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ABSTRACT

With the advent of the internet of things (IoT) era and the extensive deployment of smart devices

and wireless sensor networks (WSNs), interactions of humans and machine data are everywhere. In

numerous applications, humans are essential parts in the decision making process, where they may

either serve as information sources or act as the final decision makers. For various tasks including

detection and classification of targets, detection of outliers, generation of surveillance patterns

and interactions between entities, seamless integration of the human and the machine expertise is

required where they simultaneously work within the same modeling environment to understand and

solve problems. Efficient fusion of information from both human and sensor sources is expected to

improve system performance and enhance situational awareness. Such human-machine inference

networks seek to build an interactive human-machine symbiosis by merging the best of the human

with the best of the machine and to achieve higher performance than either humans or machines

by themselves.

In this dissertation, we consider that people often have a number of biases and rely on heuristics

when exposed to different kinds of uncertainties, e.g., limited information versus unreliable infor-

mation. We develop novel theoretical frameworks for collaborative decision making in complex

environments when the observers may include both humans and physics-based sensors. We ad-

dress fundamental concerns such as uncertainties, cognitive biases in human decision making and

derive human decision rules in binary decision making. We model the decision-making by generic

humans working in complex networked environments that feature uncertainties, and develop new

approaches and frameworks facilitating collaborative human decision making and cognitive multi-

modal fusion.

The first part of this dissertation exploits the behavioral economics concept Prospect Theory

to study the behavior of human binary decision making under cognitive biases. Several decision

making systems involving humans’ participation are discussed, and we show the impact of human



cognitive biases on the decision making performance. We analyze how heterogeneity could affect

the performance of collaborative human decision making in the presence of complex correlation

relationships among the behavior of humans and design the human selection strategy at the popu-

lation level. Next, we employ Prospect Theory to model the rationality of humans and accurately

characterize their behaviors in answering binary questions. We design a weighted majority vot-

ing rule to solve classification problems via crowdsourcing while considering that the crowd may

include some spammers. We also propose a novel sequential task ordering algorithm to improve

system performance for classification in crowdsourcing composed of unreliable human workers.

In the second part of the dissertation, we study the behavior of cognitive memory limited hu-

mans in binary decision making and develop efficient approaches to help memory constrained

humans make better decisions. We show that the order in which information is presented to the

humans impacts their decision making performance. Next, we consider the selfish behavior of

humans and construct a unified incentive mechanism for IoT based inference systems while ad-

dressing the selfish concerns of the participants. We derive the optimal amount of energy that

a selfish sensor involved in the signal detection task must spend in order to maximize a certain

utility function, in the presence of buyers who value the result of signal detection carried out by

the sensor. Finally, we design a human-machine collaboration framework that blends both machine

observations and human expertise to solve binary hypothesis testing problems semi-autonomously.

In networks featuring human-machine teaming/collaboration, it is critical to coordinate and

synthesize the operations of the humans and machines (e.g., robots and physical sensors). Machine

measurements affect human behaviors, actions, and decisions. Human behavior defines the optimal

decision-making algorithm for human-machine networks. In today’s era of artificial intelligence,

we not only aim to exploit augmented human-machine intelligence to ensure accurate decision

making; but also expand intelligent systems so as to assist and improve such intelligence.
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1

CHAPTER 1

INTRODUCTION

Information fusion with observations from multiple sensors in various decision making and control

systems has been explored quite extensively in the literature [142,143,147]. Deployment of sensors

of multiple modalities, such as RF, radar, infrared, acoustics and optical, in a sensing unit or on a

sensing platform is expected to yield better inference, prediction and decision making by observing

the same phenomenon of interest from different diverse sensors. The main goal of this dissertation

is to establish a framework to capture the attributes specific to human-based sources of information

so that information from both the physical sensors and humans can be employed for inference.

By employing a human-in-the-loop methodology, we believe that this decision making paradigm

involving augmented human machine intelligence breaks new grounds and pushes the boundaries

of signal processing, decision making, and data fusion.

1.1 Motivation

The modeling of decision-making and control systems that include human agents has become

an important research area in terms of the design and analysis of complex autonomous systems

including military surveillance, smart cities, the internet of things, and healthcare. In these crit-

ical environments and situations, decision-making must be very accurate. Incorporating human
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cognitive strengths and expertise in addition to machine-made observations is often imperative to

improve decision quality and enhance situational awareness (SA). For instance, in electronic war-

fare (EW) systems, the detection of an adversary radar is required before designing appropriate

countermeasures. In such scenarios where the course and success of the campaign depends on a

small detail being observed or missed, automatic sensor-only decision making may not be suffi-

cient and it is necessary to incorporate human(s) in the loop of decision making, command and

control.

Let us consider a distributed detection problem consisting of a number of local decision mak-

ers and a fusion center (FC). In decision making systems composed of physical sensors/machines1,

the optimal decision rules for both the local decision makers and the FC in different contexts have

been derived in the signal processing literature in centralized as well as distributed settings (see,

for e.g., [18, 68, 142, 143]). In these systems, perfect rationality of the decision maker is assumed,

i.e., among the alternative actions i ∈ I producing utility ui, decision makers always choose the al-

ternative that maximizes the utility i∗ = arg maxi∈I ui. In contrast to the rational decision making

systems where the agents in the decision making process are only electronic devices or machines,

human decision making is fundamentally different due to the bounded rationality of humans. There

are two aspects characterizing the inherent imperfections of human decision making and reasoning

process: i) humans might not know the entire action space or the complete set of alternatives, and

ii) the utility of choosing a particular alternative might not be correctly perceived. The concept

of bounded rationality recognizes that there are cognitive biases, limited thinking capacity, lack of

available information, time constraints, etc., in human decision making. Hence, human agents may

not always make the best decision. Using conventional decision theory to model decision making

systems that include human agents is, therefore, not appropriate. To capture attributes specific

to human based-sources of information and to enable high accuracy decisions, it is desirable to

develop efficient techniques and frameworks to analyze and utilize human data.

1The terms ‘sensors’ and ‘machines’ are used interchangeably throughout the dissertation.
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1.2 Background

Modeling and analysis of human decision behavior has been investigated by several authors for

different applications in the behavioral economics literature. Simon proposed a ‘satisfying’ point

as a more accurate model to characterize human decision making, where instead of finding a

global optimal solution, humans keep searching the action space until a satisfactory solution is

found [125]. This approach was adopted in the area of spectrum access and self-configuring wire-

less networks, where a generalized satisfaction equilibrium rather than a Nash equilibrium, was

established [43, 52]. Another approach proposed in [92] suggests that humans, instead of always

selecting the alternative that maximizes the utility, employ a probabilistic decision rule such that

“better options are chosen more often”. Along this direction, stochastic decision models, such as

random utility models and a logic choice framework, were established in [85]. In [5], the authors

considered that the humans adjust their decisions towards higher utilities and characterized the

steady state distribution of decisions over the long run.

The problem of distributed detection where humans act as local decision makers has been stud-

ied in different contexts. For example, the quantization of priors in hypothesis testing was analyzed

to model the fact that humans make categorical observations [117]. The authors in [144] developed

a Bayesian hierarchical structure to characterize human behavior of decision fusion at individual

level, group level and population level. The performance of collaborative human decision making

was analyzed when each individual is assumed to make local decisions by comparing the observa-

tions to a random threshold [152,153]. By utilizing crowd wisdom, crowdsourcing has become an

efficient paradigm to solve problems that are easy for humans but hard for machines, e.g., hand-

writing recognition, image labeling and voice transcription. Different methods were proposed for

aggregation of the local decisions by considering the unreliability and uncertainty of the human

crowd workers [47,87]. Moreover, since humans are selfish who request incentives to be motivated

to perform the sensing tasks, the authors in [17, 22, 38, 71, 75] have incorporated game theory into

the design of efficient incentive mechanisms.

Another line of work on human decision making is the consideration of cognitive biases of
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human agents in the decision making process. It is well known in the psychology literature that

cognitive biases and uncertainties can be found in the human judging and decision making pro-

cesses at individual and group levels [55, 67]. The significance of cognitive psychology has been

demonstrated by its ability to outperform machine learning methodologies when predicting peo-

ple’s choice behavior [44]. Among these biases are people’s distorted representations of outcomes

and probabilities, which are accurately captured by the Nobel prize winning Prospect Theory

(PT) [67]. In the signal processing literature, PT has been employed to study human behavior

in wireless communication and spectrum sensing. For instance, a secondary wireless operator’s

spectrum investment problem was studied in [155] where the operator decides its spectrum sens-

ing and leasing amounts to maximize its profit under Prospect Theory. In [80], the authors studied

a random access game where players follow the principles of Prospect Theory to adjust their trans-

mission probabilities over a random access channel under throughput rewards, delay penalties and

energy costs. Recently, there have been a few works that incorporate PT into hypothesis testing

to model human decision making. In the Bayesian framework, the authors in [100] exploited PT

to analyze the behavior of optimists and pessimists of different types. The optimality of the like-

lihood ratio test (LRT) was investigated in PT based hypothesis testing in [51]. In this work, the

authors showed that the LRT may or may not be optimal for behavioral decision makers in terms

of Neyman-Pearson and/or Bayesian criterion.

1.3 General Architecture

While humans have important roles in decision making, machines/sensors alleviate human work-

load in numerous applications. Sensors can be deployed in hazardous and dangerous workplaces

for monitoring and gathering intelligence. This is not only because of the associated risks for

humans but also because sensors are efficient in acquiring tedious raw data and processing in-

formation that are beyond humans’ capabilities. Human-machine interaction has expanded from

desktop office applications to include many aspects in everyday life such as education, commerce,
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traffic control, healthcare and so on. As shown in Fig. 1.1, we depict a typical human-machine

collaboration network, where the subjective opinions of humans and the objective measurements

of machines are aggregated for decision fusion. In the networks that involve human-machine col-

laboration, it is important to coordinate and synthesize the operations of both parties. On one hand,

the measurements taken by the physical sensors affect the behavior, actions and decisions of the

humans. For instance, considering that humans are influenced by the starting point observations

or initial beliefs, the authors in [98] studied the problem of selection, ordering and presentation

of data to a human to solve detection problems under the Bayesian framework. On the other

hand, the behavior of humans also determines the optimal decision making algorithm design in

the human-machine networks. To maximize system performance, efficient implementations of the

human-machine network should be designed in a holistic manner based on the appropriate model-

ing of human behavior.

Fig. 1.1: Human machine collaboration network

The focus of this dissertation is to understand and model decision making of generic behavioral

humans in complex networked environments under uncertainties. By exploring cognitive psychol-

ogy theories and behavioral economic principles, we conduct extensive analysis on the following

aspects: the modeling of decision making of cognitively limited and biased humans at the indi-

vidual level, decision fusion of collaborative human decisions, mechanism design to address the

participatory and selfish concerns of the human users in IoT systems, and adaptation strategies for
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cognitive human-machine teams for optimized performance.

1.4 Outline and Contributions

This rest of the dissertation is organized as follows: In Chapter 2, we study prospect theoretic

utility based human decision making and its impact on the decision making performance in multi-

agent systems. In Chapter 3, we employ a psychologically accurate description of human behavior

in crowdsourcing environments and develop the optimal rule for aggregating the responses from

human workers. In Chapter 4, we present a new paradigm for classification in crowdsourcing sys-

tems in which binary questions (micro-tasks) are asked in a sequential manner. Cognitive memory

constrained human decision making based on multi-source information is investigated in Chapter

5. In Chapter 6, a unified IoT based inference system for signal detection while addressing the

participatory concerns of the users is developed. In Chapter 7, a semi-autonomous human machine

collaboration system is proposed to suitably distribute the tasks and workload to be performed by

humans and machines in binary decision making. We conclude this dissertation in Chapter 8. The

main contributions of each chapter are as below.

Chapter 2 studies human decision making via a utility based approach in a binary hypothesis

testing framework that includes the consideration of individual behavioral disparity. We proceed

with utility based approaches, i.e., people make decisions by selecting the choice with larger ex-

pected utilities, to obtain closed form solutions for the optimal decision rule that maximizes the

perceived utility of humans under Prospect Theory. Next, to capture the unreliable nature of hu-

man decision making behavior, we model the decision threshold of a human as a Gaussian random

variable, whose mean is determined by his/her cognitive bias, and the variance represents the un-

certainty of the agent while making a decision. We also consider the scenario where decision

making humans are a part of networked human-machine teams. Finally, we derive the FC’s deci-

sion rule for collaborative human decision making composed of independent and correlated local

decision makers.
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In Chapter 3, we consider the M -ary classification problem via crowdsourcing, where crowd

workers respond to simple binary questions and the answers are aggregated via decision fusion.

The workers have a reject option to skip answering a question when they do not have the expertise,

or when the confidence of answering that question correctly is low. We further consider that there

are spammers in the crowd who respond to the questions with random guesses. Under the pay-

ment mechanism that encourages the reject option, we study the behavior of honest workers and

spammers, whose objectives are to maximize their monetary rewards. To accurately characterize

human behavioral aspects, we employ Prospect Theory to model the rationality of the crowd work-

ers. Moreover, we employ a weighted majority voting decision rule, where we assign an optimal

weight for every worker to maximize the system performance.

Chapter 4 presents a novel sequential paradigm for classification in crowdsourcing systems.

Considering that workers are unreliable and they perform the tests with errors, we study the con-

struction of decision trees so as to minimize the probability of mis-classification. By exploiting the

connection between the probability of mis-classification and entropy at each level of the decision

tree, we propose two algorithms for decision tree design. Furthermore, the worker assignment

problem is studied when workers can be assigned to different tests of the decision tree to provide

a trade-off between classification cost and resulting error performance.

In Chapter 5, we study how humans make decisions based on internal and external sources

of information under cognitive memory limitations. Due to the constrained capacity of working

memory, humans are known to perform cognitive tasks and update their beliefs in a sequential

manner rather than in parallel. In a Bayesian hypothesis testing framework, we derive the metrics

for performance evaluation and comparison when the humans use different ordering of information

for processing and to update their beliefs. We show that an optimized order of information sources

can help a cognitive memory limited human make better decisions. Simulations based on the

proposed human decision making model are presented to corroborate the theoretical results.

Chapter 6 studies the problem of a sensor performing inference tasks based on utility theory

where the objective is to derive the optimal resource usage amount that maximizes a profit-cost



8

based utility function. Furthermore, to enable the concept of sensing as a service in the context

of IoT systems, we present a market based paradigm where there is a “buyer” interested in buying

the inference result from the sensor. We jointly optimize the resource usage policy and payment

negotiation strategy for the sensor so as to maximize the expected profit. Optimal payment nego-

tiation is analyzed in two situations, namely, when the sensor spends a fixed amount of resource

as well as when the sensor could vary the amount of resource consumption to maximize profit. It

is shown that in the presence of the buyer, the optimal amount of resource consumption increases

and hence, the inference accuracy improves. Finally, we present some discussion on how energy

efficiency affects the behavior of energy consumption in realistic environments.

In Chapter 7, we investigate a human-machine collaboration framework for binary decision

making and ask questions, when should we request human participation and how much perfor-

mance improvement can be attained by adding human expertise? Next, the optimal observation

region that needs human participation is generalized by considering human factors such as lim-

ited attention duration and participation costs. Moreover, a correlation structure is proposed to

model the dependency between the machine’s observation and the human expertise. It is shown

that the amount of correlation plays an important role in guiding the design of the human-machine

collaboration system. When multiple human agents of diverse expertise levels are recruited to fur-

ther improve the detection accuracy, the asymptotic performance of the decision making system is

derived.

In Chapter 8, we conclude the findings and results of this dissertation, and discuss several

directions and ideas for future work.

1.5 Bibliographic Note

Most of the research work appearing in this dissertation has been published at various venues and

has appeared in the publications listed below.



9

Work Included in the Dissertation

Journal Papers:

• B. Geng, C. Quan and P. K. Varshney, “Human Machine Collaboration for Semi-autonomous

Binary Decision Making", to be submitted to as a journal paper.

• B. Geng, Q. Li, and P. K. Varshney, “Utility Theory Based Optimal Resource Consumption

for Inference In IoT Systems", IEEE Internet of Things (IoT) Journal, 2021.

• B. Geng, X. Cheng, S. Brahma, D. Kellen and P. K. Varshney, “Collaborative Human De-

cision Making with Heterogeneous Agents", IEEE Transactions on Computational Social

Systems, 2021.

• B. Geng, S. Brahma, T, Wimalajeewa, P. K. Varshney, and M. Rangaswamy, “Prospect The-

oretic Utility Based Human Decision Making in Multi-agent Systems", IEEE Transactions

on Signal Process, vol. 68, pp. 1091– 1104, 2020.

• B. Geng, Q. Li, and P. K. Varshney, “Prospect Theory based Crowdsourcing for Classifica-

tion in the Presence of Spammers", IEEE Transactions on Signal Processing, vol. 68, pp.

4083–4093, 2020.

Conference Papers:

• B. Geng, C. Quan and P. K. Varshney, “Cognitive Memory Constrained Human Decision

Making based on Multisource Information", IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) , 2021.

• B. Geng, P. K. Varshney, and M. Rangaswamy, “On Amelioration of Human Cognitive Bi-

ases in Binary Decision Making", IEEE Global Conference on Signal and Information Pro-

cessing (GlobalSIP),, 2019.

• B. Geng, Q. Li and P. K. Varshney, “Decision Tree Design for Classification in Crowdsourc-

ing Systems", 52nd Asilomar Conference on Signals, Systems, and Computers, 2018.



10

Work not Included in the Dissertation

Journal Papers:

• X. Cheng, B. Geng, P. Khanduri, B. Chen, and P. K. Varshney, “Joint Collaboration and

Compression Design for Random Signal Detection in Wireless Sensor Networks", submitted

to IEEE Signal Processing Letters, 2021.

• J. Wang, T. Grant, S. Velipasalar, B. Geng, and L. Hirshfield, “Taking a Deeper Look at the

Brain: Predicting Visual Perceptual and Working Memory Load from High-Density fNIRS

Data", submitted to IEEE Journal of Biomedical and Health Informatics, 2021.

• C. Quan, A. Yadav, B. Geng, P. K. Varshney, and H. V. Poor, “A Novel Spectrally Efficient

Uplink Hybrid-domain NOMA System", IEEE Communications Letters, vol. 24, pp. 2609-

2613, 2020.

• N. Cao, S. Brahma, B. Geng, and P. K. Varshney, “Optimal Auction Design with Quantized

Bids for Target Tracking via Crowdsensing", IEEE Transactions on Computational Social

Systems, vol. 6, no. 5, pp. 847–857, 2019.

Conference Papers:

• C. Quan, B. Geng and P. K. Varshney, “Establishing the Nash-equilibrium in Jamming Mod-

els for Collaborative Distributed Detection Networks", IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2021.

• N. Sriranga, B. Geng and P. K. Varshney, “On Human Assisted Decision Making for Ma-

chines Using Correlated Observations", 54th Asilomar Conference on Signals, Systems, and

Computers, 2020.

• C. Quan, B. Geng and P. K. Varshney, “Asymptotic Performance of Binary Decision Mak-

ing in Heterogeneous Human-machine Inference Networks", 54th Asilomar Conference on

Signals, Systems, and Computers, 2020.



11

• B. Geng, S. Brahma, and P. K. Varshney, “A Truthful Mechanism for Mobility Management

in Unmanned Aerial Vehicles (UAV) Networks", 53rd Asilomar Conference on Signals, Sys-

tems, and Computers, 2019.

• B. Geng and P. K. Varshney, “On Decision Making in Human-machine Networks", IEEE

16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2019.

• S. Zhang, B. Geng, P. K. Varshney, and M. Rangaswamy, “Fusion of Deep Neural Net-

works for Activity Recognition: A Regular Vine Copula-based Approach", 22nd Interna-

tional Conference on Information Fusion (FUSION), 2019.

Book Chapter:

• B. Geng, P. K. Varshney and M. Rangaswamy, “Information Integration from Human and

Sensing Data for Cognitive Radar", submitted to Next Generation Cognitive Radar, The

Institution of Engineering and Technology (IET) Press.



12

CHAPTER 2

PROSPECT THEORETIC UTILITY BASED

HUMAN DECISION MAKING IN

MULTI-AGENT SYSTEMS

2.1 Introduction

The difficulty in modeling human decision making arises because of their cognitive biases as well

as due to the uncertainties exhibited by human decision makers. Cognitive biases are characterized

by diminishing marginal utility, risk seeking/aversion behavior and loss aversion attitude; while

the uncertainties in decision making behavior of humans can arise from emotion, time constraint,

fatigue and operating environment [6,42,65,67]. The purpose of this chapter is to develop a unified

framework that incorporates both cognitive biases and uncertainties in decision making, which we

call decision making under behavioral biases. We begin our study with the discussion of cognitive

biases based on Prospect Theory (PT). This Nobel-prize-winning theory proposed by Kahneman

and Tversky [67] provides a theoretically sound description of human cognitive biases through a

value function and a probability weighting function. Value function, as the name suggests, acts on

the values (gains and losses) to reflect humans’ loss attitude, i.e., asymmetric valuation towards
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gains and losses. From the cognitive psychology viewpoint, people are usually loss averse in the

sense that loss feels worse than the gain of an equivalent amount feels good. Probability weighting

function, on the other hand, acts on the probability that an event will occur. It represents the fact

that in humans’ cognitive perception, they usually overweigh small probabilities and underweigh

large probabilities.

2.1.1 Related Work

We consider human decision making behavior in the context of hypothesis testing. As is well

known, humans make decisions in the framework of hypothesis testing and the decision is made

by selecting the hypothesis that best supports the given set of observations [109]. There have only

been a few works that incorporate PT into hypothesis testing to model human decision making. In

[100], Nadendla et al. applied Prospect Theory to hypothesis testing and analyzed the behavior of

optimists and pessimists of different types. In their work, the definitions of optimists and pessimists

were limited in scope for modeling general human behavior. As a result, the analysis cannot be

extended to the development of explicit decision rules for agents with arbitrary prospect theoretic

parameters. The optimality of the likelihood ratio test (LRT), which is known to be the optimal

decision rule in minimizing the Bayesian risk, was investigated in PT based hypothesis testing

in [51]. The authors showed that the LRT may or may not be optimal for behavioral decision

makers under the Neyman-Pearson criterion.

In addition to being subject to cognitive biases, human agents may also exhibit uncertainties

in decision making. There have been some research efforts that explore uncertainties in human

decision making. Since human participants have different backgrounds and expertise regarding a

PoI, the qualities of the local decisions vary quite considerably. It was shown in [128] that when

there is no reliability information available for each decision maker, the majority rule is often the

choice that gives better results in group decision making, compared to other criteria such as the

consensus rule. Budescu et al. [12] showed a scenario where the FC gives more weight to the

decisions made by agents who have been more accurate in the past, while it assigns less weight to
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the decisions made by unreliable agents. In [127], the fusion of local decisions made by humans

was analyzed using signal detection techniques. The authors studied how the quality variation

of local decisions affects the decision performance of the FC. decision making framework was

analyzed to model categorization in human decision making [117]. In [152], Wimalajeewa et al.

studied collaborative human decision making and assumed that each participating agent makes

decisions using a random decision threshold. The authors in [153] investigated the conditions

under which integration of human operators with physical sensors can improve the performance in

binary decision making.

In the above works that study cognitive biases in the context of decision making [51, 100],

the authors assume that humans make decisions so as to minimize their behavioral Bayesian risk

under the Bayesian formulation. However, psychology studies show that in practice, instead of

employing the decision rule that minimizes the behavioral Bayesian risk, people use utility based

approaches based on existing evidence and select the action which results in the highest expected

payoff over all possible alternatives [41,108]. To the best of our knowledge, the analysis of human

decision making from a utility based perspective while considering cognitive biases under PT has

not been addressed in the previous literature. Besides, the existing work has not considered how

the uncertainties differ from one human to another in decision making, i.e., the individual level

quantification of human uncertainty. No prior work has discussed the combination of both deci-

sion uncertainties and cognitive biases in affecting the decision quality. Such a unified framework

is crucial to the design of efficient decision rules when we have humans-in-the-loop, and is rele-

vant in many areas such as situational awareness in monitored civil and military systems, targeted

advertising and recommendation systems, portfolio management, insurance policy design, as well

as investment in financial markets.

2.1.2 Major Technical Contributions

The main objective of this chapter is to investigate the impact of behavioral biases that include

cognitive biases and decision uncertainties on human decision making and, correspondingly, on
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the decision fusion rule in multi-agent systems. Specifically, our contributions are:

• We consider that a human perceives the utility of making correct decisions to be gain and

perceives the utility of making wrong decisions to be loss1. Value functions and probability

weighting functions based on PT are exploited to construct the subjective utility function for

humans in a binary hypothesis testing problem. The optimal decision rule for cognitively

biased humans is determined in which they choose the hypothesis that maximizes their sub-

jective expected utility.

• Next, we consider that humans use a threshold based scheme to make decisions based on

their observations [130, 152]. The threshold of a human is treated as a random variable

where the threshold mean is determined by the person’s cognitive biases under PT, and the

threshold variance represents the person’s uncertainty in decision making. We thoroughly

study the impact of an individual’s behavioral biases (cognitive biases and uncertainties) on

the performance of decision making systems that involve human participation. In particular,

three configurations are investigated: (i) a human acts as an assistant to help a rational FC

make the final decision, (ii) the other scheme considers the FC to be a behaviorally biased

human who makes the final decision with the help of a physical sensor, and (iii) two-person

decision fusion, where two human agents independently provide their local decisions to the

FC.

