50 research outputs found

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Auction-based Multi-Channel Cooperative Spectrum Sharing in Hybrid Satellite-Terrestrial IoT Networks

    Get PDF
    In this paper, we investigate the multi-channel cooperative spectrum sharing in hybrid satellite-terrestrial internet of things (IoT) networks with the auction mechanism, which is designed to reduce the operational expenditure of the satellitebased IoT (S-IoT) network while alleviating the spectrum scarcity issues of terrestrial-based IoT (T-IoT) network. The cluster heads of selected T-IoT networks assist the primary satellite users transmission through cooperative relaying techniques in exchange for spectrum access. We propose an auction-based optimization problem to maximize the sum transmission rate of all primary S-IoT receivers with the appropriate secondary network selection and corresponding radio resource allocation profile by the distributed implementation while meeting the minimum transmission rate of secondary receivers of each TIoT network. Specifically, the one-shot Vickrey-Clarke-Groves (VCG) auction is introduced to obtain the maximum social welfare, where the winner determination problem is transformed into an assignment problem and solved by the Hungarian algorithm. To further reduce the primary satellite network decision complexity, the sequential Vickrey auction is implemented by sequential fashion until all channels are auctioned. Due to incentive compatibility with those two auction mechanisms, the secondary T-IoT cluster yields the true bids of each channel, where both the non-orthogonal multiple access (NOMA) and time division multiple access (TDMA) schemes are implemented in cooperative communication. Finally, simulation results validate the effectiveness and fairness of the proposed auction-based approach as well as the superiority of the NOMA scheme in secondary relays selection. Moreover, the influence of key factors on the performance of the proposed scheme is analyzed in detail

    Negotiable Auction Based on Mixed Graph: A Novel Spectrum Sharing Framework

    Full text link
    © 2015 IEEE. Auction-based spectrum sharing is a promising solution to improve the spectrum utilization in 5G networks. Along with the spatial reuse, we observe that the ability to adjust the coverage of a spectrum bidder can provide room to itself for further negotiation while auctioning. In this paper, we propose a novel economic tool, size-negotiable auction mechanism (SNAM), which provides a hybrid solution between auction and negotiation for multi-buyers sharing spectrum chunks from a common database. Unlike existing auction-based spectrum sharing models, each bidder of the SNAM submits its bid for using the spectrum per unit space and a set of coverage ranges over which the bidder is willing to pay for the spectrum. The auctioneer then coordinates the interference areas (or coverage negotiation) to ensure no two winners interfere with each other while aiming to maximize the auction's total coverage area or revenue. In this scenario, the undirected graph used by existing auction mechanisms fails to model the interference among bidders. Instead, we construct a mixed interference graph and prove that SNAM's auctioning on the mixed graph is truthful and individually rational. Simulation results show that, compared with existing auction approaches, the proposed SNAM dramatically improves the spatial efficiency, hence leads to significantly higher seller revenue and buyer satisfaction under various setups. Thanks to its low complexity and low overhead, SNAM can target fine timescale trading (in minutes or hours) with a large number of bidders and requested coverages

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Learning for Cross-layer Resource Allocation in the Framework of Cognitive Wireless Networks

    Get PDF
    The framework of cognitive wireless networks is expected to endow wireless devices with a cognition-intelligence ability with which they can efficiently learn and respond to the dynamic wireless environment. In this dissertation, we focus on the problem of developing cognitive network control mechanisms without knowing in advance an accurate network model. We study a series of cross-layer resource allocation problems in cognitive wireless networks. Based on model-free learning, optimization and game theory, we propose a framework of self-organized, adaptive strategy learning for wireless devices to (implicitly) build the understanding of the network dynamics through trial-and-error. The work of this dissertation is divided into three parts. In the first part, we investigate a distributed, single-agent decision-making problem for real-time video streaming over a time-varying wireless channel between a single pair of transmitter and receiver. By modeling the joint source-channel resource allocation process for video streaming as a constrained Markov decision process, we propose a reinforcement learning scheme to search for the optimal transmission policy without the need to know in advance the details of network dynamics. In the second part of this work, we extend our study from the single-agent to a multi-agent decision-making scenario, and study the energy-efficient power allocation problems in a two-tier, underlay heterogeneous network and in a self-sustainable green network. For the heterogeneous network, we propose a stochastic learning algorithm based on repeated games to allow individual macro- or femto-users to find a Stackelberg equilibrium without flooding the network with local action information. For the self-sustainable green network, we propose a combinatorial auction mechanism that allows mobile stations to adaptively choose the optimal base station and sub-carrier group for transmission only from local payoff and transmission strategy information. In the third part of this work, we study a cross-layer routing problem in an interweaved Cognitive Radio Network (CRN), where an accurate network model is not available and the secondary users that are distributed within the CRN only have access to local action/utility information. In order to develop a spectrum-aware routing mechanism that is robust against potential insider attackers, we model the uncoordinated interaction between CRN nodes in the dynamic wireless environment as a stochastic game. Through decomposition of the stochastic routing game, we propose two stochastic learning algorithm based on a group of repeated stage games for the secondary users to learn the best-response strategies without the need of information flooding

