferable, averaging process, while keeping under control its computational efficiency. We are thus able to construct models that are as efficient as standard dropout, or even more efficient, while being more accurate. Experiments on standard benchmark datasets demonstrate the validity of our method, yielding consistent improvements over conventional dropout

    Machine Learning for Resource-Constrained Computing Systems

    Get PDF
    Die verfügbaren Ressourcen in Informationsverarbeitungssystemen wie Prozessoren sind in der Regel eingeschränkt. Das umfasst z. B. die elektrische Leistungsaufnahme, den Energieverbrauch, die Wärmeabgabe oder die Chipfläche. Daher ist die Optimierung der Verwaltung der verfügbaren Ressourcen von größter Bedeutung, um Ziele wie maximale Performanz zu erreichen. Insbesondere die Ressourcenverwaltung auf der Systemebene hat über die (dynamische) Zuweisung von Anwendungen zu Prozessorkernen und über die Skalierung der Spannung und Frequenz (dynamic voltage and frequency scaling, DVFS) einen großen Einfluss auf die Performanz, die elektrische Leistung und die Temperatur während der Ausführung von Anwendungen. Die wichtigsten Herausforderungen bei der Ressourcenverwaltung sind die hohe Komplexität von Anwendungen und Plattformen, unvorhergesehene (zur Entwurfszeit nicht bekannte) Anwendungen oder Plattformkonfigurationen, proaktive Optimierung und die Minimierung des Laufzeit-Overheads. Bestehende Techniken, die auf einfachen Heuristiken oder analytischen Modellen basieren, gehen diese Herausforderungen nur unzureichend an. Aus diesem Grund ist der Hauptbeitrag dieser Dissertation der Einsatz maschinellen Lernens (ML) für Ressourcenverwaltung. ML-basierte Lösungen ermöglichen die Bewältigung dieser Herausforderungen durch die Vorhersage der Auswirkungen potenzieller Entscheidungen in der Ressourcenverwaltung, durch Schätzung verborgener (unbeobachtbarer) Eigenschaften von Anwendungen oder durch direktes Lernen einer Ressourcenverwaltungs-Strategie. Diese Dissertation entwickelt mehrere neuartige ML-basierte Ressourcenverwaltung-Techniken für verschiedene Plattformen, Ziele und Randbedingungen. Zunächst wird eine auf Vorhersagen basierende Technik zur Maximierung der Performanz von Mehrkernprozessoren mit verteiltem Last-Level Cache und limitierter Maximaltemperatur vorgestellt. Diese verwendet ein neuronales Netzwerk (NN) zur Vorhersage der Auswirkungen potenzieller Migrationen von Anwendungen zwischen Prozessorkernen auf die Performanz. Diese Vorhersagen erlauben die Bestimmung der bestmöglichen Migration und ermöglichen eine proaktive Verwaltung. Das NN ist so trainiert, dass es mit unbekannten Anwendungen und verschiedenen Temperaturlimits zurechtkommt. Zweitens wird ein Boosting-Verfahren zur Maximierung der Performanz homogener Mehrkernprozessoren mit limitierter Maximaltemperatur mithilfe von DVFS vorgestellt. Dieses basiert auf einer neuartigen {Boostability}-Metrik, die die Abhängigkeiten von Performanz, elektrischer Leistung und Temperatur auf Spannungs/Frequenz-Änderungen in einer Metrik vereint. % ignorerepeated Die Abhängigkeiten von Performanz und elektrischer Leistung hängen von der Anwendung ab und können zur Laufzeit nicht direkt beobachtet (gemessen) werden. Daher wird ein NN verwendet, um diese Werte für unbekannte Anwendungen zu schätzen und so die Komplexität der Boosting-Optimierung zu bewältigen. Drittens wird eine Technik zur Temperaturminimierung von heterogenen Mehrkernprozessoren mit Quality of Service-Zielen vorgestellt. Diese verwendet Imitationslernen, um eine Migrationsstrategie von Anwendungen aus optimalen Orakel-Demonstrationen zu lernen. Dafür wird ein NN eingesetzt, um die Komplexität der Plattform und des Anwendungsverhaltens zu bewältigen. Die Inferenz des NNs wird mit Hilfe eines vorhandenen generischen Beschleunigers, einer Neural Processing Unit (NPU), beschleunigt. Auch die ML Algorithmen selbst müssen auch mit begrenzten Ressourcen ausgeführt werden. Zuletzt wird eine Technik für ressourcenorientiertes Training auf verteilten Geräten vorgestellt, um einen konstanten Trainingsdurchsatz bei sich schnell ändernder Verfügbarkeit von Rechenressourcen aufrechtzuerhalten, wie es z.~B.~aufgrund von Konflikten bei gemeinsam genutzten Ressourcen der Fall ist. Diese Technik verwendet Structured Dropout, welches beim Training zufällige Teile des NNs auslässt. Dadurch können die erforderlichen Ressourcen für das Training dynamisch angepasst werden -- mit vernachlässigbarem Overhead, aber auf Kosten einer langsameren Trainingskonvergenz. Die Pareto-optimalen Dropout-Parameter pro Schicht des NNs werden durch eine Design Space Exploration bestimmt. Evaluierungen dieser Techniken werden sowohl in Simulationen als auch auf realer Hardware durchgeführt und zeigen signifikante Verbesserungen gegenüber dem Stand der Technik, bei vernachlässigbarem Laufzeit-Overhead. Zusammenfassend zeigt diese Dissertation, dass ML eine Schlüsseltechnologie zur Optimierung der Verwaltung der limitierten Ressourcen auf Systemebene ist, indem die damit verbundenen Herausforderungen angegangen werden
    corecore