• Finally, we investigate collaborative human decision making and obtain the optimal decision

fusion rule at the FC. In our work, the FC is able to adjust its decision making strategy when

the human behavioral properties change. This provides generality and flexibility compared

to existing group decision fusion schemes, such as those developed in [126–128,131], where

the authors did not consider the behavioral biases of human participants.
1When the humans make right decisions, there is a potential gain as they have a better knowledge of the status of

the environment and remedial actions can be taken. On the other hand, when humans make wrong decisions in terms
of false alarms and miss detections, there is a loss as they have an inaccurate perception regarding the PoI.
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2.2 Utility based Hypothesis Testing

In this section, we explore human decision making for binary hypothesis testing problems using

utility based decision theory, starting with a brief introduction of Prospect Theory.

2.2.1 Prospect Theory Background

From a psychology viewpoint, people are said to be loss averse in the sense that they feel more

hurt when they lose something, than they feel good when they gain something of equal value. For

example, the satisfaction a person gets when $100 is added to his/her present value is less than

the loss of satisfaction when $100 is subtracted from the present value. In Prospect Theory [67],

the value function v(x) plotted in Fig. 2.1 (a) characterizes the loss aversion effect by assigning a

subjective utility to an outcome x:

v(x) =

 xλ x ≥ 0

−β(−x)λ x < 0
(2.1)

where x is the actual gain (when it is positive) or loss (when it is negative), and v(x) represents the

human subjective valuation of x. Utilities under PT are perceived as gains and losses with respect

to a reference point, which is a subjective value above which utilities are perceived as gains and

utilities blow which are perceived as losses. With different reference points, the characterization of

human behavior even for the same experiment is significantly different. In this work, for simplicity,

we assume the case where the gain and loss are perceived with respect to the fixed reference point

set at zero so that positive utilities humans derive from deciding correctly correspond to gains

and negative utilities humans derive from deciding incorrectly correspond to losses. β is the loss

aversion coefficient, and v(x) reflects people’s different loss aversion attitudes that are realized

by the variation of parameter β. When a person becomes more loss averse, β increases and the

subjective valuation of a fixed loss appears to be more significant. λ characterizes the phenomenon

of diminishing marginal utility, which indicates that as the total number of units of gain (or loss)
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increases, the utility of an additional unit of gain (or loss) to a person decreases. This effect can be

seen in Fig. 2.1 (a) as the curve saturates when it goes in either direction (positive or negative).

On the other hand, the probability weighting function reflects people’s four-fold pattern of

risk attitudes, i.e., risk-seeking for small-probabilistic gains and large-probabilistic losses, and

risk-aversion for small-probabilistic losses and large-probabilistic gains. This phenomenon can

be interpreted as people overweighing small probabilities and underweighing large probabilities.

For example, the certainty effect, which states that a sure gain is favored over a probabilistic gain,

indicates humans’ risk aversion behavior for large probabilistic gains. Tversky and Kahneman [67]

illustrated the certainty effect by investigating which of the following options do people prefer: (A)

a sure gain of $30; and (B) 80% chance to win $45 and 20% chance to win nothing. In this case,

most participants chose option A and it demonstrates the typical risk-aversion phenomenon in PT

because the expected value of option B ($45 × 0.8 = $36) exceeds that of A by 20%. A detailed

discussion of the four-fold pattern of risk behavior can be found in [135].

As shown in Fig. 2.1 (b), the probability weighting function in PT is:

w(p) =
pα

(pα + (1− p)α)1/α
(2.2)

where p is the actual probability with which an event occurs. w(p) gives the subjective probability

distorted by the probability distortion coefficient α. For behaviorally unbiased people, α = 1,

β = 1 and λ = 1. In a landmark study [135], the authors conducted experiments by letting human

subjects choose the preference between a series of prospect pairs. Based on the experimental

data, the behavioral parameters α, β and λ of each individual can be estimated using a nonlinear

regression procedure. According to their result, the medians of α, β and λ are 0.69, 2.25 and 0.88,

respectively.
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Fig. 2.1: Value function and weighting function in Prospect Theory

2.2.2 Decision Making Model and Bayesian Formulation under PT

In hypothesis testing, an agent makes a decision on which of the hypothesis H0 or H1 is true,

based on an observation r regarding a PoI. The observations under the two hypotheses are H0 :

r = s0 +w, H1 : r = s1 +w, where s0 and s1 are signal amplitudes underH0 andH1, respectively,

and w denotes the observation noise. Assume that the signal and noise are independent of each

other and the probability density functions (PDFs) of r underH0 andH1 are assumed to be known.

We denote them as f0(r) and f1(r), respectively. The prior probabilities of H0 and H1 are π0 and

π1, respectively. Let Cij be the cost of declaring Hi when Hj is true for i, j ∈ {0, 1}. These costs

are assigned to reflect the the relative importance of the four courses of actions [73, 142].

LetR be the acceptance region of hypothesis H1, then the decision maker employs the follow-

ing decision rule:

d =


1; if r ∈ R

0; otherwise
(2.3)

When human cognitive biases are modeled by PT, i.e., the costs and probabilities are affected by

the value function and the probability weighting function, respectively, the expected behavioral
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risk under Bayesian formulation is:

b(R) =
1∑
i=0

1∑
j=0

w[Pr(Declare Hi|Hj is true)] · v(Cij).

The objective is to find the optimal acceptance regionR∗ that minimizes the behavioral risk:

R∗ = arg min
R∈R

b(R). (2.4)

Because of the nonlinearity of the value function (2.1) and the probability weighting func-

tion (2.2), the Bayesian formulation of the optimization problem (2.4) does not have an explicit

solution [51,100]. Under Bayesian formulation, the decision rule, i.e., the acceptance region of hy-

pothesisH1, is pre-determined before any observation is received. Whenever an observation comes

in, a decision is made according to the same decision rule. However, psychology studies suggest

that humans make decisions after observing some evidence, where the observation provides some

support for a hypothesis. Depending on whether the observation confirms or refutes a hypothesis,

human confidence towards a hypothesis can vary continuously from 100% certainty about its truth

to 100% certainty about its falsity. Correspondingly, when making a decision, a rational decision

maker calculates the expected utility of deciding each alternative hypothesis based on observed

evidences, and selects the one that results in the highest expected utility [41,108,109]. This action

of the rational decision makers is called decision making under the expected utility theory (EUT)

framework [97]. We proceed with the above utility based methods to model human decision mak-

ing and employ PT to incorporate human cognitive biases. In fact, when a rational decision maker

selects the hypothesis from a set of alternative hypotheses that results in the maximum expected

payoff under EUT, it is equivalent to the decision rule that minimizes the Bayesian cost [4, 56].

However, in the following, we will show that this equivalence does not hold in general when the

decision maker is cognitively biased under PT.



20

2.2.3 Subjective Utility based Hypothesis Testing

We begin with the analysis of utility based decision making for binary hypothesis testing under

EUT, where the decision makers are assumed to be rational. Instead of minimizing the Bayesian

risk (2.4), the objective is to choose the hypothesis that results in the highest expected utility. Let

Uij denote the utility of decidingHi when the true hypothesis isHj , for i, j ∈ {0, 1}. Thus, U00 and

U11 represent the utilities of correct decisions and are usually positive, while U10 and U01 represent

the utilities of wrong decisions and are usually negative. Given an observation r, a rational decision

maker’s expected utility of declaring H0 and H1 are:

EU(Declare H0) = Pr(H0|r)U00 + Pr(H1|r)U01

EU(Declare H1) = Pr(H0|r)U10 + Pr(H1|r)U11, (2.5)

where Pr(Hi|r) denotes the probability that Hi is true given that the observation is r, and

Pr(Hi|r) =
f(r|Hi)πi
f(r)

=
fi(r)πi
f(r)

(2.6)

for i = 0, 1, respectively, where f(·) and fi(·) denote the appropriate PDFs and πi is the prior

probability of hypothesis Hi. Given the observation r, the hypothesis H0 or H1 whichever has a

larger expected utility is declared to be true

EU(Declare H1)
H1

R
H0

EU(Declare H0). (2.7)

Substitute the expression of Pr(Hi|r) given in (2.6) into (2.5), we have

EU(Declare H0) =
f0(r)π0

f(r)
U00 +

f1(r)π1

f(r)
U01

EU(Declare H1) =
f0(r)π0

f(r)
U10 +

f1(r)π1

f(r)
U11
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Next, we substitute the above equations into (2.7), and the utility based decision rule reduces to

the classical LRT:
f1(r)

f0(r)

H1

R
H0

π0(U00 − U10)

π1(U11 − U01)
, η. (2.8)

which is also the optimal decision rule that minimizes the Bayesian cost.

In the statistical detection theory framework, the decision making agent is assumed to be ratio-

nal and the objective is to maximize the expected utility. Under EUT, decision makers are rational

in the sense that they are able to calculate the expected utility of each action without biases. For

example, a typical characteristic of rational decision makers is that they should be indifferent be-

tween two alternative courses of action if their expected utilities are the same. However, due to

human cognitive biases in perceiving the utilities and the probabilities, a human usually prefers

a sure gain over a probabilistic gain even if the two alternatives have the same expected utility.

In many settings when the decisions are made by humans, certain behavioral factors may cause

the results to deviate from the outcomes predicted by EUT. Unlike rational decision makers who

choose the hypothesis that maximizes their expected utilities, humans act to maximize their sub-

jective utilities under cognitive biases. When calculating the subjective utility of declaring H0 and

H1, we employ PT by applying the value function v(·) defined in (2.1) on the utilities and applying

the probability weighting function w(·) defined in (2.2) on the probabilities. Given observation r,

the subjective utilities of declaring H0 and H1 are:

SU(Declare H0)=w
(
Pr(H0|r)

)
v(U00)+w

(
Pr(H1|r)

)
v(U01)

SU(Declare H1)=w
(
Pr(H0|r)

)
v(U10)+w

(
Pr(H1|r)

)
v(U11). (2.9)

Without optimizing over all possible events in a Bayesian sense, humans are known to select the

alternative which has a higher subjective utility after receiving observation r:

SU(Declare H1)
H1

R
H0

SU(Declare H0). (2.10)
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Combining (2.9) and (2.10), the subjective utility based decision rule becomes:

w
(
Pr(H1|r)

)
w
(
Pr(H0|r)

) H1

R
H0

v(U00)−v(U10)

v(U11)−v(U01)
,
V00−V10

V11−V01

, (2.11)

where Vij are the subjective utilities when the value function (2.1) acts on Uij , respectively, for

i, j ∈ 0, 1. Again, V00 and V11 are positive, while V01 and V10 are negative. Employing the

expression of the weight function given in (2.2) and the expression of Pr(Hi|r) given in (2.6), and

noting that Pr(H1|r) = 1−Pr(H0|r), we have w(Pr(H1|r))
w(Pr(H0|r)) = Pr(H1|r)α

Pr(H0|r)α . It follows that the decision

rule given in (2.11) becomes

f1(r)

f0(r)

H1

R
H0

(
V00 − V10

V11 − V01

) 1
α π0

π1

, ηp. (2.12)

Thus, the test reduces to a LRT with threshold ηp as stated in the following theorem.

Theorem 2.1. Under prospect theoretic framework, the optimal subjective utility based decision

rule reduces to an LRT. The threshold of the LRT, ηp, is a monotonous function of parameters α

and β.

PROOF: We have already shown that the perceived utility decision rule under PT reduces to a LRT.

To show that the threshold of the LRT, ηp, is monotone with respect to α, we take the derivative

of the expression of ηp given in (2.12) with respect to α: d
dα
ηp = −1

α2
π0
π1

(
V00−V10
V11−V01

) 1
α
ln
(
V00−V10
V11−V01

)
.

Since −1
α2

π0
π1

(
V00−V10
V11−V01

) 1
α

is strictly negative, d
dα
ηp is always non-positive or non-negative depending

on the sign of ln
(
V00−V10
V11−V01

)
.

Similarly, differentiating ηp with respect to β, we get

d

dβ
ηp=

π0

απ1

(
V00−V10

V11−V01

) 1
α
−1
Uλ

11(−U10)λ−Uλ
00(−U01)λ(

Uλ
11+β(−U01)λ

)2

which is non-positive or non-negative depending on the sign ofUλ
11(−U10)λ−Uλ

00(−U01)λ, since all

other terms are strictly positive. Thus, the likelihood ratio is monotone with respect to parameters

α and β.
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In the special case of V00 − V10 = V11 − V01, ηp does not change when α varies; and in the

special case of U11U10 = U00U10, ηp remains constant when β varies.

In many applications, the likelihood ratio Λ(r) = f1(r)
f0(r)

is strictly increasing or decreasing with

respect to r. One example is when f1(r) and f0(r) are Gaussian PDFs with different means and

the same variance2. Gaussian distributions are very commonly used as they characterize a large

number of problems in signal processing and communications. In this case, the LRT reduces to

a threshold based decision rule based on the observation r and the optimal decision threshold t is

monotone with respect to α and β as well.

Proposition 2.1. When the likelihood ratio Λ(r) is strictly increasing or decreasing, the LRT in

(2.12) becomes a threshold decision rule. The optimal decision threshold is monotone with respect

to behavioral parameters α and β, respectively.

PROOF: Given the monotonicity of Λ(r), the likelihood ratio test (2.12) is equivalent to r R
H1

H0
t0

or r R
H0

H1
t0, depending on whether Λ(r) is increasing or decreasing. The decision threshold t0 is

obtained by setting t0 = Λ−1(ηp), where Λ−1(·) is the inverse function of Λ(r). Because of the

monotonicity of Λ−1(·), t0 is monotonous with respect to ηp. From Theorem 2.1, we know that ηp

is a monotonous function with respect to parameters α and β, it follows that t0 is monotonous with

respect to α and β as well.

In the remainder of this chapter, we consider human decision making for the binary hypothesis

testing problem, and the observations under each hypothesis are assumed to follow a Gaussian

distribution:

H0 : r ∼ N (m0, σ
2
s), H1 : r ∼ N (m1, σ

2
s) (2.13)

where the signal means under H0 and H1 are m0 and m1, respectively. The signal variance under

both hypotheses is σ2
s . We assume that m0 < m1 and the diminishing marginal utility parameter λ

2In case that f1(r) and f0(r) are Gaussian PDFs with means m1 and m0, and variance σ2
s , Λ(r) = f1(r)

f0(r)
=

e
2(m1−m0)r−(m2

1−m2
0)

2σ2s , which is strictly increasing if m1 > m0, and strictly decreasing if m1 < m0.
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Fig. 2.2: Decision thresholds with respect to behavioral parameters.

from PT is set equal to 0.88. We focus on analyzing how behavioral parameters α and β affect the

human decision qualities.

For illustration, we conduct experiments on a hypothesis testing problem with the following

setting: π0 = 0.7, π1 = 0.3, U11 = U00 = 20, U01 = −80, U10 = −20,m0 = 0,m1 = 5, and

σ2
s = 2.25. In Fig. 2.2, we plot the optimal decision thresholds with respect to α, β under EUT

and PT based subjective utility approaches. We also provide the optimal decision thresholds for

PT based Bayesian formulation using numerical methods. It can be observed that under EUT, the

decision threshold is a constant, without being affected by humans’ behavioral properties. In this

particular example, we can see that the decision thresholds, under both PT utility based methods

and PT Bayesian methods, decrease as probability distortion parameter α decreases and decrease

as loss aversion parameter β increases. An intuitive explanation for this is that as α decreases,

the human perceives less distinction between the priors {π0, π1}. Therefore, the hypothesis with a

smaller prior probability, in this case, H1, is more likely to be declared true and correspondingly,
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the decision threshold is decreasing. When β increases, the human perceives the penalty for miss

detection U01 = −80 to be more significant than the penalty for false alarm U10 = −20. Therefore,

the decision threshold is decreasing to avoid the possibility of miss detection.

In contrast to the fact that the Bayesian formulation is equivalent to the utility based decision

making under EUT, there exist disparities between these two approaches when PT is incorporated.

Results in Fig. 2.2 suggest that when α is smaller and β is larger, the decision threshold under PT

Bayesian formulation deviates more from the rational case than the decision threshold under PT

utility based approaches. Note that when α = β = 1 and λ = 1, i.e., the person is rational, the

decision rule of both approaches reduces to the classical LRT (2.8).

The above results have provided us with the basic insights on how the parameters α and β

from PT affect the decision threshold used by a cognitively biased person in utility based decision

making. We denote the cognitively biased threshold t as t = F(α, β), where F is monotone with

respect to α and β.

2.2.4 Uncertainties in Human Decision Making

Unlike physical sensors, whose decision thresholds can be programmed to be fixed values that

do not change, there are uncertainties in human decision making due to uncontrolled factors like

time constraint, mood, environment, location and so on. Individual uncertainty (variability) is a

prominent feature in human behavior. Variability is observed in human perception and decision

making even when the external conditions, such as the sensory signals and the task environment,

stay the same [21]. This is also known as trial-to-trial variability in psychology experiments,

i.e., differences of responses are noticeable when the same experiment is repeated using the same

human subject. From a psychology point of view, the sources of the variability are: a) the initial

condition of the neural circuitry is likely to be different at the start of each trial, and b) the noise

permeating in every level of the nervous system, from the perception of input observations to

the stage of decision making. These two sources cause uncertainties in human decision making

and are highly dependent on factors such as time constraints, outside environment and human
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mood [45, 65].

In the following, decision thresholds of humans are modeled as random variables as in [128,

152, 153]. Specifically, we model the threshold of a human to be τ = F(α, β) + v, where

v ∼ N (0, σ2
τ ). Here σ2

τ represents the variance associated with an agent while making a deci-

sion due to uncertainty as discussed above. From now on, we let τ denote the behaviorally biased

decision threshold used by the human agent. τ is assumed to be a Gaussian random variable, whose

mean is affected by the average level of human cognitive biases and the variance σ2
τ is due to de-

cision uncertainties. A larger value of σ2
τ indicates higher uncertainty of a person while making

a decision. To measure the individual uncertainty in human decision threshold, one may conduct

the experiments as in [135] on the same human under different environments, e.g., time pressure,

change of location, etc. In each experiment, the set of behavioral parameters α, β and λ of the

human can be estimated. Since the variability of these parameters can be incorporated via the vari-

ability of the decision threshold, we can obtain the variance of the decision threshold by analyzing

the statistics.

Lemma 2.1. In solving the hypothesis testing problem (2.8), if a human employs a random decision

threshold τ ∼ N (mτ , σ
2
τ ), the probabilities of false alarm and detection are given by

PF = Q

(
mτ −m0√
σ2
s + σ2

τ

)
, PD = Q

(
mτ −m1√
σ2
s + σ2

τ

)
, (2.14)

where Q(x) is the probability that a standard normal random variable takes a value larger than

x: Q(x) = 1√
2π

∫∞
x

exp (−u2

2
)du.

PROOF: See Appendix A.1.

Next, we want to study the impact of decision uncertainty quantified in terms of σ2
τ on human

decision making performance. For a human agent who uses a random decision threshold τ ∼

N (mτ , σ
2
τ ) to make a decision in the binary hypothesis testing problem (2.8), we have the following

theorem.
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Theorem 2.2. There exists a pair of values {mτ ,mτ} where mτ < mτ and both mτ and mτ

satisfy:

e
2(m1−m0)mτ−(m2

1−m
2
0)

2σ2s ×
(
mτ −m1

mτ −m0

)
= η,

such that for humans with mτ ≤ mτ ≤ mτ , the expected utility while making a decision monotoni-

cally decreases as σ2
τ becomes larger, i.e., the expected utility while making a decision is maximized

for decision uncertainty σ2
t
∗

= 0. For humans with mτ > mτ and mτ < mτ , the expected util-

ity is unimodal, i.e, first increases then decreases, as σ2
τ becomes larger. The optimal decision

uncertainty σ2
τ
∗ is greater than 0 and satisfies:

e
2(m1−m0)mτ−(m2

1−m
2
0)

2(σ2s+σ
2
τ
∗
) ×

(
mτ −m1

mτ −m0

)
= η.

PROOF: See Appendix A.2.

Definition 2.1. Under the hypothesis testing framework discussed above, if for decision variance

σ2
τ
∗

= 0, a human obtains the maximum expected utility while making a decision and the expected

utility decreases monotonically as σ2
τ increases, i.e, mτ ≤ mτ ≤ mτ , the person is called reason-

able. If the best decision in terms of expected utility is made for decision variance σ2
τ
∗
> 0, i.e.,

mτ > mτ or mτ < mτ , the person is called extremely biased.

Some simulation results are provided when a human employs the decision thresholdN (mτ , σ
2
τ )

in the hypothesis testing problem discussed before. In this case, we obtain that mτ = −0.025 and

mτ = 5.015. Correspondingly, the left side extremely biased region, the reasonable region and

the right side extremely biased region in terms of mτ are (−∞,−0.025), [−0.025, 5.015] and

(5.015,∞), respectively. In Fig. 2.3, we plot the expected utility of a human while making a deci-

sion with respect to the uncertainty of decision threshold σ2
τ . It can be observed that the expected

utility of a reasonable human is monotonically decreasing with respect to σ2
τ . For extremely bi-

ased human agents, there exists an optimal value of decision uncertainty σ2
τ
∗ at which they achieve

the maximum expected utility. Note that in this hypothesis testing problem, left side extremely
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biased humans whose decision threshold is on the far left typically perform better than a right side

extremely biased humans agent whose decision threshold is on the far right. This is because the

penalty of miss detection (U01 = −80) dominates the penalty of false alarm (U10 = −20) in this

particular problem. Right side extremely biased humans with higher biased decision thresholds are

more probable to suffer miss detection and their performance is significantly deteriorated. More-

over, it is observed in Fig. 2.3 that a left side extremely biased human outperforms a reasonable

human after a certain value of σ2
τ is reached. The reason is that as the decision threshold variance

σ2
τ increases, a reasonable human agent is more likely to employ higher biased decision thresholds

than a left side extremely biased human, while degrading the performance due to higher cost of

miss detection.

Fig. 2.3: Expected utility of a human agent as decision uncertainty σ2
τ increases.

Remark 2.1. Extremely biased humans have their decision making performance enhanced in the

presence of decision uncertainty up to a certain point before it begins to deteriorate. This is anal-

ogous to noise-enhanced signal processing [23] where the performance of a suboptimal detector

can sometimes be enhanced by adding noise. This phenomenon is also known as stochastic reso-

nance in the literature [24, 25, 72].
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2.3 Decision Fusion Involving Human Participation

In this section, we analyze how the biased decision threshold τ employed by humans affects the

performance of the decision making system in three different scenarios.

2.3.1 Human Participates in Decision Making as an Assistant, FC is Ra-

tional

First, as shown in Fig. 2.4, we consider the scenario where a human agent assists the FC in making

the final decision with the FC being rational (unbiased).

Fig. 2.4: Human participating in decision making as an assistant

We assume that the FC observes r0 and agent A observes ra via orthogonal observation chan-

nels. The observation channels of both the FC and agent A are assumed to be corrupted by additive

Gaussian noises, which are independent of each other but have the same PDF. The observations at

the FC and agent A are denoted by r0 and ra to emphasize the fact that they are observed over two

independent channels. Specifically, agent A is a human who makes a decision on which hypothesis

is true by comparing ra with a threshold ta:
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da =

 1 if ra ≥ ta

0 if ra < ta

For simplicity of exposition, we first consider ta to be a fixed decision threshold determined by

the PT parameters αa and βa, ta = F(αa, βa). Decision making uncertainty of agent A will be

incorporated later in this subsection. After agent A sends its decision da = j ∈ {0, 1} to the FC,

the FC makes the final decision d0 based on da and its own observation r0. Given da and r0, the

expected utilities for the FC to declare H0 and H1 are:

EU(Declare H0)=Pr(H0|r0, da=j)U00+Pr(H1|r0, da=j)U01

EU(Declare H1)=Pr(H0|r0, da=j)U10+Pr(H1|r0, da=j)U11,

respectively. Choosing the hypothesis that has the larger expected utility yields the decision rule:

Pr(H1|r0, da = j)

Pr(H0|r0, da = j)

H1

R
H0

U10 − U00

U01 − U11

,

where Pr(Hi|r0, da = j) represents the probability that Hi is true given observation r0 and da = j.

We have

Pr(Hi|r0, da=j) =
πiPr(da=j|Hi)f(r0|Hi)

f(r0, da = j)

for i, j ∈ {0, 1}. Note that Pr(da = 1|H0) = P a
F , and Pr(da = 1|H1) = P a

D, which are the

probabilities of false alarm and detection of agent A, respectively. After simplification, the decision

rule at the FC becomes:

f1(r0)

f0(r0)

H1

R
H0

1−P a
F

1−P a
D

π0(U10−U00)

π1(U01−U11)
=

1−P a
F

1−P a
D

η, if da=0, (2.15)

f1(r0)

f0(r0)

H1

R
H0

P a
F

P a
D

π0(U10−U00)

π1(U01−U11)
=
P a
F

P a
D

η, if da = 1. (2.16)
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By setting f1(r0)
f0(r0)

=
1−PaF
1−PaD

η for da = 0, and f1(r0)
f0(r0)

=
PaF
PaD
η for da = 1, we obtain the decision

thresholds applicable to observation r0 at the FC, denoted by t0 and t1, respectively. When obser-

vations under both hypotheses follow Gaussian distributions (2.13), we have P a
F = Q( ta−m0

σs
) and

P a
D = Q( ta−m1

σs
). Considering the two scenarios together where da = {0, 1}, the probability of

false alarm and the probability of detection at the FC can be expressed as:

pf =
1∑
j=0

Pr(d0 = 1|da = j,H0)Pr(da = j|H0)

= P a
FQ(

t1 −m0

σs
) + (1− P a

F )Q(
t0 −m0

σs
),

pd =
1∑
j=0

Pr(d0 = 1|da = j,H1)Pr(da = j|H1)

= P a
DQ(

t1 −m1

σs
) + (1− P a

D)Q(
t0 −m1

σs
),

respectively. Then, the expected utility at the FC is:

U=π0(1− pf )U00+π0pfU10+π1(1− pd)U01+π1pdU11. (2.17)

We conduct simulations for the same hypothesis testing problem as described in Section 2.2.3.