    Trust-based mechanisms for secure communication in cognitive radio networks

    Get PDF
    Cognitive radio (CR) technology was introduced to solve the problem of spectrum scarcity to support the growth of wireless communication. However, the inherent properties of CR technology make such networks more vulnerable to attacks. This thesis is an effort to develop a trust-based framework to ensure secure communication in CRN by authenticating trustworthy nodes to share spectrum securely and increasing system's availability and reliability by selecting the trustworthy key nodes in CRNs

    Annual Report 2014

    Get PDF
    This report highlights salient features and activities across the spectrum of NPS research activities conducted on behalf of both Navy and Marine Corps topic sponsors during the 2014 fiscal year. Each of the 90 research projects’ executive summary included herein outlines key results. While most of the summaries detail final results, some projects have multi-year project lengths and, therefore, progress to date is reported

    Augmented Human Machine Intelligence for Distributed Inference

    Get PDF
    With the advent of the internet of things (IoT) era and the extensive deployment of smart devices and wireless sensor networks (WSNs), interactions of humans and machine data are everywhere. In numerous applications, humans are essential parts in the decision making process, where they may either serve as information sources or act as the final decision makers. For various tasks including detection and classification of targets, detection of outliers, generation of surveillance patterns and interactions between entities, seamless integration of the human and the machine expertise is required where they simultaneously work within the same modeling environment to understand and solve problems. Efficient fusion of information from both human and sensor sources is expected to improve system performance and enhance situational awareness. Such human-machine inference networks seek to build an interactive human-machine symbiosis by merging the best of the human with the best of the machine and to achieve higher performance than either humans or machines by themselves. In this dissertation, we consider that people often have a number of biases and rely on heuristics when exposed to different kinds of uncertainties, e.g., limited information versus unreliable information. We develop novel theoretical frameworks for collaborative decision making in complex environments when the observers may include both humans and physics-based sensors. We address fundamental concerns such as uncertainties, cognitive biases in human decision making and derive human decision rules in binary decision making. We model the decision-making by generic humans working in complex networked environments that feature uncertainties, and develop new approaches and frameworks facilitating collaborative human decision making and cognitive multi-modal fusion. The first part of this dissertation exploits the behavioral economics concept Prospect Theory to study the behavior of human binary decision making under cognitive biases. Several decision making systems involving humans\u27 participation are discussed, and we show the impact of human cognitive biases on the decision making performance. We analyze how heterogeneity could affect the performance of collaborative human decision making in the presence of complex correlation relationships among the behavior of humans and design the human selection strategy at the population level. Next, we employ Prospect Theory to model the rationality of humans and accurately characterize their behaviors in answering binary questions. We design a weighted majority voting rule to solve classification problems via crowdsourcing while considering that the crowd may include some spammers. We also propose a novel sequential task ordering algorithm to improve system performance for classification in crowdsourcing composed of unreliable human workers. In the second part of the dissertation, we study the behavior of cognitive memory limited humans in binary decision making and develop efficient approaches to help memory constrained humans make better decisions. We show that the order in which information is presented to the humans impacts their decision making performance. Next, we consider the selfish behavior of humans and construct a unified incentive mechanism for IoT based inference systems while addressing the selfish concerns of the participants. We derive the optimal amount of energy that a selfish sensor involved in the signal detection task must spend in order to maximize a certain utility function, in the presence of buyers who value the result of signal detection carried out by the sensor. Finally, we design a human-machine collaboration framework that blends both machine observations and human expertise to solve binary hypothesis testing problems semi-autonomously. In networks featuring human-machine teaming/collaboration, it is critical to coordinate and synthesize the operations of the humans and machines (e.g., robots and physical sensors). Machine measurements affect human behaviors, actions, and decisions. Human behavior defines the optimal decision-making algorithm for human-machine networks. In today\u27s era of artificial intelligence, we not only aim to exploit augmented human-machine intelligence to ensure accurate decision making; but also expand intelligent systems so as to assist and improve such intelligence
    corecore