In Fig. 2.5, when agent A’s decision threshold ta varies, i.e., the cognitive bias of the human varies,

we present the expected utilities of agent A by itself and that of the FC. Note that the thresholds

used at agent A that yield the maximum expected utility for agent A by itself and that at the fusion

center are different. In other words, a rationally behaving person who acts to maximize his/her

EU (with decision threshold equal to 2.28 indicated by the red dot) does not necessarily provide

the best performance for the FC. In this particular example, a person behaving with some biases

(with decision threshold equal to 2.41 indicated by the blue dot) results in a larger expected utility

for the FC. How to choose the properly biased person is dependent on the specific setup of the

hypothesis testing problem. After knowing the effect of agent A’s decision threshold on the FC’s



32

performance, we are able to determine a particular type of cognitively biased person, in terms of

α, β, to be chosen to undertake the task.

Fig. 2.5: Expected utility as a function of threshold ta used by agent A.

Next, to incorporate decision making uncertainty, the decision threshold employed by agent A

is considered to be a Gaussian random variable τa ∼ N (mτa , σ
2
τa). In this case, P a

F and P a
D can

be calculated through (2.14), and the optimal decision rule at the FC can be obtained in a manner

similar to the previous discussions. The FC’s expected utility can be correspondingly derived. In

the following, we focus on studying the FC’s decision making performance when the uncertainty

of agent A’s decision threshold changes.

With the earlier setup of the hypothesis testing problem, Fig. 2.6 shows the expected utility at

the FC with respect to the mean decision threshold of agent A. In the red, green and blue curves,

the variances of agent A’s decision threshold are σ2
τa = 0, σ2

τa = 1 and σ2
τa = 4, respectively. It

is not surprising that the red curve with smallest decision making uncertainty performs better than

the other two curves in the middle range of mτa , namely when the human agents are reasonable.

Thus, it is preferable to have human agents who are reasonable in that they are more predictable in

the presence of decision making uncertainty and their performance degrades in a graceful manner.

On the far left or far right of the graph, i.e., when the behavioral threshold is extremely biased, a
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larger variance surprisingly gives better performance at the FC. Intuitively, for extremely biased

agents whose behavioral thresholds are far from being rational, a large variance is more likely to

‘rectify’ their thresholds to be close to optimal thresholds. However, for rational agents whose

behavioral thresholds are already close to the optimal, a large variance is more likely to deviate

their thresholds away from their optimal values. For this reason, a large variance helps increase the

FC’s utility when the agent is extremely biased, while it hurts when the agent is already behaving

rationally. This phenomenon is consistent with our previous analysis about the effect of uncertainty

on the quality of a single human agent’s decision shown in Fig. 2.3.

Fig. 2.6: Expected utility of the FC as a function of the mean threshold of agent A.

Also notice that in Fig. 2.5, in order for the FC to derive maximum expected utility, agent A

employed the fixed decision threshold ta = 2.41. When we introduce uncertainty in the decision

threshold of agent A by increasing the variance in Fig. 2.6, the optimal mean of A’s decision

threshold while assisting FC to derive the largest expected utility, changes to mτa = 2.2 when

σ2
τa = 1, and mτa = 1.98 when σ2

τa = 4. This is because with the same mean threshold mτa ,

different variances result in different values of probability of false alarm and detection for agent A

(as shown in (2.14)), which in turn leads to different decision thresholds used by the FC (calculated

using (2.15) and (2.16)). Thus, the utility of the FC correspondingly changes. For this reason, we
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should also take the variance of the agent into consideration when deciding the agent’s optimal

mean threshold while assisting the FC.

2.3.2 Human is the Decision Maker at the FC, FC is Biased

For the system shown in Fig. 2.4, next consider that A is a physical sensor with fixed decision

threshold ta. The FC is a biased human with behavioral parameters α, β and decision making

uncertainty σ2
FC . Again, physical sensor A sends its decisions da = j ∈ {0, 1} to help the FC

make the final decision. If the FC is biased, we need to apply v(·) and w(·) when calculating the

FC’s subjective utility of declaring either H0 or H1 being true, when agent A sends its decision

da = j:

SU(Declare H0)=w
(
Pr(H0|r0, da=j)

)
V00+w

(
Pr(H1|r0, da=j)

)
V01 (2.18)

SU(Declare H1))=w
(
Pr(H0|r0, da=j)

)
V10+w

(
Pr(H1|r0, da=j)

)
V11 (2.19)

The FC makes its decision by selecting the hypothesis which results in a higher subjective utility.

Since the FC observes r0 and agent A makes its decision independently, the likelihood ratio at the

FC can be shown to be strictly increasing or decreasing with respect to observation r0. Hence, the

FC uses a threshold based decision rule and the mean of the decision threshold mj
FC is obtained

by setting (2.18) equal to (2.19) for j = 0, 1. Finally, we model the decision threshold that the

FC uses as a Gaussian random variable τ0 = N (mj
FC , σ

2
FC) to make the final decision, after it

observes the decision made by agent A, da = j.

The probability of false alarm and probability of detection at the FC are:

pf =
1∑
j=0

Pr(d0 = 1|da = j,H0)Pr(da = j|H0)

=Q
(ta−m0

σs

)
Q
(m1

FC −m0√
σ2
s+σ2

FC

)
+(1−Q

(ta−m0

σs
)
)
Q
(m0

FC −m0√
σ2
s+σ2

FC

)
pd =

1∑
j=0

Pr(d0 = 1|da = j,H1)Pr(da = j|H1)
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=Q
(ta−m1

σs

)
Q
(m1

FC −m1√
σ2
s+σ2

FC

)
+
(
1−Q(

ta−m1

σs
)
)
Q
(m0

FC −m1√
σ2
s+σ2

FC

)
,

where Pr(d0 = 1|da = j,Hi) = Q
(mjFC−mi√

σ2
s+σ

2
FC

)
for i, j = {0, 1} follows directly from the result of

Lemma A.1. Again, the expected utility of FC can be calculated using (2.17).

Fig. 2.7 shows the expected utility of the FC with respect to the decision threshold ta used

by the physical sensor A. In Fig. 2.7 (a), the red curve represents the scenario where the FC

is rational, and in the green and blue curves the FC is behaviorally biased with β = 1.5 and

β = 2, respectively. When the FC is biased, we set the FC’s probability distortion parameter to be

α = 0.72. It is observed that the FC achieves higher expected utility when it acts rationally. On

the other hand, the peak points on these curves (denoted by the red, green and blue dots) suggest

that for FCs with different behavioral properties, the optimal decision threshold of A in helping

the FC achieve the best utility differs. In such a decision making system where we are dealing

with humans that do not provide an opportunity for parameter tuning while they make decisions,

the best we can do is to acknowledge the fact that humans have cognitive biases and are subject to

uncertainties and try to develop efficient approaches to optimize the system performance. In the

problem considered here, we are tuning the threshold of the physical sensor A so as to help the

FC/human optimize the decision quality.

Another interesting fact is that in this decision making configuration, a more biased behaving

FC (indicated by the blue curve which has a larger β) outperforms a less biased FC (indicated by

the green curve which has a smaller β) for the entire range of A’s decision threshold. The reason is

that under the joint influence of behavioral parameters α, β and γ, the threshold of the likelihood

ratio test used by a biased FC deviates from the threshold used by a rational FC. In our case, a

larger β counteracts the effect of α and γ, making the threshold used by the biased FC closer to

that of a rational FC. In Fig. 2.7 (b), we set the loss aversion parameter β = 2 and plot the expected

utility of the FC with respect to ta as α varies. Similarly to the phenomenon in Fig. 2.7 (a), it can

be seen that a more biased value of α = 0.6 helps the FC make better decisions than α = 0.8

when β = 2. In general, it is not wise to judge the decision making performance of a human based
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Fig. 2.7: Expected utility of FC as a function of the decision threshold of agent A, when FC has
behavioral biases.

on the comparison of one single behavioral parameter, instead all the parameters should be treated

together in a more holistic manner.

2.3.3 Amelioration of Human Cognitive Biases by Adapting the Physi-

cal Sensor’s Threshold

For a human with behavioral parameters α, β, λ acting as the FC in the system model shown in

Fig. 2.4, variation of the physical sensor’s decision thresholds results in different decision rules at

the FC, which yield different decision making performance. The next proposition determines the

threshold t∗a employed by the physical sensor so that the human achieves the best decision making

performance.

Proposition 2.2. The decision threshold t∗a employed by the physical sensor that minimizes the
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FC’s expected cost satisfies the following condition:

G(t∗a) =
Q(g(ηp1)−m0

σs+σFC
)−Q(g(ηp0)−m0

σs+σFC
)

Q(g(ηp1)−m1

σs+σFC
)−Q(g(ηp0)−m1

σs+σFC
)
η. (2.20)

where we denote the thresholds of the LRT in (2.15) and (2.16) as ηp0 =
1−PaF
1−PaD

ηp and ηp1 =
PaF
PaD
ηp,

respectively, and g(x) =
2σ2
s log x+(m2

1−m2
0)

2(m1−m0)
, which is the inverse function of the likelihood ratio f1(r)

f0(r)
.

PROOF: Exploiting the independence assumption, the Bayesian cost of a human while making a

decision is:

∑
d0,da,Hk

∫
πkPr(d0|da, r0)Pr(da|ra)Pr(ra|Hk)Pr(r0|Hk)cd0kdr0dra

for d0, da, k ∈ {0, 1}. By summing da over {0, 1}, ignoring the constant factors and using the fact

Pr(da = 1|ra) = 1− Pr(da = 0|ra), we have

∫
ra

Pr(da = 0|ra)
∑
d0,Hk

∫
r0

πkPr(r0|Hk)Pr(ra|Hk)cd0k

×
[
Pr(d0|da = 0, r0)− Pr(d0|da = 1, r0)

]
dr0dra, (2.21)

which is minimized by setting Pr(da = 0|ra) = 0 if

∑
d0,Hk

∫
r0

πkPr(r0|Hk)Pr(ra|Hk)cd0k

×
[
Pr(d0|da = 0, r0)− Pr(d0|da = 1, r0)

]
dr0 ≥ 0 (2.22)

and setting Pr(da = 1|ra) = 0 if (2.22) does not hold.

Note that
∫
Pr(r0|Hk)Pr(d0|da, r0)dr0 = Pr(d0|da, Hk) and Pr(d0 = 0|da = 0, r0) ≥

Pr(d0 = 0|da = 1, r0). By setting (2.22) equal to 0 and summing over Hk for k = {0, 1},

we obtain the condition that must be satisfied by the optimal decision threshold t∗a of the physical
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sensor:

G(t∗a) =

1∑
d0=0

π0cd00

[
Pr(d0|da = 1, H0)− Pr(d0|da = 0, H0)

]
1∑

d0=0

π1cd01

[
Pr(d0|da = 0, H1)− Pr(d0|da = 1, H1)

] ,

Lastly, substituting Pr(d0 = 1|da = j,Hk) = Q(
g(ηpj)−mk
σs+σFC

) and Pr(d0 = 0|da = j,Hk) =

1−Q(
g(ηpj)−mk
σs+σFC

) for j, k = {0, 1} and after simplification, the condition in (2.20) follows.

In general, t∗a is not the optimal decision threshold, namely, g(η), that minimizes the expected cost

of the physical sensor while decision making. Also note that (2.20) is only a necessary condi-

tion that an optimal threshold of the physical sensor must satisfy. There might exist several local

minimum solutions and we should make a comparison to determine the global optimum.

2.3.4 Fusion of Decisions Made by Two Human Agents

Fig. 2.8: Fusion of decisions made by two human agents.

Now, consider the decision fusion scheme shown in Fig. 2.8, where A and B are two human

agents that make local decisions da and db, which are transmitted to an unbiased FC to make the

final decision. Let the decision threshold of A be τa ∼ N (mτa , σ
2
τa), and the decision threshold of
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B be τb ∼ N (mτb , σ
2
τb

). Suppose the FC receives the decision da = i ∈ {0, 1} from agent A, and

decision db = j ∈ {0, 1} from agent B. The expected utility of declaring H1 and H0 for a rational

FC are:

EU(Declare H0) = Pr(H0|da = i, db = j)U00 + Pr(H1|da = i, db = j)U01

EU(Declare H1) = Pr(H0|da = i, db = j)U10 + Pr(H1|da = i, db = j)U11.

The decision rule that declares the hypothesis which has the larger expected utility to be true, is

d0(da= i, db=j)=I

(
Pr(da= i, db=j|H1)

Pr(da= i, db=j|H0)
≥ η

)
,

where I(·) is the indicator function which equals 1 if the statement inside the parentheses is true,

and it equals 0 otherwise. The optimal decision rule of the FC requires the calculation of the prob-

abilities of local decisions under hypotheses H1 and H0, which depends on the decision thresholds

used by the two human agents. Further, the probability of false alarm and detection at the FC are:

pf =
1∑
i=0

1∑
j=0

Pr(d0 = 1|da = i, db = j)Pr(da = i, db = j|H0)

pd =
1∑
i=0

1∑
j=0

Pr(d0 = 1|da = i, db = j)Pr(da = i, db = j|H1).

Finally, the expected utility of the FC can be calculated using (2.17).

In Fig. 2.9, we plot the expected utility of the FC with respect to the mean values of the decision

thresholds used by agents A and B, namely mτa and mτb. In the red smooth surface, both agents

have decision uncertainty σ2
τ = 0.2, and in the blue meshed surface, both agents have decision

uncertainty σ2
τ = 0.7. In the graph, there are two local maximum points where the FC achieves lo-

cally optimal utilities. When the means of the decision thresholds deviate from their local maxima

points, the utility drops significantly. We can also see that the agents with less decision making

uncertainty (red curve) help the FC perform better than the agents with larger uncertainty do (blue
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Fig. 2.9: Expected utility of the FC when fusing decisions of two human agents.

curve) in the ‘center’ region of the graph. In the ‘leaf’ regions where humans are extremely bi-

ased, larger uncertainties produce higher utilities for the FC. For better visualization of the system

performance, we present the cross section curves of Fig. 2.9 in Fig. 2.10, where we plot the FC’s

utility with respect to mτb for different values of mτa. Fig. 2.10 (a) and Fig. 2.10 (b) correspond

to the cross section plots yielding the two maximum utility points, respectively. Note that for both

of the local maximal points, the mean value of the decision threshold of agent A is equal to that

of agent B. In subplots Fig. 2.10 (a) and (b) where the values of mτa are close to optimal, we

observe that FC performs better when the value of σ2
τ is smaller. However, in subplots Fig. 2.10

(c) and (d) where the values of mτa and mτb are both extremely biased, the blue curve with a larger

decision uncertainty σ2
τ = 0.7 outperforms red curve with a smaller decision uncertainty σ2

τ = 0.2.

This phenomenon coincides with what we observed in Fig. 2.6 when there was only one human

participating.
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Fig. 2.10: FC’s expected utility with respect to mτb for different values of mτa.

2.4 Collaborative Decision Making Composed of Indepen-

dent Decision Makers

In this section, we consider the scenario where multiple human agents (n > 2) participate in the

collaborative decision making process. Each agent independently makes a decision di ∈ {0, 1}

using a random decision threshold τi ∼ N (mτi , σ
2
τi

), for i = 1, . . . , n. The FC receives a vector of

decisions D = {d1, . . . , dn} and makes a final decision d0 regarding the hypothesis present. As the

number of agents becomes larger, the likelihood ratio test derived in the previous sections becomes

complicated and intractable. However, if we know the behavioral property of each agent, we can

derive the decision thresholds and calculate the probability of false alarm PFi and probability of

detection PDi for each agent. The optimal fusion rule at the FC in this situation can be obtained by

calculating the log likelihood ratio according to the Chair-Varshney rule [18] given as follows:

log
Pr(H1|D)

Pr(H0|D)
= log

π1

π0

+
∑
s+

log
PDi
PFi

+
∑
s−

log
1− PDi
1− PFi

,
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where s+ represents the agents whose local decisions are 1 and s− are agents with local decisions

0. Decisions are made based on:

log
Pr(H1|D)

Pr(H0|D)

H1

R
H0

log η.

Another fusion rule that is widely used is the majority rule due to its simplicity even though it

is not necessarily optimal. When the FC receives the decision vectors D, it calculates the sum of

local decisions: Γ =
∑n

i=1 di. In the majority rule, the statistic Γ is compared to a preset threshold

k = dn/2e. If Γ ≥ k, the FC decides that H1 is true, otherwise the FC decides that H0 to be

true, i.e., Γ R
H1

H0
k. In this case, di ∈ {0, 1} is a Bernoulli random variable with probability

Pr(di = 1) = PDi under H1 and Pr(di = 1) = PFi under H0. Thus, Γ is a Poisson Binomial

distributed random variable. Under H0, for example, the probability mass function (PMF) of Γ is:

Pr(Γ = γ) =
∑
A∈Fγ

∏
i∈A

PFi
∏
j∈Ac

(1− PFi),

where Fγ is the set that contains all possible combinations of γ agents out of a total of n agents.

The cardinality of Fγ is
(
n
γ

)
, so the computation becomes more complicated when n is large. In

the following, we use the Binomial approximation as well as the normal approximation to estimate

the statistics of Γ.

2.4.1 Approximations of Probabilities of False Alarm and Detection at

the FC

Considering that the FC uses the majority rule, this subsection presents two approximation methods

that allow us to compute the probabilities of false alarm and detection in a simpler and faster way.

• Binomial approximation. It can be seen that Pr(Γ) = γ approximately follows a Binomial

PMF B(n, p̃f ) under H0, where p̃f = 1
n

n∑
i

PFi , and it follows B(n, p̃d) under H1, where

p̃d = 1
n

n∑
i

PDi . Thus, the probability of false alarm and the probability of detection at the
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FC can be appproximated by pf = Pr(d0 = 1|H0) ≈
n∑
γ=k

(
n
γ

)
p̃γf (1− p̃f )n−γ and pd = Pr(d0 =

1|H1) ≈
n∑
γ=k

(
n
γ

)
p̃γd(1− p̃d)n−γ , respectively.

• Normal approximation. Since dis are independent, while not identically distributed Bernoulli

random variables, we cannot use the central limit theorem (CLT) directly to approximate Γ

to be Gaussian distributed when n is large. However, CLT can be generalized to be applied to

independent but non-identically distributed random variables when the Lyapunov condition

is satisfied: limn→∞
1

s2+δn

n∑
i=1

E
[
|di − µi|2+δ

]
= 0, where sn =

n∑
i=1

σ2
i , µi and σi are the

mean and standard deviation of each random variable. It is easy to verify that the Bernoulli

random variables satisfy the Lyapunov condition. Therefore, when n is large, Γ can be

approximated by a Gaussian random variable with mean mf =
n∑
i=1

PFi and variance σ2
f =

n∑
i=1

PFi(1 − PFi) under H0; and mean md =
n∑
i=1

PDi and variance σ2
d =

n∑
i=1

PDi(1 − PDi)

under H1. Thus, the probabilities of false alarm and detection at the FC are approximated

by pf = Pr(d0 = 1|H0) ≈
∞∫
T

1√
2πσ2

f

exp (− (x−mf )2

2σ2
f

)dx = Q(
T−mf
σf

), pd = Pr(d0 = 1|H1) ≈
∞∫
T

1√
2πσ2

d

exp (− (x−md)2

2σ2
d

)dx=Q(T−md
σd

), respectively.

With approximate values of pf and pd, the expected utility of the FC can be calculated via

(2.17). Fig. 2.11 shows the expected utility of the FC as a function of group size when applying the

Chair-Varshney decision rule, the majority rule, the Binomial and Gaussian approximations of the

majority rule, respectively. In our simulation, the parameters of the hypothesis testing problem are

chosen to be the same as before, and each agent in the group has behavioral parameters α = 0.72,

β is drawn from a Gaussian distribution N (mβ, σ
2
β), where mβ = 1.5 and σ2

β = 0.2. The variance

of human decision threshold is set equal to σ2
τ = 0.25. Results are obtained through 5000 Monte

Carlo trials. It is observed that the optimal Chair-Varshney decision rule outperforms the majority

fusion rule. The expected utility of the FC under the majority rule goes up when the group size

increases, and convergence occurs fairly fast. When the group size goes up to around 10, the

performance reaches its saturation. We also observe that the binomial approximation method gives

quite a good approximation to the majority rule and the Gaussian approximation starts to perform
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Fig. 2.11: Expected utility as a function of the group size.

well when n becomes large as expected.

2.4.2 Optimal Decision Rule at the FC

In our previous analysis, the majority rule was used for decision fusion where the statistic Γ is

compared to a threshold k = dn/2e. The majority rule is a special case of the k out of n rule and

is optimal only in certain scenarios. This rule is not necessarily optimal if the (binary) problem

has non-uniform priors, non-uniform costs of false alarm and miss detection, non-identical local

decision makers, etc. Here, we employ the more general k out of n rule, where d0 = 1 is declared

when k or more out of n people vote in favor of H1. The goal is to find the optimal value of k∗

for the k out of n rule so that the Bayesian utility at the FC is maximized. To characterize the

local decision qualities, we use population-level averages of the probabilities of detection and false

alarm, P̂D and P̂F , for each of the human agent.

Given that the sum of the local decisions is l, i.e., Γ = l, the expected utilities for the FC to

declare H0 and H1 are:

EU(Declare H0) = Pr(H0|Γ = l)U00 + Pr(H1|Γ = l)U01



45

EU(Declare H1) = Pr(H0|Γ = l)U10 + Pr(H1|Γ = l)U11,

respectively, where Pr(Hi|Γ = l) = πiPr(Γ=l|Hi)
Pr(Γ=l)

for i = {0, 1}, and

Pr(Γ = l|H0) =

(
n

l

)
P̂ l
F (1− P̂F )n−l

Pr(Γ = l|H1) =

(
n

l

)
P̂ l
D(1− P̂D)n−l

respectively. The FC decides that hypothesis to be true which has a higher expected utility. After

simplification, we obtain the optimal decision rule at the FC:

(
P̂D

P̂F
)l(

1− P̂D
1− P̂F

)n−l
H1

R
H0

η (2.23)

where η is defined in (2.8). We make the reasonable assumption that P̂D > P̂F [73, 142], so that

the left hand side of (2.23) is an increasing function of l and the optimal decision rule reduces

to l R
H1

H0
l∗, where the optimal threshold at the FC k = l∗ is the smallest integer l that satisfies

( P̂D
P̂F

)l(1−P̂D
1−P̂F

)n−l ≥ η.

For a group size of n = 20, we calculate the optimal threshold l∗ for the k out of n rule when

the behavioral properties of the people in the group change. In simulations, we set the group mem-

bers’ probability weight parameter α equal to 0.72, and let the loss aversion parameter β follow

the Gaussian distribution N (mβ, σ
2
β), where mβ and σ2

β could change. We employ Monte Carlo

methods to obtain the P̂D and P̂F of the agents numerically and calculate the optimal threshold l∗.

In the left subplot of Fig. 2.12, we observe that with σ2
β fixed to be 0.25, the optimal threshold

decreases when mβ increases. In the right subplot we set mβ = 2, and it shows that the optimal

threshold decreases as well when σ2
β becomes larger. Thus, it is important to understand the be-

havioral properties of the population in order to set the best threshold for the k out of n rule at the

FC.
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Fig. 2.12: Optimal threshold at the FC for different behavioral parameters of the group.

2.5 Collaborative Decision Making Composed of Correlated

Decision Makers

Humans from the same demographic subgroup often share similar behavioral properties that in-

clude emotion state, loss attitudes and perception of the environment, while the variations of those

behavioral properties are significant across different ages, genders and cultural backgrounds [149].

For example, psychologists have studied the impact of cultural differences on economic decision

making, where they showed that cross-cultural differences such as experiences, individualism,

power distance, and masculinity are highly correlated with the level of loss aversion and subjective

perceptions [31]. In experiments conducted in two countries (China and Ethiopia), it was shown

that the inter-country differences in behavioral patterns are more significant than intra-country dif-

ferences. The authors in this work concluded that the inter-country variations in risk attitudes can

be ascribed to cultural differences [146].
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2.5.1 Correlation Between Local Decision Makers

Inspired by the above evidence, we develop the correlation structure of local decision makers in

the following. Consider that there are n humans participating in the collaborative decision making

process regarding the hypothesis testing problem (2.13). Each human provides a local decision

di for i = {1, . . . , n} by employing the decision rule given in (2.12). Let ri and βi be the ran-

dom variables that denote the ith human’s observation regarding the PoI and his/her loss aversion

parameter, respectively3. Analogous to the models presented in the quantitative psychology liter-

ature [20, 124] that employ a physical measure to quantify the distance between representations

of the objects on a priori grounds, we establish a measure mij to represent the cognitive profile

difference between humans i and j. To model the perceptual and behavioral similarity among the

local decision makers, we consider that the correlation coefficient between human observations ri

and rj follows an exponential decay model [124]

ρi,jr = exp(−φr(mij)/l0) (2.24)

and the correlation coefficient between human loss aversion parameters βi and βj is given by

ρi,jλ = exp(−φλ(mij)/l0) (2.25)

where φr(·) and φλ(·) are appropriate distance functions that project mij to the correlation mea-

sures applicable to r and λ, respectively. l0 is a constant parameter. We hereby assume that the

ith human’s observation ri has PDF f ir(r). Since all the humans make observations regarding the

same PoI (2.13), we have f ir(r) = f0(r) underH0 and f ir(r) = f1(r) underH1 for i = {1, . . . , n},

with ρi,jr characterizing their correlation structures. Moreover, let the loss aversion parameter λi

follow PDF f iλ(λ) with ρi,jλ being the correlation coefficient between λi and λj .

3It has been demonstrated in the literature that the loss aversion effect has a larger impact on human decision
making compared to diminishing marginal utility phenomenon and the probability weighting distortion phenomenon
[101, 135]. Hence, in this work, we adopt a similar approach by fixing the value of λ = 0.88, α = 1 and focusing on
analyzing how the loss aversion parameter λ affects the decision making of humans.
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Here, in contrast to Section 2.4 where the local decisions were assumed to be independent,

di for i = 1, . . . , n have a dependency structure due to the similarity in human decision makers’

behavioral and perceptual properties. To characterize the quality and correlation of local decisions,

we define an error indicator random variable δi that is equal to 1 if the ith human’s local decision

di is wrong and is equal to 0 if the decision is correct. Let δ = [δ1, . . . , δn], so that its mean vector

µδ = [µδ1 , . . . , µδn ] represents the humans’ average probabilities of error and the covariance matrix

Σδ shows the dependency structure of δi.

Following the analysis and notation in Section 2.4, we further denote the acceptance region

(where the human decides 0) and the critical region (where the human decides 1) of the ith human

as R0
i and R1

i , respectively. Given a particular hypothesis testing problem, both R0
i and R1

i are

determined by the ith human’s loss aversion parameter λi. Note that δi is equal to 1 if ri ∈ R0
i

under H1 or ri ∈ R1
i under H0. Hence, we have the expected value of δi given as

µδi = Eri,λi,H(δi)

=

∫
λi

{
π0

∫
R1
i

f i0(r)dri + π1

∫
R0
i

f i1(r)dri

}
f iβ(λ)dλi

where the expectation is taken with respect to ri, λi andH. Since δi takes its value from {0, 1}, its

second moment is calculated as E(δ2
i ) = µδi . Hence, the variance of δi is given by

var(δi) = E(δ2
i )− E2(δi) = µδi − µ2

δi

To evaluate the covariance of δi and δj , we need to compute the expected value of δiδj . Note that

δiδj = 1 only when both δi and δj are equal to 1. Hence, we have E(δiδj) given in (2.26),

Eri,rj ,λi,λj ,H(δiδj) =

∫
λiλj

{
π0

∫
R1
i

⋂
R1
j

f ij0 (rirj)drirj + π1

∫
R0
i

⋂
R0
j

f ij1 (rirj)drirj

}
f ijλ (λiλj)dλiλj

(2.26)

where f ijk (rirj) is the joint PDF of observations ri and rj . f
ij
λ is the joint PDF of the loss aversion
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parameters λi and λj4. Hence, the covariance of δi and δj is given by

cov(δi, δj) = E(δiδj)− µδiµδj

At this point, we have been able to compute the values of µδ and Σδ, which will be used to perform

human selection in collaborative decision making in the next subsection.

2.5.2 Portfolio Theory based Human Selection

The objective of this section is to develop a methodology to select a subgroup from a pool of

heterogeneous human decision makers to participate in a binary decision making task. It should be

noted that such a human selection problem is not only complicated by the fact that it is difficult to

evaluate the performance of decision fusion in realistic multi-human decision making applications,

but also by the fact that there exist correlations among the quality of local decisions.

The majority rule is widely adopted as the aggregation rule in collaborative human decision

making due to its simplicity and efficiency. Under the majority rule, the FC collects all the local

decisions D = [d1 . . . dn] where di ∈ {0, 1} and compares the statistic Γ =
∑n

i=1 di to a threshold

z = dn/2e. The FC chooses H1 if Γ ≥ z, and chooses H0 otherwise, i.e., whichever hypothesis

that has the majority votes is declared to be true.

In past works on majority rule based collaborative human decision making or crowdsourcing

systems, e.g., [33, 47, 116] and the references therein, it is always the practice to select human

agents whose error probabilities are small. Note that this surrogate approach that selects human

agents with small error probabilities, although intuitive, yields guaranteed level of system perfor-

mance when the humans make local decisions independently of each other as we prove in the

following.

Proposition 2.3. In collaborative human decision making where the humans submit local decisions

4The derivation can be easily extended to incorporate the consideration of diminishing marginal utility parameter
λ and probability distortion parameter α by calculating Eri,rj ,λi,λj ,βi,βj ,αi,αj ,H(δiδj) instead of Eri,rj ,βi,βj ,H(δiδj)
in (2.26).
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independently, the majority rule based decision rule at the FC has lower probability of error when

the average error probability of the humans decreases.

PROOF: In a group of workers with size n = 2k + 1(k > 0), suppose that each worker provides a

binary answer 0 or 1 independently. The average probability of each worker making an error in the

local decision is po. According to the majority rule, the FC computes the sum of local decisions Γ

and makes the final decision by comparing Γ with z = k+1. Without loss of generality, we assume

that the true answer is 1. In this case, the FC decides 0 (makes an error) only when the number of

1s submitted by the humans is less or equal to k. Note that Γ follows a binomial distribution with a

total of n trials and expected success probability 1− po. The probability of error can be expressed

using the regularized incomplete beta function:

Pr(x ≤ k) = Ipo(k + 1, k + 1)

where

Ipo(a, b) =
B(po; a, b)

B(1; a, b)

and

B(po; a, b) =

po∫
0

wa−1(1− w)b−1dw.

Since B(1, k + 1, k + 1) is a constant given k and B(po, k + 1, k + 1) is an increasing function of

po, it is clear that the probability of error at the FC decreases as po becomes smaller.

When there are correlations among the local decisions, the probability that the majority rule

makes an error, i.e., less than z humans submit correct decisions, is expressed as

Pe =
z∑

γ=0

∑
A∈Sγ

Pr(OA)Pr(QA′) (2.27)

where Sγ is the set that contains all possible combinations of γ humans out of a total of n humans.

OA represents the event that all the humans in subset A make correct decisions andQA′ represents
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the event that all the humans in the complement set of A make wrong decisions. Quantifying the

value of Pe using (2.27) is difficult because a) the cardinality of Sγ is
(
n
γ

)
, which increases quite

rapidly as n and γ becomes large and b) both Pr(OA) and Pr(QA′) depend on the joint PDFs of

local decisions, which are hard to compute in general applications.

Markowitz’s portfolio theory (MPT) [86,89] is the first to analyze portfolio risk, diversification

and asset allocation in a mathematically consistent framework. In portfolio selection, each asset is

an investment instrument that can be bought and sold in the market, e.g., company stock. The return

value of each asset is modeled as a random value where the mean value represents the expected

value growth of the asset and the variance represents the measure of risk. The expected return

of the portfolio is calculated as a weighted sum of the individual assets’ returns. The portfolio’s

risk is a function of the variances of each asset and the correlations of each pair of assets. MPT

provides the solution of how to construct a portfolio of multiple assets that the expected return is

maximized for a given level of risk.

We aim to solve the human selection problem by mapping it to the portfolio selection problem

under the MPT model. There is an analogy between the two problems where we relate the ith hu-

man’s average probability of making a correct decision to the return of asset i. In such an analogy,

1−δi corresponds to the expected return (equivalently, δi corresponds to the expected cost) and the

covariance matrix Σδ corresponds to the uncertainty (or risk). Similar to assembling the portfolio

of assets under MPT, we select a subgroup of humans that maximizes the sum of their probabilities

of making correct decisions (equivalently, minimizing the sum of their error probabilities) while

constraining the variability of the system performance is below a certain level. Here, note that

minimizing the sum of the humans’ error probabilities is consistent with the objective of human

selection where the humans make decisions independently of each other.

Motivation for Portfolio Theory based Human Selection

Because of the correlation among the local decisions, variability (or variance) of the system per-

formance is an important criterion in determining the subgroup of human participants. Selecting
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humans with a smaller average error probability does not necessarily result in the highest accuracy

at the FC. In the following, we provide a toy example to illustrate this point.

A motivating toy example. Consider that there is a pool of 6 humans and we aim to select 3 of

them to participate in an inference task. Whether or not the humans make a mistake in their local

decisions are modeled as Bernoulli random variables bi for i = 1, . . . , 6 with the probabilities of

error given by p = [p1 p2 p3 p4 p5 p6] = [0.25 0.25 0.25 0.3 0.3 0.3]. We assume the case that the

first three decision makers are highly correlated such that they make correct or wrong decisions

at the same time. Hence, we have the correlation coefficient of each pair among the first three

decision makers equal to 1, i.e., ρij = 1 if i, j ∈ {1, 2, 3}. On the other hand, we assume that each

of the last three human agents i = 4, 5, 6 make the decisions independently of any other decision

maker in the pool. As a result, the correlation coefficient ρij = 0 if i or j ∈ {4, 5, 6} and i 6= j.

Under this model, the covariance matrix of the random variables bi, denoted by Σb, can be written

as

Σb =



0.1875 0.1875 0.1875 0 0 0

0.1875 0.1875 0.1875 0 0 0

0.1875 0.1875 0.1875 0 0 0

0 0 0 0.21 0 0

0 0 0 0 0.21 0

0 0 0 0 0 0.21


where the variance of a Bernoulli random variable is obtained by var(bi) = pi(1− pi) and the co-

variance is given by cov(bi, bj) = ρij
√
var(bi)var(bj). To select 3 out of the 6 decision makers to

perform the inference task without considering their dependency structure, firstly, we choose those

that have low error probabilities. In the above problem, the first three humans i = 1, 2, 3 have the

lowest error probabilities so that we choose the human selection vector to be s1 = [1 1 1 0 0 0],

where 1 represents the selection of the corresponding human and 0 represents no selection. When

the local decisions are aggregated via the majority rule, the subgroup selected by s1 has the proba-
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bility pe1 = 0.25 to make a mistake as the participants make wrong decisions at the same time with

a probability of 0.25. On the other hand, if we set s2 = [0 0 0 1 1 1] and select the last three hu-

mans whose error probabilities are larger, the majority rule based decision rule has the probability

of error pe2 =
(

3
2

)
(0.3)2(1− 0.3) + (0.3)3 = 0.216, where

(
3
2

)
= 3 represents the number of com-

binations of selecting 2 humans out of 3 humans. We find that although the last three humans have

higher error probabilities, the selection of humans using s2 achieves a better system performance

compared to the selection using s1. Since the humans i = 4, 5, 6 act independently of each other,

it allows for more freedom in terms of diversification, which reduces the probability that two or

more humans make mistakes together.

In the MPT model, an investor can reduce the risk by holding a combination of assets that are

not perfectly positively correlated. In collaborative human decision making, let CN denote the

number of selected humans that make incorrect decisions. When the recruited human decision

makers are less correlated with each other, the variance of CN becomes smaller. To provide an

intuition, we continue with our toy example and compute the variances of CN when employing the

selection vector s1 and s2:

varCN (s1) = s1Σbs1
′ = 1.6875

varCN (s2) = s2Σbs2
′ = 0.63

where the superscript ′ represents the transpose of the vector. Compared to s1, the selection of

independent decision makers using s2 has a smaller value of CN ’s variance. When the correlation

among humans is low, it is unlikely that they make mistakes at the same time. In such a case,

CN remains small most of the time and the probability that CN takes a large value is negligible,

which makes the variance of CN small. On the other hand, when the local decisions have strong

correlation, there is a relatively large chance that they make mistakes at the same time, causing the

variance of CN to be large. It was also shown that along with the smaller variance achieved by s2,

the average probability of error pe2 is smaller. This motivates the application of MPT in our human
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selection problem in the sense that a smaller variance of CN corresponds to diversification among

human decision makers (i.e., the local decisions are not highly correlated with each other), which

avoids the possibility of concurrent failures so that the system performance can be improved.

MPT based Human Selection and Optimization Method

Following MPT, the risk-averse investors wish to design portfolios that have the best expected

return-risk trade-off. In our problem, the portfolio set corresponds to the pool of human workers

and we wish to select a subgroup to participate in an inference task to ensure the quality of system

performance. The expected means and the covariance matrix of the random variables that represent

that the ith local decision is incorrect are given by µδ and Σδ, which have been derived in Section

2.5.1. We seek to select the subgroup to achieve two objectives, i.e., minimize the sum of expected

error probabilities5 and reduce the variance of CN .

Let s = [s1, . . . , si, . . . , sn] denote the human selection vector where si represents whether or

not the ith human is selected. In the first formulation, we aim to minimize the sum of the error

probabilities of the selected humans while keeping the variance of CN below a target value σ2
t

min
s

µs = sµ′δ (2.28a)

s.t. σ2
s = sΣδs

′ ≤ σ2
t , (2.28b)

s1′ = m and si ∈ {0, 1} for i = 1, . . . , n (2.28c)

where 1 represents the all-one vector. In (2.28c) we constrain that a total number of m humans are

selected and each si has to be a Boolean variable. In MPT, the problem of maximizing the expected

return at a given level of risk has an equivalent dual representation where we minimize the variance

of the portfolio subject to a target value of expected return. Hence, the dual formulation of the

5This objective coincides with the surrogate criterion for human selection when they make local decisions inde-
pendently, i.e., minimizing the average error probability of the selected crowd workers as shown in Proposition 2.3.
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optimization problem (2.28a)-(2.28c) is given by

min
s

σ2
s = sΣδs

′ (2.29a)

s.t. µs = sµ′δ ≤ µt, (2.29b)

s1′ = m and si ∈ {0, 1} for i = 1, . . . , n (2.29c)

where µt in (2.29b) denotes the threshold that upper bounds the sum of selected humans’ error

probabilities. The advantage of the second formulation given in (2.29a)-(2.29c) compared to the

one given in (2.28a)-(2.28c) is that it is preferable to constrain the value of µt rather than the target

variance levels σ2
t . This is because typically it is hard for the project manager to quantitatively

relate the value of σ2
t to a specific level of variability.

In contrast to MPT where the optimization variable is continuous, we have si ∈ {0, 1} so that

s is in a non-convex set, making the problem generally impossible to solve as the solution requires

an intractable combinatorial search. We employ the reweighted `1 minimization approach [15] to

solve this binary constrained optimization problem by assigning the weight wi to each element

si, where the algorithm iteratively alternates between optimizing s and redefining the weights.

After a certain number of iterations, s converges to a steady state and the entries that have large

weights are set equal to 1, indicating that the corresponding humans will be selected. To provide an

example, we show the detailed procedures to solve the problem (2.29a)-(2.29c) in Algorithm 1. In

this section, we propose a collaborative human decision making mechanism while using prospect

theory to model the correlations of the workers’ decisions and using concepts from portfolio theory

for worker selection. If the desired system performance does not achieve a certain level of accuracy,

the FC may expand or re-select the worker pool to enhance heterogeneity and improve system

performance. The flow chart of the system is presented in Fig. 2.13.

2.5.3 Simulation Results

We further conduct experiments for the worker selection problem from a 30-human pool where
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Algorithm 1 Solving the optimization problem (2.29a)-(2.29c)
1: PROCEDURE: Find the human selection vector s
2: Set the iteration count t = 0 and the initial weights w(t)

i = 1, i = 1, . . . , n.
3: Construct the weight matrix W t = diag([w

(t)
1 w

(t)
2 . . . w

(t)
n ]′).

4: Solve the minimization problem

st = arg min
s
sΣδs

′ + φ
∥∥W ts′

∥∥
`1

s.t. sµ′δ ≤ µt, s1
′ = m,

0 ≤ si ≤ 1 for i = 1, . . . , n

where φ is a properly designed parameter that is positive.
5: Update the weights for i = 1, . . . , n

wt+1
i =

1

|sti|+ ε

where ε > 0 is a parameter to provide stability to the algorithm.
6: Repeat step 3-5 until a specified maximum iteration number tmax is reached.
7: For the largest m entries from the final weight vector, set the corresponding entries in s to be

1. Set the other entries in s to be 0.

Fig. 2.13: Flowchart of the prospect theory and portfolio theory based collaborative human deci-
sion making system.
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we assign the label i to each human: i = 1, 2, . . . , 30. For the correlation coefficient equations

(2.24) and (2.25), we assume that the human i and j have cognitive profile difference given by

mij = 0.2 |i− j| for i, j ∈ 1, . . . , 30. For simplicity, the projection functions φr(·), φλ(·) are

assumed to be identity functions and the constant parameter l0 = 1. In this case, we have ρi,jr =

ρi,jλ = ρi,j = exp(−mij). Moreover, the loss aversion parameter of the ith human λi is assumed

to follow a Beta distribution Beta(ai, bi) with support [0 3] and the parameters ai = 2 + i, bi = 3.

Meanwhile, the ith and jth humans’ observations ri, rj as well as their loss aversion parameters

λi, λj have a correlation structure with correlation coefficient ρi,j . In simulations using Matlab, for

example, we use themvnrnd function to generate correlated Gaussian random variables r1, . . . , rn.

To generate correlated Beta distributed random variables, we first exploit the copularnd function

to get a vector of random variables generated from a Gaussian copula with a certain correlation

structure, and then, employ the betainv function to transform the output of copularnd into random

numbers that follow the beta distribution.

Without loss of generality, we assume that H1 is true so that the ith human makes a wrong

decision (i.e., δi = 1) when he/she submits di = 0 and makes a correct decision (i.e., δi = 0) when

he/she submits di = 1. We obtain the mean vector µδ and covariance matrix Σδ that characterize

the quality and dependency structure of the humans’ local decisions. We formulate the MPT based

optimization problem for human selection as given in (2.29a)-(2.29c), where we set the target

error probabilities µt = 0.3m, indicating that the selected humans should have their averaged error

probability below 0.3. Algorithm 1 is used to solve the optimization problem where m out of 30

humans are selected to participate in the inference problem.

As m takes its value from {3, 5 . . . , 21}, we plot the error probability of the majority rule

based decision fusion with respect to m in Fig. 2.14. The blue curve represents the scenario

where humans are selected using our proposed approach based on MPT optimization. The red

curve corresponds to the case in which humans with the lowest individual error probabilities are

selected without considering their correlation structure. As m increases, the FC’s error probability

decreases for both of the scenarios and it is observed that our proposed method performs better for
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Fig. 2.14: FC’s probability of error as m increases

every value of m. By minimizing the variance of the number of humans that make mistakes, our

algorithm does not favor selecting highly correlated local decision makers. The diversification (or

independence) among the selected humans ensures that they are not likely to make mistakes at the

same time. Therefore, the system performance improves.

Finally, we vary the optimization parameter µt in (2.29b) and see how it affects the system per-

formance. It should be noted that µt controls the trade-off between the two conflicting objectives:

1) minimizing the average error probability of the selected humans and 2) reducing the variance

of CN . A small value of µt gives more emphasis to the first objective and a large value of µt gives

more emphasis to the second objective. On one hand, µt can not be too small as it limits the human

selection pool to a small range, where heterogeneity might not be promoted. On the other hand, µt

can not be too large, otherwise we might select humans whose error probabilities are quite large

(such as spammers, Byzantines, etc.,) where the quality of the system performance is not guar-

anteed. In the previous simulation, we fixed the value of µt to be µt = 0.3m, which might not

necessarily be optimal. In Fig. 2.15, we set µt = tm and let t vary. We plot the FC’s probability

of error for different values of t for m ∈ {3, 5}. We also fit a 4-degree polynomial curve to the

data samples and show that how the system performance change with respect to t. It is observed



59

Fig. 2.15: FC’s detection performance as a function of optimization parameter t.

that in each case, there is a certain value of t that achieves the best system performance. It should

also be noted that the optimal parameter t when m = 3 is larger than the optimal value of t when

m = 5, indicating that when the number of selected humans is small, it is desirable to enhance the

emphasis on heterogeneity to improve the performance of group decision making.

2.6 Summary

In this chapter, we have explored the use of utility theory based hypothesis testing in human deci-

sion making. When humans are treated as rational agents who maximize their expected utilities,

the results derived at the FC are not likely to be accurate. Humans have cognitive biases and

make decisions so as to maximize their subjective utilities. The use of PT allows us to capture

the non-rationality of humans. Specifically, we derived the subjective utility based decision rule

for cognitively biased human agents modeled by PT. Three decision making systems involving

humans’ participation were explored, and we studied the impact of human behavioral biases on
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the quality of the final decisions. We also analyzed collaborative decision making composed of

independent and correlated local decision makers.

This chapter was able to reveal fundamental features of human decision making under be-

havioral biases, as well as the significant differences between decision fusion involving human

participants and information fusion with only physics-based sensors. Through the simple decision

making systems discussed in this chapter, we provided insights into the optimum design and task

allocation of collaborative human-machine networks, as well as the development of more com-

plicated human-centric intelligent systems. It will be worthwhile to study the optimal decision

making architectures for particular applications in future work. We also plan to study the correla-

tion among parameters that represent different aspects of behavioral biases, and design applicable

strategies to help human rectify the behavioral biases so as to make higher quality decisions.
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CHAPTER 3

PROSPECT THEORY BASED

CROWDSOURCING FOR CLASSIFICATION

IN THE PRESENCE OF SPAMMERS

3.1 Introduction

Crowdsourcing has attracted intense interest in recent years as a new paradigm for distributed

inference. It harnesses the intelligence of the crowd, by exploiting the inexpensive and online labor

markets in an effective manner [62, 76, 131, 132, 157]. Crowdsourcing enables a new framework

to utilize distributed human wisdom to solve problems that machines cannot perform well, like

handwriting recognition, anomaly detection, voice transcription, and image labelling [14,46,106].

While conventional group collaboration and cooperation frameworks rely heavily on a collection

of experts in related fields, the crowd in crowdsourcing usually consists of non-experts. Therefore,

the responses obtained from the crowd have diverse quality levels, which makes decision fusion in

the problem of classification via crowdsourcing quite challenging.

Although crowdsourcing has been applied in many applications, the quality of the aggregated

result is relatively low [2,64,95] due to the following reasons. First, the worker pool is anonymous
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in nature, which may result in an unskilled and unreliable crowd [141]. Second, the assumption

that the workers are sufficiently motivated, extrinsically or intrinsically, to take part seriously in

the crowdsourcing task, is highly questionable [57, 139]. Third, for the non-expert crowd to suc-

cessfully complete the crowdsourcing work, some tasks are specifically designed to be composed

of easy but tedious microtasks [145], which might cause boredom and result in low-quality work.

Finally, noisy and unreliable responses to the tasks cannot be detected and tagged before aggre-

gation so that appropriate weights could be assigned to responses [156]. For this reason, simple

majority voting is widely used as the aggregation rule and it takes all of the answers (including the

noisy and low quality ones) into account with the same weight [120].

3.1.1 Related Work

Different methods have been developed to deal with the above problems [57, 141, 145, 156], [69,

70,114,121,158]. In [70], the authors decompose a complex task into simple binary questions that

are easy for the workers in the crowd to accomplish. It is expected that very little knowledge would

be needed to complete the microtasks, and typically common sense or observation is good enough

for such microtasks. The authors in [145] employ taxonomy and dichotomous keys in the design

of the simple binary questions and the optimal question ordering problem in crowdsourcing is

considered in [50]. These schemes that break hard questions into simple ones lower the chance for

the workers to make mistakes in responding to each of the questions. Different decision fusion rules

are developed in order to deal with the unreliability of the crowd and increase the classification

accuracy [121, 156]. Varshney et al. [141] and Vempaty et al. [145] have proposed the use of

coding and decoding algorithms for reliable classification with unreliable crowd workers. The

comparison between group control and majority voting techniques are presented in [57], which

suggests that majority voting is more cost-efficient on simple binary tasks.

In the past literature, crowd workers could only submit a definitive yes/no answer in respond-

ing to a binary microtask/question. However, research in psychology [34] indicates a frequent

tendency to select the reject option (no choice) when the choice set offers several attractive alter-
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natives but none that can be easily justified as the best. In such cases, the workers may be unsure

in answering some of the questions because of their lack of expertise. For instance, phonemes in

some languages are very hard to distinguish, especially for foreigners [140]. To avoid requiring

workers to respond to microtasks beyond their expertise resulting in random guesses, Li et al. [79]

considered the optimal design of the aggregation rule in crowdsourcing systems where the workers

are not forced to make a binary choice when they are unsure of their response and can choose not to

respond. As shown in [66], the quality of label prediction can be improved by adopting a decision

rejection option to avoid results with low confidence. The reject option has also been considered

in machine learning and signal processing literature [7, 28, 110, 138]. With a reject option, the

payment mechanism is investigated in crowdsourcing systems where the workers can also report

their confidence about the submitted answers [123].

Additionally, in crowdsourcing systems, there can be greedy crowd workers, also known as

spammers, who aim to earn more monetary rewards by answering as many questions as possible.

They often submit random guesses independent of the questions being asked. The presence of

spammers degrades the system performance and has posed a threat to many crowdsourcing appli-

cations [148]. Currently, there are two categories of anti-spammer techniques in crowdsourcing:

a priori reputation system [33, 116] and a posteriori quality control [35, 36, 82]. The first method

aims to manage a pool of honest workers with high reputation, so as to ensure the reliability of

their answers. However, since the crowd is usually large, anonymous and transient, it is imprac-

tical to keep track of the workers’ answers and build up a trust relationship. In quality control

schemes, several verifiable (golden standard) questions are inserted for the workers to answer and

those who do not perform well on these questions are identified as spammers. However, due to the

heterogeneous expertise levels of the crowd workers and the subjective criterion used to decide on

a spammer, it is easy to mistakenly identify an honest worker to be a spammer, which discourages

the worker from participating in answering the questions next time. According to the study in [3],

it is better to treat all the crowd workers to be honest, than risking to identify honest workers as

spammers.
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We study the presence of spammers in the context of a scenario where crowd workers answer

questions with a reject option. The payment mechanism proposed in [123], which encourages the

workers to skip/reject answering a question below some confidence threshold, is employed. In this

scenario, both the honest workers and the spammers choose either to ‘answer a question’1 or ‘skip

a question’ to maximize their monetary rewards. In [123], the authors assume that the workers

are rational decision makers in the sense that they can perceive the expected payoff of taking each

decision without biases.

3.1.2 Major Technical Contributions

Since the crowd workers/spammers are humans, they are subject to cognitive biases in decision

making and have disparate behavioral properties. We employ Prospect Theory (PT) to model

the rationality of the crowd workers, and study their behavior while answering or skipping the

microtasks/questions2 in crowdsourcing that has a reject option. Based on the behavioral difference

between the honest workers and the spammers, we design the optimal aggregation rule at the fusion

center (FC) to combat the effects of spammers. The contributions of this chapter are two fold:

• By applying PT to model human cognitive biases, we study the optimal behavior of the hon-

est workers and the spammers based on the payment mechanism proposed in [123]. This

payment mechanism has been proved to be the only mechanism that satisfies the “no-free-

lunch” rule and exhibits incentive compatibility. We find that the spammers should either

complete or skip all the microtasks in order to get the maximal reward. The statistical be-

havioral properties of the crowd determine whether the spammers should complete or skip

all the microtasks.

• We provide methods for estimating the number of spammers that is used for weight assign-

ment. We also design an optimal aggregation rule where the workers are assigned appro-

1In this case, honest workers submit their true answers and the spammers submit random guesses.
2The terms ‘microtask’ and ‘question’ are used interchangeably in the chapter.
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priate weights3. The probability of correct classification and asymptotic performance of our

method are derived.

It should be noted that our approach only requires the workers to respond to several microtasks

in one session without identifying themselves. Hence, our proposed method can be employed in

many applications where the workers remain anonymous and, therefore, it is not required to keep

track of the workers’ profiles. On the other hand, instead of detecting the spammers, we estimate

and employ the number of spammers while designing the optimal counter-measure to ameliorate

their effects. The spammers still get paid according to the payment mechanism. As a result, the

risk of declaring honest workers as spammers and preventing them from further participation is

avoided.

3.2 Classification via Crowdsourcing with a Reject Option

We formulate the classification problem via crowdsourcing with a reject option in this section.

Assume that we have W workers participating in an M -ary classification task. There are N =

dlog2Me simple binary questions to be answered by each worker, where we consider that the binary

questions are independent of each other and are of the same difficulty. For each of the questions,

the worker can either provide a definitive answer “1” (Yes) / “0” (No) [118, 145], or has a reject

option to skip the question, where a skipped answer is denoted as δ. Let aw represent the N -bit

word that contains the wth worker’s ordered answers to all the microtasks, where aw(i) ∈ {1, 0, δ}

for i = 1, . . . , N . We assume the following statistical properties for the honest workers in the

crowd: let pw,i be the probability that the wth worker submits δ to the ith question, i.e, aw(i) = δ,

and let rw,i be the probability that aw(i) is the correct answer to the ith question, given that the

worker has provided definitive answers “1” or “0”. Since the workers in the crowd are anonymous

and have diverse expertise levels, we consider that pw,i and rw,i are random and follow certain

probability density functions (PDFs) fp(p) and fr(r), respectively. The expected values of pw,i
3A brief discussion on the weight assignment was presented in [78]. In this work, we elaborate on details and

explanations related to this model.
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and rw,i, namely, the average probability that a worker submits δ to a question, and the average

probability that an answer is correct given a definitive answer has been submitted, are denoted by

m and µ, respectively.

After the N -bit words regarding an object from all the workers are collected by the FC, the

object needs to be classified to a class dj ∈ D, j = 1, . . . ,M , where D is the set of all the object

classes and dj is the jth class. From the N -bit word aw(i) submitted by the wth worker, one can

infer the classification decision of the wth worker namely the subset of classes Dw
4 to which the

object belongs to. At the FC, each class dj inside Dw increments its candidate score by the weight

assigned to the wth worker Ww. After incorporating the responses from all the W workers, the FC

determines the class with the highest overall candidate score to be the final classification result:

d∗ = arg max
dj∈D

{
W∑
w=1

WwIDw 〈dj〉

}
, j = 1, . . . ,M, (3.1)

where IDw 〈dj〉 = 1 if dj ∈ Dw and IDw 〈dj〉 = 0 otherwise. The objective is to find the appropriate

weight assignment Ww for every worker in the crowd, so that the best classification performance

can be achieved. One approach is to split the M -ary classification task into N binary hypothesis

testing problems, each of which determines a bit in the N -bit word. For each hypothesis testing

problem, the Chair-Varshney rule gives the optimal weight as Ww = log
rw,i

1−rw,i [19]. However, this

requires the prior knowledge regarding rw,i for every worker, which is not available in practice.

One may also look into the minimization of the misclassification probability, for which a closed-

form expression for Ww cannot be derived due to the lack of prior knowledge of pw,i and rw,i.

We developed a weight assignment scheme to optimize the crowd workers’ weights [79]:

maximize EC [W]

subject to EO [W] = K
(3.2)

where EC [W] denotes the crowd’s average weight contribution to the correct class and EO [W]

4If all the responses from the wth worker are definitive, Dw is a singleton. Otherwise, Dw contains multiple
classes.



67

denotes the average weight contribution to all possible classes. We set K to be a constant so that

the portion of weight contribution to the correct class is maximized while the weight contribution

to all the classes remains fixed. By assuming that there are no spammers in the crowd, we showed

that the weight assigned to the wth worker is Ww = µ−n, where n represents the number of defini-

tive answers the worker submits in total. This method significantly outperforms the conventional

majority voting approach.

In this following sections, we investigate the impact of spammers on system performance.

Based on the payment mechanism that encourages the workers to skip the questions about which

they are not sure, we characterize the behavior of both honest workers and spammers in realistic

environments where they are subject to cognitive biases while decision making. With this informa-

tion, we estimate the number of spammers in the crowd and design the weight assignment strategy

for every worker to ameliorate the impacts of the spammers and maximize the system performance.

3.3 Behavior of the Honest Crowdworkers

In this section, we consider that there are no spammers in the crowd and explore the workers’

behavior in answering or skipping a microtask. We adopt the payment mechanism proposed in

[123], which encourages the use of the reject option when the confidence of answering a question

is low. The mechanism was proved to be the only incentive-compatible mechanism that satisfies

the “no-free-lunch” axiom (“no-free-lunch” axiom requires that the payment is minimum possible

if all the answers attempted by the worker in the gold standard questions are wrong). Under this

payment mechanism, we discuss the optimal behavior for the honest workers when they are rational

decision makers and want to maximize their monetary rewards. Next, considering that the honest

workers are human decision makers that are subject to cognitive biases in practice, we employ

Prospect Theory to model their behavioral property and analyze their decision making strategy in

realistic environments. Compared to the case where the workers are assumed to behave rationally,

it is shown that the behavioral factors captured in PT may cause the humans to act quite differently.
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3.3.1 Payment Mechanism and Optimal Behavior of Rational Crowd

Workers

The payment to the worker is based on the answers that the worker gives to the G gold standard

questions (which are not known to the crowdworkers in advance). The goal of the mechanism is

to incentivize the worker to skip the questions for which its confidence is lower than a threshold

T , where confidence about an answer is the probability of this answer being correct. The value

of T ∈ [0, 1] is chosen a priori based on factors such as the targeted performance quality. A

larger value of T leads to a higher probability that a question is skipped (or equivalently, a lower

probability that this question is answered). When T is large, the answer has a higher probability

of being correct given that a definitive answer has been submitted. Let f denote the payment rule,

which is proposed in [123] and is written as

f(x1, . . . , xG) = κ
G∏
i=1

αxi + µmin (3.3)

where xj ∈ {−1, δ,+1}, 1 ≤ j ≤ G, are the responses to the gold standard questions. “−1” de-

notes that the worker attempted to answer the microtask and the answer was incorrect, “δ” denotes

that the worker skipped the microtask, and “+1” denotes that the worker attempted to answer the

microtask and the answer was correct. Set α−1 = 0, αδ = 1, α+1 = 1
T

, and κ = (µmax − µmin)TG

with budget parameters µmax and µmin denoting the maximum and minimum payments respec-

tively. Note that µmin is a constant that represents the fixed reward, and κ
G∏
i=1

αxi represents the

variable reward that is determined by the worker’s answers. According to the payment mecha-

nism, the variable reward is multiplied by a factor of 1
T

when the worker answers the microtask

and the answer is correct, and the variable reward reduces to 0 if the answer is wrong. Therefore,

only when the worker’s confidence towards a microtask is higher than T , the expected payoff is

positive and it is beneficial for the worker to answer the microtask. Otherwise, there is a loss in

expected reward if the answer to the microtask is incorrect and in this case the worker should use

the skip option. Note that when the confidence is exactly equal to T , the worker can choose to
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either answer or skip the microtask. Under this payment mechanism, the workers are encouraged

to use the reject option when they are not sure of their answer, i.e., when the confidence regarding

the question is smaller than T . Next, we employ PT to model the rationality of the crowd workers

in deciding to answer or skip a microtask.

3.3.2 Behavior of Crowdworkers Predicted by Prospect Theory

In this subsection, we analyze the behavior of the honest workers while considering their cognitive

biases. According to the expected utility theory (EUT) [97], when a decision maker selects an

action from a set of alternative choices, the one that results in a higher expected payoff is always

preferred. In realistic decision making environments, we employ PT to model the rationality of the

crowdworkers and study their strategy in responding to the microtasks. In our set up, the crowd-

worker has to decide whether to answer or skip a particular microtask based on the confidence

t, i.e., the probability of correctly answering the microtask. Under PT, we use the value function

(2.1) to model the workers’ valuation towards gains and losses, and use the weight function (2.2) to

model the workers’ perception of probabilities. We show that a behaviorally biased crowdworker

makes decisions according to the following theorem to maximize the subjective payoff.

Theorem 3.1. If the confidence of a crowdworker with behavioral parameters α, β and λ towards

a question is t, then he/she decides to answer or skip a question according to the following rule:

t

1− t
answer

≷
skip

(
βT

1− T

) λ
α

, η. (3.4)

PROOF: Let the perception of the variable reward before answering the question be denoted

as Z. According to the payment mechanism (3.3), Z = (µmax − µmin)TG before answering any

question. In case that the worker has already provided definitive answers to i = 1, . . . , L questions,

the expected variable reward is Z = (µmax−µmin)TG
∏L

i=1
ti
T

, where ti is the worker’s confidence

on the ith question. Hence, we have Z > 0.

If the worker decides to answer the question, there is a probability of t that the answer is correct
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and Z is multiplied by 1
T

, and a probability of 1− t that the answer is wrong leading to Z = 0. By

using the current expected reward Z as a reference point, and applying the value function to the

gains (losses) and the probability weighting function to the probabilities, the subjective payoff if

the worker answers this question is expressed as:

SP (t) = w(t)v(Z(
1

T
− 1)) + w(1− t)v(−Z) (3.5)

On the other hand, if the worker skips the question, the expected reward Z stays the same and

hence, the subjective payoff is 0. The worker makes a decision by choosing the action which

yields a higher subjective payoff: SP
answer

≷
skip

0, which becomes the result of Theorem 1 after

simplification.

Note that (3.4) can be written as:

t
answer

≷
skip

t∗ ,
η

1 + η
. (3.6)

For a rational decision maker with α = β = λ = 1, t∗ = T and the decision rule (3.4) suggests

answering the question if t > T , and skip the question otherwise. We find that when βT ≥ 1− T ,

t∗ becomes larger, i.e., the worker is more likely to skip the question, as β, λ increase and α

decreases. Otherwise, t∗ becomes smaller as λ increases and α, β decrease.

We consider that all the binary questions are equally difficult and the wth crowd worker has

average confidence t of answering a question correctly. Let t follow the PDF fwt (t). According

to the behavior characterized in (3.6), the probability that the wth crowd worker skips a question

can be expressed as pw =
∫ t∗

0
fwt (t)dt. The probability that the answer is correct, given the wth

worker has submitted a definitive answer, can be expressed as rw =
∫ 1

t∗
fwt (t)dt. Statistically, pw

determines the number of definitive answers n of the wth worker and rw determines µ. Recall

that the weight assignment scheme in [79] is Ww(n) = µ−n. The variations of pw and rw in

the crowd may lead to different weights assigned to the workers. Given the confidence PDFs of

all the workers Ft = {f 1
t (t), . . . , fWt (t)} and a priori T , the classification performance obtained
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assuming that the workers are rational is not accurate in predicting the system performance in

realistic situations, where the crowd workers make decisions under cognitive biases. The first part

of our simulations in Section 3.6 provides comparisons between the system performance for a

crowd with different behavioral properties.

3.4 Classification in the Presence of Spammers

Spammers are known to exist in large numbers on crowdsourcing platforms. They submit their

answers randomly without being relevant to the question being asked, in the hope of earning some

extra money. In this section, we determine the optimal behavior of the spammers that maximizes

their expected monetary reward based on the payment mechanism (3.3). By optimal behavior, we

mean the optimal number of questions to be skipped by the spammers. We assume that a spammer

skips g out of G gold standard questions, and answers the remaining G− g by random guesses.

3.4.1 Spammers are Rational

First, we assume that the spammers behave rationally, i.e., they do not have cognitive biases while

calculating the expected payoffs of answering or skipping a question. We hereby define the spam-

mers that skip all the microtasks as Type I spammers, and the spammers that complete all the

microtasks as Type II spammers.

Proposition 3.1. To maximize the expected monetary reward, a rational spammer completes all

the microtasks (Type II) if T < 1
2
, and skips all the microtasks (Type I) otherwise.

PROOF: If a spammer skips g out of G gold standard questions and answers the remaining G− g

with random guesses, the expected monetary reward E for the spammer is expressed as

E = (µmax − µmin)TG
G∏
i=1

αxi + µmin

= (µmax − µmin)TG(
1

2
)G−g(

1

T
)G−g + µmin
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= (µmax − µmin)(
1

2
)G(2T )g + µmin, (3.7)

where X = {x1, . . . , xG} are the spammer’s responses to the gold standard questions. Since

0 ≤ g ≤ G, E is maximized as following

if T <
1

2
⇒ g = 0, if T >

1

2
⇒ g = G. (3.8)

The above proposition gives the optimal strategy for the spammers to participate in the crowd-

sourcing task. Since a spammer can not distinguish the gold standard ones from the other ques-

tions, the result derived in Proposition 3.1 indicates that the spammers should either complete or

skip all the questions according to the value of T to maximize their expected monetary reward.

In realistic applications, the FC selects T (T > 1/2) to ensure the high quality of the workers’

definitive answers (note that the workers’ minimum possible value of the confidence regarding a

question is 1/2, when the answer is a random guess). In this case, according to Proposition 3.1,

all the spammers are Type I and choose to skip all the microtasks. It is shown later in Appendix

A.3 that the answers from Type I spammers who respond δ to all the microtasks are not aggregated

for decision fusion. In other words, the weights assigned to Type I spammers do not affect the

aggregation result and in this sense, we can consider all Type I spammers to be honest. As a result,

by assuming that spammers behave rationally, all the workers in the crowd can be treated as honest

ones and the weight assignment scheme is Ww(n) = µ−n.

3.4.2 Spammers are Modeled by PT

As the spammers are also human decision makers, we employ PT to model their rationality and

predict their behavior in completing the micro-tasks. From the result of Theorem 3.1, we have the

following corollary.

Corollary 3.1. To maximize the subjective monetary reward under PT, a spammer with behavioral



73

parameters α, β, λ completes all the microtasks (Type II) if T > 1
β+1

, and skips all the tasks (Type

I) otherwise.

PROOF: Since a spammer employs random guesses to respond to the microtasks, t = 1/2. From

the result of Theorem 3.1 and note α > 0, λ > 0, the corollary follows.

Based on the above analysis of the spammers’ behavior, we study the optimal weight assign-

ment strategy at the FC and the classification performance in this section. As mentioned earlier, the

workers/spammers in crowdsourcing systems have different backgrounds and are heterogeneous in

their behavioral parameters α, β, λ. Considering that the spammers behave according to Corollary

3.1, we need the loss aversion coefficient β to predict whether the spammers answer or skip all

the questions. Since the spammers remain anonymous in the crowd and certainly do not want to

expose themselves, elicitation of parameter β for the spammers is not possible. Therefore, with-

out loss of generality, we assume that among the crowd workers of size W , there are a total of

M = M0 + MN spammers, with M0 Type I spammers skipping all the microtasks and MN Type

II spammers completing all the N microtasks.

The presence of spammers will significantly affect the classification performance of the crowd-

sourcing system, which may make it even worse when the spammers are starting to act strategically.

To ameliorate the spammers’ impact on system performance, we propose the aggregation rule for

the FC by maximizing the candidate score assigned to the correct classification class as in (3.2).

We denote our method as Amelioration of Spammers under PT (ASPT).

Proposition 3.2. In a crowd with M0 Type I spammers and MN Type II spammers, the weight for

the wth worker’s answer under formulation (3.2) is given by

Ww(n) =

[
(W −M)µn +

MN

2N(1−m)N
δ (n−N)

]−1

(3.9)

where n represents the number of definitive answers submitted by the wth worker, and δ(·) is the

Dirac lambda function.

PROOF: See Appendix A.3.
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Since the answers from Type I spammers who respond δ to all the microtasks are not aggregated

for decision fusion, M0 does not appear in the expression (3.9). In our scheme, the honest workers

whose answers are not all definitive employ weights equal to Ww(n) = 1
(W−M)µn

. This is the same

as the weight assignment Ww(n) = µ−n developed in [79], where all the workers are assumed to

be honest5. For workers who submit all definitive answers, the weight is decreased to a smaller

value by adding MN

2N (1−m)N
to the denominator of 1

(W−M)µn
. The weight assigned to a worker with

all definitive answers, namely, Ww(N) can not be large because it is likely that this worker is a

spammer. On the other hand, since it is possible that this worker is honest, Ww(N) can not be too

small. Essentially maximization of the candidate score for the correct classification class gives the

optimal value of Ww(N), leading to the expression in (3.9). The larger MN is, the more likely that

a worker with all definitive answers is a spammer. Correspondingly, Ww(N) is smaller.

3.5 Parameter Estimation and Performance Analysis of ASPT

In this section, we present the parameter estimation technique used in our proposed method. Clas-

sification performance and asymptotic performance will also be examined.

3.5.1 Parameter Estimation

The FC needs to estimate the crowd parameters µ, m, MN , M0 before assigning weights to the

workers. Following [79], either the Training-based or the Majority-voting based method is adopted

to estimate µ. The estimate of m is given by the ratio of the sum of skipped questions and all the

questions attempted by the crowd. Since m and µ represent statistical parameters for the honest

workers in the crowd, the workers completing or skipping all the questions are not incorporated

in the parameter estimation procedure to mitigate the impacts of spammers. The number of Type

I and II spammers M0 and MN are jointly estimated using the maximum likelihood estimation

(MLE) method. G gold standard questions are inserted into the N classification questions, so that

5W −M is a constant representing the number of honest workers in our scheme. Here, this constant acts as a
scaling parameter.
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a worker responds to a total of N +G questions. After answers from all the workers are collected

by the FC, we count the number of workers submitting N + G definitive answers and skipping

all the microtasks, denoted be WN+G and W0, respectively. Given the numbers of Type I and II

spammers M0 and MN , the joint PDF of WN+G and W0, f(WN+G,W0|MN ,M0), is expressed in

(3.10), where m̂ is the estimated m, and
(
a
b

)
= a!

(a−b)!b! .

f(WN+G,W0|MN ,M0) =

(
W −M0 −MN

W0 −M0

)
(m̂N+G)W0−M0(1− m̂N+G)W−W0−MN

×
(
W −W0 −MN

WN+G −MN

)
(1− m̂)(N+G)(WN+G−MN )

(
1− (1− m̂)N+G

)W−WN+G−W0 (3.10)

Therefore, by the MLE method, the estimates of M0 and MN , which are denoted by M̂0 and M̂N

respectively, can be obtained as

{
M̂N , M̂0

}
= arg max

{MN ,M0}≥0
f(WN+G,W0|MN ,M0). (3.11)

By writing W = W0, . . . ,Wi, . . . ,WN+G where Wi is the number of workers submitting i defini-

tive answers for i = 0, . . . , N + G, MN and M0 can be more accurately estimated according

to

{
M̂N , M̂0

}
= arg max

{MN ,M0}≥0
f(W|MN ,M0). (3.12)

However, the likelihood function f(W|MN ,M0) becomes very complicated to compute. As we

will see later in the simulation results section, the approach using (3.11) is sufficient to get a

relatively accurate estimate ofMN andM0. After the estimates of µ̂, m̂, M̂N , and M̂0 are obtained,

the FC can assign the appropriate weight to each worker based on (3.9) and use the answers for

aggregation.
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3.5.2 Performance Analysis

In this section, we assume that there are M0 Type I spammers and MN Type II spammers in a

crowd population of size W . The spammers attempt to maximize their monetary rewards under

the PT model as presented in Section 3.4. The probability of correct classification Pc is investigated

for the weight assignment scheme (3.9). For simplicity, we assume that the prior probabilities of

the true answers for each microtask to be “0” or “1” are equal. Note that we have a correct overall

classification only when all the N microtasks are correctly labeled.

Proposition 3.3. The probability of correct classification Pc in the crowdsourcing system is

Pc =
[1

2
+

1

2

∑
S

(
W,M

G

)
(F (G)− F ′(G)) +

1

4

∑
S′

(
W,M

G

)
(F (G)− F ′(G))

]N
(3.13)

with

F (G) = mq0

(
1

2

)MN N∏
n=1

(1−µ)q−nµqn
((

N−1

n−1

)
(1−m)nmN−n

)q−n+qn
(3.14)

and

F ′(G) = mq0

(
1

2

)MN N∏
n=1

(1−µ)qnµq−n
((

N−1

n−1

)
(1−m)nmN−n

)q−n+qn
(3.15)

where

G = {(q−N , q−N+1, . . . qN ,M
′
N ,M

′′
N) :

N∑
n=−N

qn = W −MN −M0,M
′
N +M ′′

N = MN}, (3.16)

and qn, M ′
N , and M ′′

N take values from natural numbers {0, 1, . . . },

S=

{
G :

N∑
n=1

(qn−q−n)Ww(n)+(M ′N−M ′′N )Ww(N) > 0

}
, (3.17)
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S′=

{
G :

N∑
n=1

(qn−q−n)Ww(n)+(M ′N−M ′′N )Ww(N) = 0

}
, (3.18)

and
(
W,M
G

)
= (W−M0)!

M ′N !M ′′N !
∏N
n=−N qn!

.

PROOF: See Appendix A.4.

3.5.3 Asymptotic Performance Analysis

In a practical situation, the number of workers for the crowdsourcing task is relatively large (nor-

mally in the hundreds). Then, it is of great value to investigate the asymptotic system performance

when W approaches infinity. Here, we give the asymptotic performance characterization for a

large crowd, i.e., for a large W .

Proposition 3.4. As the number of workers W approaches infinity, the probability of correct clas-

sification Pc can be expressed as

Pc =

[
Q

(
−M√
V

)]N
, (3.19)

where Q(x) = 1√
2π

∫∞
x
e
−t2
2 dt, andM and V are given in (3.20)

M =
(2µ− 1) (1−m)

µ

(
1−m
µ

+m

)N−1

+
(W −M) (2µ− 1) (1−m)N ZM

(W −M)µNZM +MN

V =
1−m

(W −M)µ2

(
1−m
µ2

+m

)N−1

+

(
(W −M)(1−m)N +MN

)
Z2
M

((W −M)µNZM +MN)2 − M2

W −M
. (3.20)

with ZM = 2N (1−m)N .

PROOF: See Appendix A.5.

As stated above, the size of the crowd in practice can be fairly large and the asymptotic result

derived in (3.19) is a good characterization of the actual performance. We further consider that the

percentages of Type I and Type II spammers in the crowd are γ and ε respectively and give the

analysis for the following two cases:
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• Case 1: lim
W→∞

MO

W
= γ > 0, lim

W→∞
MN

W
= ε = 0. In this situation, we have M =

(2µ−1)(1−m)
µ

(
1−m
µ

+m
)N−1

+ (2µ−1)(1−m)N

µN
, which is a constant given m, µ and N . V =

1
W (1−γ)

(
1−m
µ2

(1−m
µ2

+m)N−1 + (1−m)N

µN
−M2

)
. Note that W (1− γ) represents the number

of honest workers in the crowd. As there are more honest workers in the crowd, V becomes

smaller and the probability of correct classification becomes larger. The expressions ofM

and V analytically show that as long as the number of honest workers is fixed, the number of

Type I spammers have no impact on the system performance.

• Case 2: lim
W→∞

MO

W
= γ = 0, lim

W→∞
MN

W
= ε > 0. We haveM = (2µ−1)(1−m)

µ

(
1−m
µ

+m
)N−1

+

(2µ−1)(1−m)NZM
µNZM+ ε

1−ε
. As the percentage of Type II spammers in the crowd ε increases, M be-

comes smaller and the classification performance in terms of Pc deteriorates. In this scenario,

it is not easy to show the monotonicity of V with respect to ε and we rely on simulations to

show that the probability of correct classification decreases as ε is larger.

3.6 Simulation Results

In the first part of this section, we consider that there are no spammers in the crowd. Simulations

are provided to illustrate how PT affect the workers’ behavior and system performance.

3.6.1 Crowdsourcing without Spammers

We plot the actual confidence thresholds of cognitively biased crowdworkers t∗ with respect to

the pre-designed threshold T in Fig. 2 for humans with different behavioral properties. It can be

observed that t∗ becomes larger as T increases. Since we restrict that T ≥ 0.5, βT > (1 − T ) is

satisfied. As a result, in Fig. 3.1(a) we see that t∗ becomes larger as β increases and in Fig. 3.1(b)

we see that t∗ becomes smaller when α increases. Note that in the green curve in the upper subplot,

α = 0.69, β = 2.25 and λ = 0.88 are the mean values of behavioral parameters of the humans

from the experiment in [135]. Hence, for this group of population, the green curve represents the
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average t∗ employed by the nominal cognitively biased workers. Since t∗ > T , we can see that the

workers are more likely to use the skip option in practice.

Fig. 3.1: Confidence thresholds of cognitively biased crowdworkers based on PT

Next, we assume that the confidence t of the crowd workers follows a uniform distribution

U(0.5, x) where x is uniformly distributed in [0.7, 0.9]. The size of the crowd is W = 30 and the

confidence threshold T is set equal to 0.6. There are N = 3 microtasks and G = 3 gold standard

questions. In Fig. 3.2 , we plot the system performance in terms of probability of correct classifi-

cation Pc for crowds with different behavioral parameters. If the workers in the crowd are assumed

to be rational, i.e., α = β = λ = 1, we obtain that Pc = 0.8445 and as the behavioral parame-

ters change, Pc has different values. Basically, given the distribution of the workers’ confidence

t, different behavioral parameters lead to different confidence threshold t∗, which in turn causes

variations of the statistical parameters m and µ of the crowd, leading to different classification per-

formances. In the upper subplot where the probability distortion factor α = 0.68, Pc first increases

and then decreases as the loss aversion parameter β becomes larger. Besides, Pc is higher as the

diminishing marginal utility parameter λ has a smaller value. In this case, appropriate values of β
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and λ counter the probability distortion factor α and improve the system performance. The behav-

ioral parameters α, β and λ jointly determine the overall probability of correct classification Pc.

Moreover, we can observe that the best achievable Pc in this subplot is higher than Pc = 0.8445

when the crowd workers are assumed to be rational. In the lower subplot where β = 2.25, Pc

monotonically decreases as α decreases from 1 to 0.5. Same to the upper subplot, we have Pc

become larger as λ has a smaller value.

Fig. 3.2: Classification accuracy when crowd workers have different behavioral parameters.

3.6.2 Crowdsourcing in the Presence of Spammers

In this subsection, we present some simulation results to illustrate the advantage of our proposed

method ASPT, in which PT is employed to characterize the behavior of spammers. W = 50

workers participate in a crowdsourcing task with N = 3 microtasks and G = 3 gold standard

questions. fp(p) is chosen as a uniform distribution U(0.2, 0.8), so that the average probability

of a honest worker skipping a task is m = 0.6. Let fr(r) be a uniform distribution expressed as

U(x, 1) with 0 ≤ x ≤ 1, and thus we can have µ varying from 0.5 to 1.
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Table 3.1: Estimates of the number of spammers M0 and MN

MN
M0 1 3 5 7 9 11 13 15 17 19

1 1,0 1,3 1,5 1,8 2,9 2,12 1,14 2,15 2,17 2,20

3 3,1 3,2 3,5 4,7 4,9 3,11 3,14 3,15 3,18 3,20

5 5,2 5,3 5,6 6,7 5,9 6,11 6,14 5,17 6,18 5,19

7 7,0 8,4 7,5 8,8 7,10 8,12 7,13 7,17 7,17 8,20

9 9,1 9,4 9,5 10,7 9,9 11,11 9,13 10,15 11,17 9,20

11 11,1 11,5 11,5 12,8 11,6 12,11 11,13 11,16 11,17 12,19

13 13,2 13,6 13,5 14,8 13,9 13,11 14,13 13,16 13,17 14,19

15 15,1 15,3 16,6 16,7 15,9 17,11 15,13 15,15 15,17 15,19

17 17,1 18,4 17,5 17,8 17,9 17,12 18,13 17,16 18,17 18,19

19 20,2 19,2 19,5 19,8 19,9 19,11 19,13 19,16 20,17 21,19

21 21,2 21,3 22,5 21,7 21,9 22,12 21,13 21,15 21,17 21,19

23 23,1 24,3 25,5 23,9 24,9 24,11 25,13 23,16 23,17 23,19

25 26,1 26,3 25,6 25,7 26,9 26,12 25,13 25,15 26,17 25,20

First, we show the efficiency of our methods for estimating the parameters M0 and MN . Table

3.1 shows the estimation results of M0 and MN , when the true numbers of spammers are M0 =

{1, 3, . . . , 19} and MN = {1, 3, . . . , 25}. Here, µ is set as 0.75. The estimation process is based on

the distribution of the number of workers completing and skipping all the questionsWN+G andW0,

and we can see from the table that most pairs of numbers M0 and MN can be exactly estimated,

and the estimation errors are at most ±1.

We present the performance comparison between different aggregation rules in Fig. 3.3, where

the quality of the crowd µ varies. For illustration, we assume that there are 14 spammers in a crowd

of 50 workers, and we have 7 spammers completing all the questions and the other 7 skipping all

the questions. As µ increases, we plot the probability of correct classification Pc of four different

weight assignment methods. The first one is the ASPT developed in this chapter, where we employ

PT for modeling the behavior of the spammers. In the second approach, we exclude the workers

who submit all definitive answers and treat the remaining workers to be honest. The weights

assigned to the honest workers are given by Ww = µ−n [79]. The third one is where we consider
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Fig. 3.3: Performance comparison with spammers as µ increases.

the existence of spammer without incorporating PT, where all the spammers are assumed to be

Type I and the FC treats all the workers to be honest, i.e., weight assignment rule is Ww = µ−n no

matter whether the workers submit all definitive answers or not. The last approach is conventional

majority voting without a reject option, where all the workers are assigned the same weight. It can

be seen in Fig.4 that at µ = 0.5, all the four curves merge to the same point. It is because when

µ = 0.5, even the honest workers are making random guesses like a spammer. In this case, the

FC collects no useful information from the crowd and the choice of weight assignment schemes

does not make a difference. As the quality of the crowd, µ, improves, the system performance

also improves as expected. The proposed ASPT performs better than the method that excludes

the workers with all definitive answers and the method that treats all the workers to be honest,

which outperform the conventional majority voting approach that does not have a reject option. It

should be noted that the second and the third methods have very similar performances. Compared

to treating all the workers as honest ones, excluding the workers who submit all definitive answers

has the advantage of removing the side effects of Type II spammers. At the same time, however, the

second method may also remove the honest workers who submit all definitive answers for decision
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fusion, leading to a potential deterioration. Hence, this trade-off determines whether the second

approach performs better than the third approach or not.

Fig. 3.4: Performance comparison with different numbers of spammers.

In Fig. 3.4, we plot the performance comparison when the number of spammers changes. For

simplicity, we set that M0 = MN , and µ is fixed at 0.75. As the number of spammers increases,

the classification performance degrades, where the ASPT method gives the best performance. Fur-

thermore, there are two phenomena that need to be discussed:

1): When the number of spammers is small, the conventional majority voting method is out-

performed by the one that treats all the workers as honest. However, this is not the case when the

number of spammers is large. The reason is that with honest workers, the FC assigns a greater

weight to the worker with a larger number of definitive answers. In the regime where MN is large,

which means that the number of spammers completing all the questions is large, the impact from

the spammers is much more severe on the performance with such a weight assignment scheme.

Thus, the corresponding performance degrades significantly.

2): When the number of spammers is small, the method that excludes the workers who submit

all definitive answers performs better than the method that treats all the workers to be honest, and
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vice versa. It can be explained by the fact that in the crowd when the percentage of spammers is

small, the second method (the one that excludes the workers who submit all definitive answers) has

a smaller probability to remove Type II spammers and has a higher probability to remove honest

workers. On the other hand, when the percentage of spammers is large, the probability of excluding

Type II spammers is large and that of excluding honest workers is small.

Fig. 3.5: Performance comparison as W increases.

Lastly, we keep the number of spammers in the crowd fixed, with M0 = MN = 7 and plot

the asymptotic performance as the crowd population W increases in Fig. 3.5. We can see that our

proposed approach has the best performance among all the weight assignment strategies. Anal-

ogous to the explanations provided for results presented in Fig. 3.4, we observe that when W is

small, i.e., when the percentage of spammers is large, the method that excludes the workers with

all definitive answers and the majority voting method outperform the method that treats all the

workers to be honest, and vice versa.
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3.7 Summary

We have explored a novel framework of crowdsourcing systems to solve classification problems,

where the crowd workers may skip a microtask if the confidence regarding the question being

asked is lower than a threshold. Our scheme is extremely effective in dealing with spammers as

it: (a) exploits the behavioral differences of honest workers and spammers in realistic situations,

where the rationality of humans is modeled via PT; (b) estimates the number of spammers in the

crowd and (c) designs the optimal weight for every worker in the weighted majority voting fusion

rule. We provided analytical expressions for probability of correct classification and asymptotic

system performance. Compared to rational decision makers, the honest crowd workers and spam-

mers behave in a different manner if PT is incorporated to model their rationality. To accurately

characterize the system performance, the behavioral property of the crowd must be taken into con-

sideration. Simulation results illustrated the efficiency of our method compared to other weight

assignment schemes that do not include the humans behavior using a prospect theoretic approach.

This chapter employed a psychologically accurate description of human behavior in crowd-

sourcing environments. We provided insights in designing strategies to ameliorate the side impacts

of human spammers. Our study can also be applied to analyze and model sophisticated human be-

havior under different payment mechanisms in many applications. Our future work includes the

study of task allocation in crowdsourcing considering the behavioral differences of the crowd. As

the security issues of distributed inference systems are becoming increasingly important, we also

plan to investigate the robustness of the proposed crowdsourcing algorithm against adversarial

attacks.
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CHAPTER 4

DECISION TREE DESIGN FOR

CLASSIFICATION VIA CROWDSOURCING

In this chapter, we present a novel sequential paradigm for classification via a decision tree in

crowdsourcing systems. Considering that workers are unreliable and they perform the tests with

errors, we study the construction of decision trees so as to minimize the probability of mis-

classification. By exploiting the connection between the probability of mis-classification and

entropy at each level of the decision tree, we propose two algorithms for decision tree design.

Furthermore, the worker assignment problem is studied when workers can be assigned to differ-

ent tests of the decision tree to provide a trade-off between classification cost and resulting error

performance.

4.1 Introduction

In recent work on classification in crowdsourcing systems, complex questions are often replaced

by a set of simpler binary questions (microtasks) to enhance classification performance [78, 79,

145]. This is especially helpful in situations where crowd workers lack expertise for responding to

complex questions directly. Each worker is given the entire set of questions in a batch mode and
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the workers provide their responses in the form of a vector. These binary questions can be posted

as “microtasks” on crowdsourcing platforms like Amazon Mechanical Turk [13]. To improve

classification performance in crowdsourcing systems, most of the works in the literature focus on

enhancing the quality of individual tests, by designing fusion rules to combine decisions from

heterogeneous workers [32, 64, 78, 79, 145], and by investigating the assignment of different tests

to different workers depending upon their skill level [58, 119]. These problems have also been

considered for budget-constrained environments to improve classification performance [59,70,83].

In this chapter, we present a new paradigm for classification in crowdsourcing systems in which

binary questions (micro-tasks) are asked in a sequential manner. This novel sequential paradigm

in terms of a decision tree has not been considered in the literature. This paradigm provides the

opportunity to order the sequence of tests for more efficient classification by reducing the number

of questions asked on an average. Furthermore, we can obtain a trade-off in terms of cost (number

of questions asked) and performance by performing task assignment and using only a subset of

workers per node of the decision tree. Best performance with the decision tree paradigm can be

achieved when all workers respond to every test in the decision tree. However, as shown in this

paper, the performance with the proposed worker assignment, where each worker only responds to

one test as opposed to all the tests in the tree, is comparably when the number of workers is large.

4.1.1 Related Work

Information theoretic methods have been used to construct effective decision trees [54, 94]. Clas-

sical algorithms utilize a top-down tree structure, such as ID3, C4.5, and CART [11, 112, 113].

They categorize the objects at each node(test) into tree branches until a leaf is reached, and objects

in this leaf are considered to belong to the same class. At each node, these algorithms employ a

thresholding-based test on a certain attribute, such that the test can categorize the objects. ID3 and

C4.5 construct the decision tree by maximizing the information gain at each node, which is defined

as reduction in entropy. In CART, the Gini impurity is minimized in test selection at each node.

The first strong assumption in traditional algorithms is that all the tests are error-free in de-
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termining whether or not an attribute exceeds the threshold. However, in practical crowdsourcing

systems, due to the noise in observing or measuring the attribute, there exist errors and uncertainties

when workers perform the tests. For objects belonging to different classes, the error probability

corresponding to a specific test could also be different. Existing algorithms fail to address the

concern that the error probabilities of tests play an important role in the design of the decision tree.

Another limitation of these algorithms is the assumption of completely known information of

the attributes of the objects to compute the information gain and Gini impurity, i.e., probability

p(cj|ci, t) at node t, cj, ci ∈ C, where ci is the correct class and cj is the result of the test. Even

though some algorithms [113] can handle missing attributes information, they simply discard the

missing attributes and use the remaining ones for the decision tree construction. In the process of

decision tree construction, they need to decide not only which attribute to use, but also the optimal

threshold. The run time complexity goes up to O(XY 2), where X is the number of objects and Y

is the number of attributes [81]. Moreover, in practical crowdsourcing applications, we might not

have the complete information p(cj|ci, t) available. What we have are a limited number of tests

(binary questions), and the corresponding test results. This important problem of decision tree

design for practical scenarios is considered in this chapter.

4.1.2 Major Technical Contributions

Instead of assuming that each test in a decision tree is perfect, we consider the fact that there may

be errors when tests are performed and develop an efficient algorithm to construct decision trees for

the imperfect test scenario. The resulting tree is applicable to many practical problems including

to classification performed by unreliable crowdsourcing workers. In our algorithm, the decision

tree is constructed by utilizing a given set of tests, where each test gives a binary result 0 or 1

depending on which class the object belongs to. We do not assume the availability of complete

knowledge of p(cj|ci, t). We provide performance guarantees in terms of an upper bound on the

probability of mis-classification (or a lower bound on the probability of correct classification). The

time complexity of our algorithm is polynomial of M , which is the number of tests. Since M is
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usually much smaller than X and Y , our complexity is reduced significantly compared to the other

methods, e.g., the one proposed in [81]. After the decision tree is constructed, we employ it for

classification via crowdsourcing. To reduce cost in terms of the number of questions asked while

maintaining low probability of mis-classification, we further develop an algorithm to efficiently

assign workers to different tests, to obtain a trade-off between the probability of mis-classification

and the cost of crowdsourcing.

4.2 System Model

Consider a classification problem that is to be solved via crowdsourcing. Suppose there is a set of

objectsO, and each object within the set needs to be classified to a class ci ∈ C, i ∈ {1, 2, . . . , N}.

The prior probability that an object in O belongs to ci is denoted as p(ci). An unknown object

passes through a series of simple tests (nodes in the decision tree) until it reaches a leaf node and

gets classified. We consider that each test Tm ∈ {T1, T2, . . . , TM} provides a binary output for a

subset ofO, thus bifurcating the subset of objects into two output subsets. If an object belonging to

ci gets mis-categorized at test Tm, a misclassification will happen in the end and this corresponding

error probability is demoted by pi,m. Table 4.1 gives an example of decision table along with the

probability assignment and Fig. 4.1 gives two possible testing algorithms. As indicated by Table

4.1, tests {Ti}4
i=1 can bifurcate the entire set O and T5 can only bifurcate a subset of objects

belonging to the classes {c1, c2, c3, c5}. Assuming that all the tests have the same error probability

pi,m = 0.05, the final misclassification probabilities in Fig. 4.1 (a) and Fig. 4.1 (b) are 0.068 and

0.05 respectively. Thus, we can see that even though the same set of tests are employed, different

decision tree structures (ordering of tests) have different probabilities of mis-classification. Our

goal is to build a decision tree that minimizes the mis-classification probability.

Define the test level Ld, d ∈ {0, 1, . . . , D} as in Fig. 4.2, where D is the depth of the tree

structure. At each level Ld, define the partitions of classes induced by the tests applied so far to

be γd = {γd1, γd2, . . . , γd,|γd|}, where |γd| is the cardinality of the partition set γd and it implies the
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Table 4.1: Decision Table

Test
Class

c1 c2 c3 c4 c5

p(ci) 0.20 0.05 0.10 0.60 0.05
T1 0 0 0 1 0
T2 1 0 0 1 1
T3 0 1 0 0 1
T4 0 1 0 1 1
T5 0 1 1 - 1

c1, c2, c3, c4, c5

T3

c1, c3, c4

T4

c1, c3

T5

c1 c3

c4

c2, c5

T2

c2 c5

(a) Algorithm 1

c1, c2, c3, c4, c5

T1

c1, c2, c3, c5

T5

c1 c2, c3, c5

T3

c3 c2, c5

T2

c2 c5

c4

(b) Algorithm 2

Fig. 4.1: Two testing algorithms

degree of completion of the classification task. A larger |γd| indicates that the solution is closer to

the completion of classification. In the example given in Fig. 4.2, we have:

γ0 = {{c1, c2, c3, c4, c5}}

γ1 = {{c1, c3, c4}, {c2, c5}}

γ2 = {{c1, c3}, {c4}, {c2}, {c5}}

γ3 = {{c1}, {c2}, {c3}, {c4}, {c5}}
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Fig. 4.2: Illustration of Test Levels

Note γD is where each class has been individually distinguished. Let Γd denote the partition

induced in γd. We define the entropy at level Ld as:

H(Ld) = H(ΓD|Γd)

= −
∑
n,k

p(γDn, γdk)log2p(γDn|γdk)

=
∑
k

p(γdk)H(ΓD|Γd = γdk) (4.1)

where p(γDn, γdk) is the joint probability of partitions γDn and γdk. Following this definition,

H(L0) = −
N∑
i=1

p(ci)log2p(ci), and H(LD) = 0. The entropy at each level will be exploited in

choosing the tests for the next level to minimize the final probability of mis-classification.

4.3 Proposed Decision Tree Design Algorithms

In this section, we focus on the algorithms for decision tree design. We use two types of criteria

for decision tree construction, namely, the minimization of the upper bound on mis-classification

probabilities, and the maximization of the lower bound on correct classification probabilities. Pre-

vious work [54], with the objective of minimizing the upper bound of test cost, e.g., memory,

execution time, does not consider error in tests (noisy tests), which is very different from the work
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in this chapter.

4.3.1 Bounding the Probability of Mis-classification

In a decision tree, the probability of mis-classification error is given by:

Pm =
N∑
i=1

p(ci)pm(ci) =
N∑
i=1

p(ci)

(
1−

D∏
d=1

(1− p∗i,d)

)
(4.2)

where pm(ci) is the probability that an object belonging to ci is mis-classified in the system. p∗i,d

is the error probability associated with the unknown object belonging to ci as it traverses the node

between levels Ld−1 and Ld. Note that if an object does not pass through a test, the corresponding

error probability is 0.

Typically, the error probability for each test is small. Otherwise, the corresponding test should

be replaced by a better test, or additional tests should be introduced to reduce the error probabil-

ity. Since the error probability of each test is small, the probability of mis-classification can be

approximated by dropping the higher order terms in (4.2) as

Pm ≈
N∑
i=1

p(ci)
D∑
d=1

p∗i,d (4.3)

This can be simplified as

Pm ≈
N∑
i=1

p(ci)
D∑
d=1

p∗i,d =
D∑
d=1

N∑
i=1

p∗i,d =
D∑
d=1

g(d− 1, d) (4.4)

where g(d− 1, d) represents the error probability induced by the tests from level Ld−1 to level Ld.

Recalling the definition of H(Ld) in (4.1), and using the fact that H(LD) = 0, we can write

H(L0) = H(L0)−H(L1) +H(L1)−H(L2) + · · ·+H(LD−1)−H(LD)

=
D∑
d=1

H(Ld−1)−H(Ld)

g(d− 1, d)
g(d− 1, d)
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=
D∑
d=1

Fm(d− 1, d)g(d− 1, d) (4.5)

where Fm(d − 1, d) = H(Ld−1)−H(Ld)

g(d−1,d)
is the metric we use for decision tree construction. It is the

reduction in entropy from Ld−1 to Ld, divided by the error probability induced between these two

levels. Essentially, it indicates the sensitivity to error for reducing impurity in decision tree design

at a certain level. Define Fm
min = min

d=1,...,D
Fm(d−1, d), and Fm

max = max
d=1,...,D

F (d−1, d). Due to the

fact that H(Ld−1)−H(Ld) ≥ 0, and g(d− 1, d) > 0, it follows that F (d− 1, d) ≥ 0. Substituting

(4.4) into (4.5), we have

Fm
minPm ≤ H(L0) ≤ Fm

maxPm,

which leads to

H(L0)

Fm
max

≤ Pm ≤
H(L0)

Fm
min

Since our goal is to minimize Pm, we minimize the upper bound H(L0)
Fmmin

for the design of the decision

tree. Since HL0 is fixed, we need to maximize Fm
min = min

d=1,...,D
Fm(d− 1, d). During the construc-

tion of the testing algorithm, it is sufficient to maximize each of Fm(d − 1, d) = H(Ld−1)−H(Ld)

g(d−1,d)
,

d ∈ {1, 2, . . . , D}. When we construct the decision tree from level d − 1 to level d, we select the

tests that maximize the value Fm(d−1, d), and the construction step ends when it reaches theD-th

level.

4.3.2 Bounding the Probability of Correct Classification

In this section, we focus on decision tree design to maximize the probability of correct classifica-

tion, which can be written as

Pc =
N∑
i=1

p(ci)pc(ci) =
N∑
i=1

p(ci)
D∏
d=1

(1− p∗i,d). (4.6)
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where pc(ci) is the probability that an object belonging to ci is correctly classified in the system.

Since the effect of higher order terms is negligible as typically they are small, we approximate Pc

as

Pc ≈
D∏
d=1

N∑
i=1

p(ci)(1− p∗i,d) =
D∏
d=1

b(d− 1, d), (4.7)

where b(d−1, d) represents probability of correct classification fromLd−1 toLd, d ∈ {1, 2, . . . , D}.

Then, we provide the entropy in the form of product as

H(L0) + 1 =
H(L0) + 1

H(L1) + 1
× H(L1) + 1

H(L2) + 1
× ...× H(LD−1) + 1

H(LD) + 1

=
D∏
d=1

H(Ld−1)+1

H(Ld)+1

b(d− 1, d)
b(d− 1, d)

=
D∏
d=1

F c(d− 1, d)b(d− 1, d) (4.8)

where F c(d−1, d) =
H(Ld−1)+1

H(Ld)+1

b(d−1,d)
is the metric based on which we select the tests. It is the generalized

entropy ratio of Ld−1 to Ld, divided by the probability of correct classification between these

two levels. Essentially, it indicates the degree of reduction in impurity when the test correctly

bifurcates the objects. Define F c
min = min

d=1,...,D
F c(d − 1, d), and F c

max = max
d=1,...,D

F c(d − 1, d).

Since F c(d− 1, d) ≥ 0, substitute (4.7) into (4.8) and we have

F c
minPc ≤ H(L0) + 1 ≤ F c

maxPc,

which leads to

H(L0) + 1

F c
max

≤ Pc ≤
H(L0) + 1

F c
min

.

As we desire to maximize the probability of correct classification Pc, we maximize its lower bound

which is H(L0)+1
F cmax

. Since H(L0)+1 is fixed, we need to minimize F c
max. During the construction of
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the decision tree, it is sufficient to select the tests that minimize the value F c(d− 1, d) =
H(Ld−1)+1

H(Ld)+1

b(d−1,d)

from level d− 1 to level d.

The additive approximation in Section 4.3.1 is obtained by discarding second to Dth order

terms of p∗i,d, while the multiplicative approximation in Section 4.3.2 discards Dth order of p∗i,d.

Thus, multiplicative approximation is more accurate than additive approximation. However, the

tightness of the bounds on probability of correct classification in the multiplicative method depends

on the metric H(Ld−1)+r

H(Ld)+r
. In this paper, we choose r = 1, which might not be optimal.

4.4 Efficient Strategy for Worker Assignment

After designing the decision tree, the next step is to assign the available crowd workers to the

nodes of the decision tree. The naive and the most costly approach will be to have all available

workers answer questions corresponding to each node. This will mean that the number of questions

answered will be M0N0, where M0 is the number of nodes in the decision tree and N0 is the total

number of workers. The goal in this section is to investigate the trade-off between the saving in

the number of questions answered (cost) and the degradation in performance as well as to develop

an efficient algorithm to assign subsets of workers to different nodes of the tree. In particular, each

node must have at least one worker assigned to it; the goal is to find an algorithm to optimally

distribute remaining crowd workers among the nodes of the decision tree. When subgroups of

workers are assigned to perform different tests at individual nodes, the workers’ local decisions

are collected by a fusion center (FC). Majority voting is used in this chapter for decision fusion

for crowdsourcing. In a subgroup of workers with size n = 2k + 1, k = 0, 1, . . . , each worker

completes the same test that will produce binary results 0 or 1. The probability of error of the ith

worker for the corresponding test is pie. In majority rule, if at least k + 1 workers declare 0 to be

the result, FC will decide 0; otherwise, it will decide that 1 is true. For a specific test, we provide

the worker assignment scheme.

Proposition 4.1. Suppose the expected probability of error of each worker for a specific test is
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E(pie) = pe. When pe < 0.5, the probability of error at FC fe(k) is a decreasing function

of k. The reduction in probability of error at the FC decreases as well, as k increases, i.e.

|fe(k1 + 1)− fe(k1)| ≤ |fe(k2 + 1)− fe(k2)| for k1 > k2 ≥ 0

PROOF:

In majority voting with n = 2k + 1 workers where each worker has an expected probability of

success 1− pe, the probability of miss classification at FC can be expressed as the probability that

a Binomial random variable x ∼ B(2k + 1, 1− pe) is less than or equal to k:

fe(k) = Pr(x ≤ k) = F (k, 2k + 1, 1− pe)

where F (k, 2k + 1, 1 − pe) represents the cumulative distribution function of a Binomial random

variable, which can be re-written using the regularized incomplete beta function:

fe(k) = F (k, 2k + 1, 1− pe) = Ipe(k + 1, k + 1)

where Ir(a, b) = B(r;a,b)
B(1;a,b)

and B(r; a, b) =
r∫

0

ta−1(1− t)b−1dt.

Note that k can be any real value k ≥ 0. Taking partial derivative of Ipe(j, j) with respect to j

yields

dIpe(j, j)

dj
= B−2(1; j, j)×

pe∫
0

1∫
0

(t− t2)j(s− s2)j ln
t− t2

s− s2
dsdt (4.9)

= B−2(1; j, j)×
pe∫

0

1−pe∫
pe

(t− t2)j(s− s2)j ln
t− t2

s− s2
dsdt (4.10)

From (4.9) to (4.10), we use the symmetry of t − t2 with respect to 0.5, and the fact pe < 0.5.

Finally, notice that s − s2 > t − t2 > 0 in the interval s ∈ (pe, 1 − pe), and t ∈ (0, pe), thus

ln t−t2
s−s2 < 0 and dIpe (j,j)

dJ
is strictly negative. Since j = k + 1, it follows that fe(k) is decreasing

with respect to k. Besides, as j increases, the magnitude of dIpe (j,j)

dj
strictly decreases because
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|t− t2| ≤ 1 and |s− s2| ≤ 1. Thus, the magnitude of derivative decreases as k increases. Hence,

we show that fe(k) is a decreasing function of k and the reduction in probability of error at the FC

decreases as k increases.

Under the assumption of Proposition 4.1: E(pie) = pe, after we have constructed a testing algo-

rithm, for example the one shown in Fig. 4.1(b), each test is assigned a randomly chosen worker.

After that, we assume that we have a group of additional n = 2K workers available to reduce the

error probabilities of one or more tests. Let 2km,m ∈ {1, 2, . . . ,M} be the number of workers

assigned to test Tm. By doing so, we ensure that the number of workers performing test Tm is odd,

and
M∑
m=1

km = K. We address the problem of how to assign these 2K workers to different tests,

i.e., to determine the values of {k1, k2, . . . , kM}, such that we can achieve minimum probability of

mis-classification.

From the result of Proposition 1, as more workers are assigned to the same test, the rate of

reduction in error probability decreases. Thus, we are encouraged to allocate two workers at a

time to a certain test, to guarantee the odd number of workers for each test, and to ensure the

maximal rate of reduction in error probability each time. Using the methods proposed in Section

4.3, we can construct the decision tree and find the level d′ that has the minimal Fm(d′ − 1, d′) or

maximal F c(d′ − 1, d′) (both decision tree construction algorithms provide the same result). For

the tests between level Ld′−1 and Ld′ , we add two workers to the test that gives the most increase in

Fm(d′− 1, d′) or the most decrease in F c(d′− 1, d′). We provide the following worker assignment

algorithm:

4.5 Simulation Results

We provide simulation results with the problem setting as is shown in Table 4.1. Fig. 4.3 shows

the efficiency of the proposed decision tree design algorithm by comparing its probability of mis-

classification (blue curve) with the case where we let each objects randomly pass through a series

of tests (red curve). When the error probability of each test is p∗, the testing algorithm in Fig. 4.1
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Algorithm 2 Worker Assignment
1: procedure ASSIGN 2K WORKERS

2: Initialize k1 = k2 = · · · = kM = 0.
3: while n = 2K > 0 do
4: Find d′.
5: From Ld′−1 to Ld′ , add two workers to Tm that gives most increase in Fm(d′ − 1, d′),

or most decrease in F c(d′ − 1, d′).
6: km ← km + 1
7: Update the value Fm(d′ − 1, d′), or F c(d′ − 1, d′).
8: K ← K − 1.
9: end while

10: end
11: end procedure

(b) is what we end up with, after we employ the two proposed methods. As we can see from the

figure, the performance is significantly improved with our methods, and the improvement becomes

more prominent as p∗ increases.

Fig. 4.4 plots the average probability of mis-classification when the number of workers in-

creases. The blue curve represents that we assign all the workers to a single test (randomly cho-

sen); the red curve indicates the scenario where each worker is randomly assigned to a test, and the

yellow curves represents the proposed worker assignment rule associated with metric Fm(d−1, d).

We can see from the figure that one should not assign workers in a highly unbalanced fashion as

is indicated by the blue curve. Random worker assignment achieves better performance, which is

outperformed by our proposed method.

4.6 Summary

This chapter presented a novel sequential paradigm for crowdsourced classification and also ad-

dressed the test ordering problem. With limited knowledge of worker’s reliability in perform-

ing imperfect tests, we developed a greedy decision tree design to minimize the probability of

mis-classification. Two different methods were used to approximate the probabilities of mis-

classification and correct classification. We also investigated the worker assignment problem,
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by studying the assignment of a limited number of workers to different tests. Numerical results

showed the superiority of our testing algorithm, as well as the efficiency of the worker assignment

strategy. While our greedy level-by-level decision tree construction only achieves local optimality,

in future work, we will explore the possibility of obtaining globally optimal solutions.
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CHAPTER 5

COGNITIVE MEMORY CONSTRAINED

HUMAN DECISION MAKING BASED ON

MULTI-SOURCE INFORMATION

5.1 Introduction

In Chapter 2 and Chapter 3, we have employed Prospect Theory to model the rationality of humans

and studied human decision making behavior under cognitive biases. In this chapter, our goal is

to model and analyze how humans make decisions based on multiple information sources under

the limits of cognitive working memory. In particular, we consider that the internal source of

information is the human’s direct observation of the world, while the external source of information

is a machine/sensor1 that sends its local decisions regarding the phenomenon of interest (PoI)

to the human. Sensors can be deployed in hazardous and dangerous workplaces for monitoring

and gathering intelligence. This is not only because of the associated risks for humans but also

because sensors are efficient in processing tedious raw data that are beyond humans’ capabilities.

1We will use the term sensor to represent a physical entity that may be a sensor or a machine in the rest of the
chapter.
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In numerous applications, one may utilize the sensor as a consultant or an advisor who provides

local decisions that assist human decision making. The human combines the suggestions from

the sensor and her own observations to make the final decision. For instance, in national security,

the commander may combine her own judgment as well as the recommendation from electronic

warfare systems to design countermeasures in case of invasion.

Since the sensor’s suggestion is from an external information source, individuals often must

infer not just about the state of the PoI (“what is the state of the world?”), but also about the credi-

bility of the sensor (“how much faith should I put in the sensor and its suggestion?”). Psychology

literature has shown that the working memory of humans, which supports the ongoing cognition

to perform logical analysis and numerical calculations, is a fairly capacity-limited resource [40].

Because of this limitation, people perform cognitive tasks, e.g., update the two beliefs regarding

the PoI and the sensor’s credibility, serially, and not in parallel [40, 103]. A core feature of the

sequential updating of beliefs is the mechanism that discards outdated information so that work-

ing memory focuses on processing more relevant information at a given time. Such a process

may cause the human to generate a biased posterior belief compared to the canonical Bayes’ rule

employed by rational decision makers [27, 74].

In this chapter, we present a framework where the human is subject to cognitive memory lim-

itations, and she makes the final decision by sequentially exploiting her own observation and a

sensor’s suggestion. When the human examines the sensor’s suggestion, she sequentially updates

the belief regarding the state of the PoI and the belief regarding the sensor’s credibility. We in-

vestigate the behavioral difference of humans as it pertains to decision making when they process

information and update their beliefs in different orders. We evaluate the decision quality of cogni-

tive memory limited humans and provide measures for performance comparison. It is shown that

an appropriate ordering of information sources helps humans make better decisions.
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5.2 System Model

Consider a binary decision making problem where a human infers the state of a PoI based on

her self-observation and a sensor’s suggestion as illustrated in Fig. 5.1. As the psychology lit-

erature suggests, humans are limited in the capacity of working memory so that they process

tasks/information in a sequential manner instead in parallel. When there are multiple sources

of information, it is often necessary for the human to discard old information before processing

new information to ensure that cognition ability functions properly.

However, the order in which information is processed and discarded is different from one

human to another, leading the human to behave quite differently compared to rational decision

makers in two aspects: 1) There are biases in human belief updating based on the suggestion

from an outside source of information, i.e., the sensor; 2) The order in which different sources

of information are observed affects the human decision making performance. It is shown in Fig.

5.1(a) that the human first exploits the sensor’s suggestion to update her belief regarding the PoI,

and then, makes use of her own observation to develop a final decision, while the reverse order of

using the information sources is shown in Fig. 5.1(b).

(a) Sensor-Self updating (b) Self-Sensor updating

Fig. 5.1: Sequential updating in human decision making

In the rest of this section, we present the behavioral biases of cognitive memory limited humans
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when they update their beliefs regarding the PoI using the sensor’s suggestion.

Consider that the two hypotheses regarding the state of PoI are denoted by H0 and H1. Let

πt = (πt(i), i ∈ {0, 1} represent the prior probability that hypothesis Hi is true at time t2. We

define the belief or confidence regarding the hypothesis H1 as λt = πt(1)
πt(0)

, where it is assumed that

πt(0) 6= 0. We consider that the human receives a binary suggestion s ∈ {0, 1} from the sensor,

whose credibility status can be either high or low. In applications such as wireless communications

and distributed detection, high status indicates that the sensor is operating properly and provides a

reliable suggestion, whereas low status means that the sensor is damaged, attacked by a Byzantine

or running out of battery so that it sends random suggestions. Under the high/low status, we

assume that the sensor sends a correct suggestion with the probability P(s = i|Hi) = h and

P(s = i|Hi) = l, respectively for i = {0, 1}, where h > l. Correspondingly, the probability that

the sensor’s suggestion is wrong at high/low status is given by 1− h and 1− l, respectively.

Besides memorizing the belief regarding the PoI, the human also needs to keep track of the

sensor’s credibility. The initial belief that the sensor is of high status is denoted as ω0 = ν0
1−ν0 ,

where ν0 ∈ (0, 1) is the prior probability that the sensor’s status is high. When the human receives

a suggestion s from the sensor, she processes three items, i.e., λ0, ω0, s, in her working memory to

calculate the posteriors denoted by λ1, ω1. If the decision maker is rational and has no cognitive

limitations, both posteriors of the two beliefs can be updated in parallel using λ0, ω0, s. However,

due to the limitations on working memory, the human updates the beliefs sequentially in the sense

that she calculates one posterior belief before another. Whichever order she chooses to update the

posterior beliefs, after the first updating she has to store four items in the working memory, i.e.,

two priors, the suggestion s and the newly derived posterior. In realistic decision making scenarios,

the cognitively limited human cannot remember many pieces of information at the same time and

in this chapter we consider that she can store up to three items simultaneously in her working

memory. Hence, after the human updates the first belief, she thinks that the prior of the updated

belief is outdated and discards this prior from her working memory. Then, she uses the posterior

2Throughout this chapter, we use subscript t to represent beliefs or probabilities at different time. Note that π0 is
the prior probability at t = 0.
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of the first belief, instead of the prior, to update the second belief. The mismatch between the prior

and posterior of the first updated belief causes the cognitively limited human to develop a different

posterior in the second belief compared to rational decision makers.

Without loss of generality, we assume that s = 1 and compare the procedures for belief updat-

ing for two different types of decision makers:

Rational decision maker. After observing s = 1, the rational posterior belief on H1 can be

written as λ1(s = 1) = λ0δ0, where δ0 = P(s=1|H1)
P(s=1|H0)

= ν0h+(1−ν0)l
ν0l+(1−ν0)h

and note that P(s = 1|H1) +

P(s = 1|H0) = 1. The rational posterior belief that the sensor is of high status is given by

ω1(s = 1) = ω0
r0
q0

, where r0 = P(s = 1|sensor in high status) = π0(1)(2h − 1) + 1 − h and

q0 = P(s = 1|sensor in low status) = π0(1)(2l − 1) + 1− l.

Type I cognitively limited decision maker. We consider that the type I human, who has limited

working memory capacity, updates the belief regarding the sensor’s status before updating the

belief regarding the PoI. The first updated belief has no bias, i.e, ωI1(s = 1) = ω1(s = 1), where the

superscript I represents the type of the human. After ωI1(s = 1) is obtained, the human discards ω0

and mistakenly thinks that ν1(s = 1) =
ωI1(s=1)

1−ωI1(s=1)
is the ‘prior probability’ that the sensor is of high

status. Hence, the second updated belief regarding the PoI is given by λI1(s = 1) = λ0δ1(s = 1),

where δ1(s = 1) = ν1(s=1)h+(1−ν1(s=1))l
ν1(s=1)l+(1−ν1(s=1))h

. It is clear that λI1(s = 1) 6= λ1(s = 1). When s = 0, the

posterior beliefs of the rational human and type I human can be similarly obtained.

Note that there is another type II cognitively limited human who updates the belief about the

PoI first, and uses the updated belief to update the posterior belief on the sensor’s credibility. There

is no bias in belief updating regarding the PoI and we do not analyze the type II human’s behavior

in this dissertation.

5.3 Decision Making based on Two Sources of Information

Now, let us come back to Fig. 5.1 where the human makes the final decision by sequentially pro-

cessing the two sources of information, namely, the sensor’s suggestion s and her own observation
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r. Following the problem setup presented in Section 5.2, we further assume that under hypotheses

H0 and H1, the continuous observation r has conditional probability density functions (pdf) f0(r)

and f1(r), respectively. Let cij denote the cost of deciding Hi when Hj is true for i, j ∈ {0, 1}. It

is often of interest that no cost is assigned to correct decisions, so we assume c10 = c01 = 0. Given

that H0 or H1 is true, we assume that s and r are independent of each other. For a specific realiza-

tion of the pair {s, r}, we study the decision making performance of rational humans and type I

cognitively limited humans in the following subsections. Again, we proceed with our analysis by

assuming that both the rational human and the biased human observe s = 1 .

5.3.1 Rational Decision Maker

If the decision maker has no cognitive limitations, the order in which s and r are processed does

not affect the decision quality. We consider the structure shown in Fig. 5.1(a) where s is used first

in belief updating. As shown in Section 5.2, if s = 1, the rational human’s posterior belief on H1

can be written as λ1(s = 1), which is a function of π0, ν0, h, l. The posterior belief λ1(s = 1) will

be used as the new prior in the second round of decision making when r is observed.

It has been shown that when the prior belief on H1 is given by k, the optimal decision rule is

in the form of the likelihood ratio test (LRT) [142], which is equivalent to:

k
f1(r)

f0(r)

H1

≷
H0

c10 − 0

c01 − 0
, η (5.1)

The two types of errors, namely, probabilities of false alarm and miss detection, are explicit func-

tions of k such that PF (k) =
∫
{r∈R|klr(r)>η} f0(r)dr and PM(k) =

∫
{r∈R|klr(r)<η} f1(r)dr, where

R denotes the observation space of r and lr(r) = f1(r)
f0(r)

is the likelihood ratio. In this case, the

Bayesian cost of the decision rule in (5.1) is

J(k) = c10
1

1 + k
pf (k) + c01

k

1 + k
pm(k) (5.2)

For a concrete illustration of the system performance, in the rest of the chapter, we assume
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that h = 1, l = 0 so that the sensor sends either perfectly correct signals or perfectly incorrect

signals. Under this condition, we have λ1(s = 1) = λ0ω0. Given that s = 1, the rational human

has probabilities of false alarm and miss detection pf = PF (λ0ω0) and pm = PM(λ0ω0). The

Bayesian cost is given by Jr = J(λ0ω0).

5.3.2 Cognitive Memory Limited Decision Maker

If the human has limited capacity of working memory of type I , the order in which s and r are

processed affects the quality of decision making. Recall that we will use h = 1, l = 0 for ease and

clarity of presentation.

Order a: s → r updating. As shown in Fig. 1(a), consider that human A receives the sensor’s

suggestion before making her own observation. When s = 1, human A first updates the belief

ωa1(s = 1) = λ0ω0, and then, uses ωa1(s = 1) as the new prior to update the belief regarding H1

such that λa1(s = 1) = λ0ω
a
1(s = 1) = λ2

0ω0. In the next round, when A makes the final decision

based on r, the biased belief λa1(s = 1) rather than the true belief is employed. Hence, the human

with order a will use the decision rule (5.1) with k = λ2
0ω0. The probabilities of false alarm and

miss detection are paf = PF (λ2
0ω0) and pam = PM(λ2

0ω0). As human A mistakenly holds the belief

λ2
0ω0 instead of the true belief λ0ω0, the Bayesian cost J̃a is given by

J̃a(λ0ω0, λ
2
0ω0) = c10

PF (λ2
0ω0)

1 + λ0ω0

+ c01
λ0ω0PM(λ2

0ω0)

1 + λ0ω0

(5.3)

Order b: r → s updating. Consider that humanB uses its observation r as the first information

source as shown in Fig. 5.1(b). Given the observation is r, B updates her belief on H1 through the

Bayesian rule: λb1(r) = λ0lr(r). Next, human B observes s = 1 and uses λb1(r) as the prior belief

on H1 to update the belief on the sensor’s credibility: ωb2(s = 1) = λb1(r)ω0. Finally, B updates

the belief on H1 according to λb2(s = 1, r) = λb1(r)ωb2(s = 1) = λ2
0l

2
r(r)ω0. Hence, the perceived

posterior probabilities of H1 and H0 are λ20l
2
r(r)ω0

1+λ20l
2
r(r)ω0

and 1
1+λ20l

2
r(r)ω0

, respectively. It follows that the
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final decision is made by

d = arg min
i∈{0,1}

(ci1
λ2

0l
2
r(r)ω0

1 + λ2
0l

2
r(r)ω0

+ ci0
1

1 + λ2
0l

2
r(r)ω0

)

which is equivalent to λ2
0l

2
r(r)ω0 ≷

H1
H0
η, which we rewrite as

λ0
√
ω0ηlr(r)

H1

≷
H0

η (5.4)

We find that (5.4) matches the decision rule in (5.1) by replacing k with λ0
√
ω0η. One may ‘in-

terpret’ that human B uses the same decision rule in (5.1) except that B mistakenly holds belief

λ0
√
ω0η instead of the true belief λ0ω0. Hence, given s = 1, human B’s probabilities of false

alarm and miss detection are pbf = PF (λ0
√
ω0η) and pbm = PM(λ0

√
ω0η). The Bayesian cost J̃b is

given by

J̃b(λ0ω0, λ0
√
ω0η)=c10

PF (λ0
√
ω0η)

1 + λ0ω0

+c01

λ0ω0PM(λ0
√
ω0η)

1 + λ0ω0

We note that the same decision rule (5.1) applies to the rational decision maker, human A and

human B, where k = λ0ω0, λ
2
0ω0, λ0

√
ω0η, respectively. For the same values of s, r, cognitively

limited humans with different updating orders have different decision making performances. In

the following, we present some results for performance comparison.

Proposition 5.1. (a) The necessary and sufficient condition for paf > pf or pam < pm is λ0 > 1. (b)

The necessary and sufficient condition for pbf > pf or pbm < pm is
√
η/ω0 > 1. (c) The necessary

and sufficient condition for pbf > paf or pbm < pbm is
√
η/ω0 > λ0.

PROOF: As we showed that in selecting the correct hypothesis H0 or H1, the same decision rule

(5.1) applies to the rational decision maker, humanA and humanB, where k = λ0ω0, λ
2
0ω0, λ0

√
ω0η,

respectively. Hence, we have paf =
∫
{r∈R|λ20ω0lr(r)>η} f0(r)dr and pf =

∫
{r∈R|λ0ω0lr(r)>η} f0(r)dr.

If λ2
0ω0 > λ0ω0, i.e., λ0 > 1, we have {r ∈ R|λ0ω0lr(r) > η} ⊂ {r ∈ R|λ2

0ω0lr(r) > η}. Hence,

pf < paf and pm > pam. Similarly, when we have pf < paf and pm > pam, we can show that λ0 > 1.
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condition (a) in the proposition is proved. Following the same logic, we can prove condition (b)

and condition (c).

Proposition 5.2. (a) If
√
η/ω0 > λ0 > 1 or

√
η/ω0 < λ0 < 1, J̃ b > J̃a. (b) If λ0 >

√
η/ω0 > 1

or λ0 <
√
η/ω0 < 1, J̃ b < J̃a.

PROOF: Following the analysis in Proposition 5.1, we note that if
√
η/ω0 > λ0 > 1 or

√
η/ω0 <

λ0 < 1, the decision rule employed by human B deviates from the optimal decision rule more than

the decision rule of human A. Hence, according to the results shown in [151], the Bayesian cost in

solving the hypothesis testing problem have the property J̃ b > J̃a. Hence, condition (a) is proved.

Similarly, condition (b) can be proved.

Given that s = 1 and the human’s observation is r, the posterior belief on H1 for the rational

decision maker, humanA and humanB would be λ0lr(r)ω0, λ2
0lr(r)ω0 and λ2

0l
2
r(r)ω0, respectively.

Note that if the human’s first information source is r, i.e., human B, lr(r) has a greater influence

on the posterior belief regarding the PoI compared to human A. The same result still holds when

s = 0. For s = 0, the decision making performance for three types of humans can be similarly

obtained and we rely on simulation results for comparing the overall Bayesian cost.

5.4 Simulation Results

For illustration, we conduct experiments for the scenario where the human’s prior belief on the

sensor’s credibility is ω0 = 1.5 and the prior belief regarding the state of the PoI λ0 could vary.

Under hypothesesH1 andH0, the human’s observation r follows Gaussian distributions with mean

µ1 = 2 and µ0 = 0, and the same variance σ2 = 1. Let c10 = 3, c01 = 1 and h = 1, l = 0. First,

we assume that s = 1 to verify the results given in Proposition 5.1 and 5.2. In Fig. 5.2(a), we

plot the conditional Bayesian cost Jr, J̃a, J̃b for the rational human, the order a cognitively limited

human A and the the order b cognitively limited human B, respectively, as a function of λ0. Given

the setup of parameters, we have
√
η/ω0 = 1.41 > 1. In Fig. 5.2(a), there is a critical point



110

λ∗ =
√
η/ω0 = 1.41 such that as λ0 increases from 1, if it is below λ∗, human A has a lower

expected cost in decision making than human B. On the other hand, if λ0 > λ∗, the decision

quality of human B, which differs from the rational human’s decision quality by only a small

amount, performs significantly better than human A. In Fig. 5.2(b), the probability of false alarm

for each of the decision makers is plotted with respect to λ0. We see that A has a larger probability

of false alarm than B if and only if λ0 > λ∗. It means that as λ0 is more in favor of H1, human A’s

decision region where H1 is declared to be true is larger than that of human B. It indicates that a

large value of λ0 has a bigger impact on A than B.

Fig. 5.2: Performance comparison when s = 1.

Next, we consider that the sensor’s suggestion is randomly generated by the system dynamics

and can be either s = 1 or s = 0. The overall Bayesian cost is calculated as a weighted sum of

the conditional Bayesian costs given s = 1 and s = 0. Here, we assume that λ0 = 2 and let the

signal-to-noise ratio (SNR) of the human’s observation r vary, where we define SNR = µ1−µ0
σ

.

The overall Bayesian cost for each of the three types of humans, denoted by Gr, Ga and Gb,

respectively, is plotted with respect to snr in Fig. 5.3. Note that the curves Ga and Gb lie above Gr

due to the humans’ cognitive limitations, the decision making performance is degraded compared

to rational decision makers. While the rational human’s Gr is monotonically decreasing as SNR

becomes large (r is more informative), both Ga and Gb increase up to certain values of SNR

before they start to decrease. This is because in our specific setup, certain values of snr, which

are small, magnify the biases of cognitively limited humans when they update their beliefs using
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the sensor’s suggestion. Finally, recall that compared to human A, lr(r) has a bigger impact

on human B who makes the decision using r before s. As expected, when the observation r is

significantly informative in the sense that SNR > SNR∗, human B has lower expected Bayesian

cost compared to human A. Hence, it is possible to help the cognitively limited human make better

decisions by selecting the appropriate ordering of the information sources.

Fig. 5.3: Overall Bayesian cost with respect to SNR.

5.5 Summary

This chapter investigated the behavior of cognitive memory limited humans in binary decision

making. We find that the order with which information is processed and belief is updated heavily

impacts the final decision quality. In the future, it is worthwhile to study how cognitive memory

limitation affects human behavior in multi-round decision making processes.
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CHAPTER 6

UTILITY THEORY BASED OPTIMAL

RESOURCE CONSUMPTION FOR

INFERENCE IN IOT SYSTEMS

6.1 Introduction

With the recent proliferation of web-enabled smart devices/sensors deployed in almost every aspect

of our lives, the internet of things (IoT) has become a new paradigm to enable the concept of sens-

ing as a service [129]. In many applications such as wireless communications, smart transporta-

tion, smart homes, healthcare, and environmental monitoring, the sensing task of interest can be

formulated as an inference problem. In this work, we consider an instantiation of the general infer-

ence problem, namely a signal/object/event detection problem and use the term "detection" to refer

to the inference task throughout the chapter. Compared to conventional centralized/decentralized

detection frameworks [142, 147], detection in an IoT system is carried out by social sensors that

are selfish agents, e.g., humans. Social sensors employ their own resources to perform the detec-

tion task and in return expect to earn monetary rewards by selling the detection result to interested

users.
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In the past works that study detection problems, the goal is to maximize the detection perfor-

mance under some resource constraints such as on power consumption, bandwidth usage, com-

putation complexity and monetary budgets. Resource constrained optimization problems have

been studied for different application scenarios [29, 30, 77, 111, 133]. For example, in the con-

text of wireless sensor networks, cellular networks, ad-hoc networks and cognitive radio networks

(CRNs), power/bandwidth allocation has been studied for centralized, distributed and cluster-based

architectures [77, 111, 133]. In these detection methods that employ sensor networks to collect in-

formation regarding a phenomenon of interest (PoI), usually all available resources are used up to

maximize detection performance. In practice, however, when the sensors in the IoT systems are

selfish and intelligent, e.g., social sensors, the costs corresponding to resource consumption should

be incorporated in deriving the sensors’ utility functions. As a result, it may not be worthwhile to

consume all the available resources in many applications.

In this chapter, we employ a market-based philosophy and consider the detection problem as

a profit and loss proposition, i.e., a utility based approach. Detection performance is treated as

profit while energy1 usage is treated as loss (or cost). The goal is to find the optimal amount of

energy consumption such that the system utility is maximum. In most systems, system perfor-

mance improves as more energy is used. However, after a certain point, the rate of performance

improvement slows down as more energy is used and a saturation phenomenon is observed. In this

situation, the lack of ‘return on investment’ does not justify the use of additional energy.

6.1.1 Related Work

Utility theory and the maximization of empirically designed utility functions have been widely ex-

ploited to guide system design and resource management in different communication and sensing

applications. For example, in two-hop IoT networks, the authors evaluated the utility of the uplink

data rate and designed strategies to optimize the spectrum partition ratio and aggregator association

bias [63]. A two-phase offloading optimization strategy was developed in [154] to jointly optimize

1The terms ‘resource’ and ‘energy’ will be used interchangeably.
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the offloading utility while preserving privacy protection for edge computing enabled IoT systems.

To the best of our knowledge, however, no previous work has explicitly investigated the utility

based energy consumption problem in the context of IoT systems for detection problems by ex-

ploiting the cost-benefit relationship, i.e., return on investment. In this chapter, we explore how the

detection accuracy improves as more energy is invested and to determine the optimal point which

yields the maximum system utility. We consider that the cost valuation per unit energy is fixed,

which can be thought of as the price for energy exchange in the market. It is desirable to consume

less amount of energy while achieving an adequately accurate level of detection performance.

Motivated by IoT systems where sensing is often delivered as a service, we consider a general

structure shown in Fig. 6.1. In this paradigm, the sensor represents a selfish entity that aims to gain

profit by performing sensing tasks. Each sensor decides its energy consumption strategy for allo-

cating its available energy to perform the signal detection task regarding the status of one or more

PoIs. On the other hand, the buyers are interested in the status of certain PoIs, and are willing to

Fig. 6.1: General structure of an IoT based inference system.

buy the sensing results from the sensors. In order to get compensated for their costs of energy con-

sumption and gain profit, the sensors sell their sensing results to the buyers. The sensors interact
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with the pool of potential buyers through some incentive mechanisms. In different signal process-

ing and communication domains, incentive mechanisms for crowdsensing/cloudsensing platforms

have been developed to stimulate sensor participation [16, 48, 75, 96, 115]. Most of the past works

employed game theoretic approaches to model the strategic behavior exhibited by both the sen-

sors and buyers. For example, economic concepts, e.g., matching and competitive market, were

applied in CRNs for price-based spectrum trading between the primary and secondary users [96].

Auction based mechanisms were developed in [16,48,75] to address the concerns that sensors may

strategically falsify their bids to gain undue advantage.

The past works on incentive mechanisms mainly focused on analyzing the trading behavior and

goods/service exchange between the participating agents. However, none has studied the incentive

mechanisms where the sensor has the objective to maximize its utility by designing an optimal re-

source consumption strategy in the presence of a buyer. Such a problem is not only complicated by

the fact that the sensor should jointly optimize the resource consumption and payment negotiation,

but also by the fact that the incentives provided by the buyer depend on buyer’s valuation towards

the detection result quality, which might not be completely known to the sensor.

6.1.2 Major Technical Contributions

In this chapter, the property of return on investment for detection tasks and the payment negotiation

between the sensor and the buyer are synthesized together to build a unified incentive mechanism

for IoT systems. For a concrete exposition, we consider that there is only one signal detection task,

one sensor and one buyer in the system. The contributions of this work are three-fold:

• For illustration purposes and to serve as motivating examples, we employ three typical de-

tection problems and show that the detection accuracy is an increasing and concave function

with respect to energy consumption. Considering that a sensor derives a benefit from a de-

tection task, we explore the trade-off between system performance improvement and energy

consumption. The optimal amount of energy is determined that maximizes the sensor’s ex-

pected profit.
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• We consider that there is a buyer who is interested in the detection task. The buyer offers

the sensor incentives (via payment) to be informed of its detection result. In this work, we

limit our analysis to the participation of only one sensor and only one buyer. Depending

on how valuable the detection result is to the buyer, we design the best strategy for energy

usage and payment negotiation, so that the sensor obtains the maximum profit. We study

two scenarios: a) the sensor spends a fixed amount of energy and negotiates the payment

amount with the buyer, b) the sensor jointly optimizes the amount of energy consumption

and payment negotiation.

• We present numerical results to evaluate the performance of our approach and based on

which, we discuss how energy efficiency affects the sensor’s actual behavior of resource

consumption.

The notations we use in this chapter are summarized in Table 6.1.

Table 6.1: Notation for IoT based inference model
Parameters Symbol

p Sensor’s energy consumption
D(p) Probability of correctly detecting the PoI
c Unit cost of energy
α Sensor’s benefit parameter
β Buyer’s benefit parameter
t Sensor’s proposal on energy consumption
b Sensor’s proposal on requested payment

6.2 Problem Formulation

Consider that a sensor invests some amount of energy to perform a detection task. We denote the

amount of energy consumption as p and it will be seen later that, p can take different forms such

as power, number of observations, etc. The probability of correctly detecting the PoI is denoted as

D(p). In a number of applications, D(p) is strictly increasing and concave with respect to p, i.e,

the rate of increase of D(p) slows down as p becomes larger [39]. This phenomenon is analogous
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to the law of diminishing returns in economics, which states that at some point, the increase of

output declines when adding one or more factors of production [90]. In the following, we present

three examples to show that D(p) is increasing and concave in a wide range of detection problems.

6.2.1 Examples to Illustrate the Concavity of D(·)

1. Binary hypothesis testing with shift of means. The shift-of-mean hypothesis testing problem

characterizes a large number of problems in signal processing and communications. Under the two

hypotheses, consider that the observation is a Gaussian random variable with the means ±√p and

the same variance σ2. To generate the signals with amplitude ±√p, the required power is p. The

optimal Bayesian detector’s probability of successfully detecting the hypothesis is [142]:

D(p) = 1−Q(

√
p

σ2
), (6.1)

where Q(t) is the probability that a standard normal random variable takes a value larger than t:

Q(t) = 1√
2π

∫∞
t

exp(−u2

2
)du, and σ2 is the noise variance.

2. Asymptotic binary hypothesis testing. In binary hypothesis testing problems, there are two

hypotheses where the observation X follows a probability density functions (PDF) under each

hypothesis. Based on an n observation sequence Xn drawn i.i.d from one of the two distributions,

the Bayesian probability of correctly detecting the hypothesis is given by D(n) ≈ 1− 2−nc
∗(P0,P1),

where c∗(P0, P1) = − log minλ∈(0,1)

∫
P λ

0 (x)P 1−λ
1 (x)dx, known as the Chernoff information, is

the best achievable exponent for Bayesian probability of error.

3. Crowdsourcing. Crowdsourcing is an effective paradigm to solve problems that are easy for

humans but hard for machines/computers, e.g., image annotation and text transcription. It breaks

work into several encapsulated microtasks and leverages the crowd’s wisdom and intelligence in

problem solving. Considering that we aggregate the crowd workers’ responses using the majority

rule [49, 50], it was shown in [50] that the probability of making a correct decision, D(n), is

an increasing and concave function with respect to n, where n represents the number of crowd
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workers.

6.2.2 The Sensor’s Optimal Energy Consumption

In various applications discussed above, the probability of successful detection, i.e.,D(p), is shown

to be increasing and concave as more energy p is invested. We consider that the sensor that per-

forms the detection task derives a profit α from a successful detection of the PoI and the utility is 0

for a wrong detection2. The cost per unit energy consumption is denoted by c. The sensor chooses

to invest an optimal amount of energy so as to maximize the expected utility, which is the expected

revenue minus the cost for energy consumption:

max
p

U(p) = αD(p)− cp. (6.2)

Under the assumption that D(p) is increasing and concave with respect to p, the optimal amount

of energy p∗ that maximizes U(p) is given by

p∗ = (D′)−1(
c

α
) , D∗(

c

α
) (6.3)

whereD′(·) is the first order derivative ofD(p) with respect to p andD∗(·) is the inverse function of

D′(·). Note that since D(p) is increasing and concave, D′(·) is strictly positive and is a decreasing

function with respect to p. Therefore, its inverse functionD∗(·) is a decreasing function. Hence, the

optimal energy consumption p∗ increases as α becomes larger and c becomes smaller. By investing

the optimal amount of energy p∗, the sensor has the maximum expected utility U∗ = αD(p∗)−cp∗.

In this section, we present a discussion on optimal energy usage in several detection problems.

In the areas of signal processing and communications which are core components of IoT systems,

the system utility function in a number of applications demonstrates the concavity property with

respect to the amount of invested energy, allowing our model to be readily generalized. Examples

2One applicable example is where the PoI conveys information regarding the availability of vacant bandwidth
(channel) in spectrum sensing, which can be exploited and sold to secondary users for a payment.
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include channel capacity with respect to signal-to-noise ratio (SNR), and signal recovery accuracy

with respect to the number of quantization levels, etc. Next, we investigate the scenario where

there is a buyer who offers incentives to the sensor to buy the detection result.

6.3 Payment Negotiation in the Presence of Incentives from

a Buyer

There are many sensing as a service situations where the consumer of the sensed information

outsources the sensing task and pays to receive the sensing service. In particular, we consider the

general case that in addition to the profit α that it derives from the detection results, the sensor

provides the sensing service in terms of the detection result to interested buyers for a fee. Other

than spectrum sensing and cognitive radio networks where the sensor detects the availability of

the bandwidth and realizes its own signal transmission objectives as well as selling the remaining

bandwidth to secondary users, there are numerous IoT applications that this work can be applied

to. For example, in wireless communications, the sensor detects the quality of the communication

channel and decides its own transmission strategy. At the same time, the sensor may sell the

detection results to other transmitters. The sensor could also be a driver that detects the traffic

condition to guide his/her own travel route as well as selling the information to traffic control

agencies or commercial software. In the financial sector, the sensor could be a firm that detects

the performance of the market to guide its investment strategy. At the same time, the firm may

sell the market evaluation reports to other companies or organizations. These application scenarios

are highly aligned with the thriving IoT paradigm, where each sensing node is considered to be an

entity that is selfish and has its own objectives [136].

Let β denote the benefit parameter of the buyer, indicating that the buyer obtains a profit β

from the successful detection of the PoI, and 0 otherwise. In this work, we model the payment

negotiation between the sensor and the buyer via a Stackelberg leader-follower model [104]. The

Stackelberg model is a sequential game where the leader chooses its action first; the follower
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chooses its action after observing the action taken by the leader. We consider that the sensor acts

as the leader and the buyer acts as the follower. The sensor submits a proposal {t, b} to the buyer,

where t is the amount of energy the sensor is going to spend in performing detection and b is the

requested payment. The proposal is given to the buyer who decides whether to accept or reject.

Such a Stackelberg leader-follower model falls into the category of contract theory, which has been

adopted in different contexts [10, 37, 88]. We design the proposal to be a one shot game, without

considering the possibility of further rounds of negotiation.

As the buyer is also aware that detection performance improves as t increases, the proposal

is more likely to be accepted if t is large and b is small. On the other hand, the sensor prefers b

to be as large as possible while the buyer still choosing to accept. For the sensor to strategically

maximize its expected revenue, the optimal t and b are naturally dependent on the buyer’s benefit

parameter. Hence, when the sensor designs the proposal, both t and b are functions of β, namely,

t(·) and b(·), respectively. If the buyer rejects the proposal of the sensor, then the payment that the

sensor would receive from the buyer is zero. Upon the acceptance of the proposal, the sensor has

expected utility αD(t(β)) + b(β) − ct(β), and the buyer has expected utility βD(t(β)) − b(β).

An illustration of the utility flow chart is shown in Fig. 6.2. Note that the utility flow from the

sensor to the buyer, i.e., βD(t(β)), is represented using a dotted line, indicating that the sensor

does not incur a loss by providing information to the buyer. We assume that the buyer always

accepts the proposal when its expected utility is non-negative. This assumption, also known as

individual rationality (IR), is widely adopted in mechanism design to model human rationality by

constraining their expected gains from the trade to be non-negative [16]. In different applications,

depending on factors such as cost of time, competitions of other sensors in the market, etc., the

buyer may want to accept the proposal when his/her expected gain is larger than some constant

w ≥ 0. Without loss of generality, we assume that w = 0 as in many other works in the literature.

In this section, we consider that the sensor decides to invest the amount of energy derived in

(6.3), which is the optimal amount of energy consumption without including the consideration of

the buyer, i.e., t = p∗. The objective of the sensor is to determine the best fee b∗ that maximizes its
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Fig. 6.2: Illustration of the utility flow chart.

expected utility. We proceed with the discussion of two situations a) where the sensor has complete

information of the buyer’s benefit parameter β, and b) where only statistical information of β is

known.

6.3.1 Sensor Has Complete Information of β

By using the amount of energy p∗, the probability of correctly detecting the PoI is D(p∗). If the

exact value of the buyer’s parameter β is available, the sensor knows that the buyer has a profit

βD(p∗) from the detection result. Since the buyer always accepts the proposal with non-negative

utility, any b less or equal to βD(p∗) is acceptable to the buyer. Hence, to maximize the expected

utility, the sensor should exploit the knowledge of β and choose b∗ = βD(p∗). In this case, the

expected profit of the sensor is U1 = (α+β)D(p∗)−cp∗ and note that U1 > U∗ for positive values

of β.

6.3.2 Sensor Has Statistical Information of β

Here, we assume that the sensor does not know the exact value of β of the buyer before designing

the proposal. Only the statistical information of β is known, namely, β is a continuous random

variable that follows the probability density function (PDF) f(β) and the cumulative distribution

function (CDF) F (β) with the support [β, β̄]3. The sensor consumes the energy amount p∗ while

performing the detection task and aims to determine the largest b∗ that the buyer will accept. Sup-

pose that the sensor proposes b = ξD(p∗), where ξ is a constant. From the above analysis, it is clear

3Although we assume that β is supported on a bounded interval, in the latter part of the chapter, the support set
could be unbounded, i.e., β̄ = +∞.
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that the buyer accepts to pay the fee only if its benefit parameter β ≥ ξ. For a given distribution of

the random variable β, if ξ is small, there is a high probability that the buyer accepts the proposal

and pays the fee. However, the amount of payment is small when ξ is small. On the other hand,

if ξ is large, although the payment amount is large, the probability that the buyer accepts to pay is

small. One can see that there is a probability of
∫ ξ
β
f(β)d(β) that the buyer rejects b and the actual

payment is 0. Also, with probability
∫ β̄
ξ
f(β)d(β), the buyer accepts b and the actual payment is

b = ξD(p∗). Hence, over the randomness of the buyer’s benefit parameter β ∼ f(β), the sensor

has an expected payment from the buyer given by E(b) =
∫ β̄
ξ
ξD(p∗)f(β)dβ. The objective of the

sensor is to choose an optimal ξ∗ that maximizes E(b):

ξ∗ = arg max
ξ∈[β,β̄]

{
E(b) =

∫ β̄

ξ

ξD(p∗)f(β)dβ

}
(6.4)

= arg max
ξ∈[β,β̄]

∫ β̄

ξ

ξf(β)dβ (6.5)

= arg max
ξ∈[β,β̄]

ξ(1− F (ξ)) (6.6)

where we drop the constant term D(p∗) going from (6.4) to (6.5). We constrain ξ ∈ [β, β̄] since

if ξ ≤ β, the buyer always accepts the proposed fee b and b = ξD(p∗) achieves the maximum at

ξ = β. If ξ > β̄, there is no chance that the buyer accepts b and the expected payment is 0.

Proposition 6.1. The necessary condition for ξ∗ to yield maximum expected payment in (6.6) is

ξ∗ = β or ξ∗ = 1−F (ξ∗)
f(ξ∗)

.

PROOF: The objective function in (6.6), ξ
(
1− F (ξ)

)
, is a smooth function everywhere except at

the end points. From the first order condition (FOC), the necessary condition for a maximum is

that the first-order derivative be zero, i.e.,

∂

∂ξ
ξ
(
1− F (ξ)

)
= 1− F (ξ)− ξf(ξ) = 0 (6.7)

Hence, the necessary condition for ξ to be optimal is ξ∗ = 1−F (ξ∗)
f(ξ∗)

. We should also check the end
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points at ξ = {β, β̄}. Note that in the case ξ = β̄, the expected payment obtained by the sensor is

0 and, therefore, we only need to compare the end point at ξ = β.

Note that it is not clear a priori if a solution of (6.7) exists for this equation for general distributions

F (·) and f(·). If no solution to this fixed point equation (6.7) exists, then the optimal ξ∗ ought to

be the smallest value β in the support of the distribution of β. When there are multiple local

maximum points that satisfy ξ = 1−F (ξ)
f(ξ)

, one must check and compare all the local maximum

points (including the point at β) to determine the global maxima. Moreover, the value of ξ∗ not

only depends on the type of PDF of β, but also is affected by the specific support [β, β̄]. In the

following, we provide two examples for illustration.

1) β follows uniform distribution. Let β follow the uniform distribution U(a1, a2). In this case,

the CDF given ξ is F (ξ) = ξ−a1
a2−a1 . Hence, the objective function in (6.6) becomes

ξ∗ = arg max
ξ∈[a1,a2]

(a2 − a1)(a2ξ − ξ2)

which is maximized by setting ξ∗ = a2
2

. After checking the point ξ = a1
2

, we have the final result:

ξ∗ =


a2
2
, a1 ≤ a2

2

a1, a1 >
a2
2

2) β follows exponential distribution. Let β follow the exponential distribution f(β) = λe−λβ if

β ≥ 0 and f(β) = 0 otherwise. The CDF of the exponential distribution given ξ is F (ξ) = 1−e−λξ.

Following (6.6), the objective is to find ξ∗ that satisfies

ξ∗ = arg max
ξ>0

ξe−λξ

The first order derivative of ξe−λξ with respect to ξ is e−λξ(1− λξ). Hence, we have ξ∗ = 1/λ and

one can verify that the condition ξ∗ = 1−F (ξ∗)
f(ξ∗)

is satisfied.

Given that the payment proposed by the sensor is b∗ = ξ∗D(p∗), i.e., ξ = ξ∗, the expected
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profit of the sensor can be expressed as the profit derived from performing the detection task plus

the expected payment:

U2 = αD(p∗)− cp∗ + E(b∗) =
(
α + ξ∗

(
1− F (ξ∗)

))
D(p∗)− cp∗.

So far, we have investigated the optimal payment b∗ requested from the buyer when the sensor

consumes a fixed amount of energy p∗ in the detection task. Two scenarios where the sensor

knows the exact value and statistical information of the buyer’s benefit parameter β have been

considered. In particular, when the sensor is uncertain about the value of β, we have shown that

the sensor can determine an optimal ξ∗ that is either at the end points of the support of β or satisfies

ξ∗ − 1−F (ξ∗)
f(ξ∗)

= 0. In this case, the sensor can act as if he/she knows the exact benefit parameter

of the buyer to be ξ∗ and propose the payment of b = ξ∗D(p∗) so as to maximize the expected

monetary reward. Given the PDF f(·) and CDF F (·) of the buyer’s benefit parameter β, we define

the critical function of β to be h(β) = β − 1−F (β)
f(β)

, and the point β∗ that satisfies h(β∗) = 0

to be the critical point. In the following sections, we allow the sensor to vary the amount of

energy consumption based on the buyer’s benefit parameter β, so that the sensor can achieve the

maximum expected utility while performing the detection task and negotiating with the buyer. In

such scenarios, the critical function and the critical point will be used again in determining the

sensor’s optimal amount of energy consumption and requested payment.

6.4 Jointly Optimal Energy Consumption and Payment De-

termination

When spending the fixed amount of energy p∗, the sensor does not necessarily gain maximum

profit. In this section, we consider the detection problem where the sensor is allowed to vary the

amount of energy consumption in order to earn more profit. With the participation of the buyer, the

profit of the sensor comprises of two parts: one is the profit from successful detection of the PoI, the
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other is the payment b received from the buyer. We consider that both t and b are functions of the

buyer’s benefit parameter β, namely, t(β) and b(β), respectively. Recall that upon the acceptance

of the proposal, the sensor has expected utility αD
(
t(β)

)
+ b(β)− ct(β), and the buyer has utility

βD
(
t(β)

)
− b(β).

6.4.1 Sensor Has Complete Information of β

We first analyze the decision of the buyer whether or not to accept the proposal {t(β), b(β)}. Since

we have assumed that the buyer always accepts the proposal when its expected utility βD
(
t(β)

)
−

b(β)is non-negative, its decision i(β) on whether or not to accept the proposal can be expressed as

arg max
i(β)∈{0,1}

i(β)
[
βD
(
t(β)

)
− b(β)

]
(6.8)

where i(β) can also be interpreted as an indicator function on β(D(t(β))) − b(β) being non-

negative.

When the sensor knows the exact value of β, the objective is to design the proposal {t(β), b(β)}

so as to maximize the expected profit:

max
t(β),b(β)

i(β)b(β) + αD
(
t(β)

)
− ct(β) (6.9)

Proposition 6.2. The optimal proposal if the sensor has complete information of the buyer’s benefit

parameter β is

tC(β) = D∗(
c

α + β
) (6.10)

bC(β) = βD
(
tC(β)

)
(6.11)

where the superscript C indicates that the sensor has complete information of β.

PROOF: We solve the optimization problem corresponding to the sensor and the buyer formulated
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in (6.8) and (6.9) by reasoning from the sensor’s side first. Since the buyer accepts the proposal

whenever the profit in (6.8) is greater or equal to 0, and the exact value of β is known, the sensor

can maximize its profit from the buyer by setting (6.8) equal to 0. Thus, we obtain the solution in

(6.11) and i(β) = 1. Any other value of b(β) that deviates from bC(β) leads to a potential decrease

in the sensor’s profit and is not an equilibrium solution.

Substituting (6.11) and i(β) = 1 into (6.9), the utility function for the sensor becomes

max
t(β)

(α + β)D
(
t(β)

)
− ct(β) (6.12)

Set the first order derivative of (6.12) with respect to t(β) equal to 0, and we get the optimal energy

usage amount for the sensor, tC(β) = D∗( c
α+β

), given in (6.10).

By investing tC(β) given in (6.10), the sensor obtains expected profit U3 = (α + β)D(tC(β)) −

ctC(β), which is greater than the profit obtained when investing t(β) = p∗. Hence, we have

U3 > U1 > U∗ for positive values of β.

Remark 6.1. In the presence of incentives from the buyer and if the exact value of β is known, the

optimal amount of energy to be invested tC(β) is obtained by replacing α by α + β in (6.3). Since

c
α+β

< c
α

and recall that D∗(·) is a decreasing function, it follows that tC(β) > p∗, indicating that

the optimal energy consumption is higher in the presence of the buyer. The higher the value of β,

the larger is the value of tC(β).

6.4.2 Sensor Has Statistical Information of β

In Section 6.3.2, we considered that β is a continuous random variable that follows the PDF f(β)

and the CDF F (β) with the support [β, β̄]. The objective of the sensor is to design the proposal

{t(β), b(β)} for all β ∈ [β, β̄]. In this scenario where β is a random variable and the sensor may

vary its energy consumption t, we consider that the proposal offered to the buyer is represented

by two functions t(β) and b(β). If the buyer accepts the proposal, it shall convey its true benefit

parameter βt to the sensor. Based on βt, the sensor spends energy t(βt) to perform the detection
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task and the buyer makes a payment b(βt) to obtain the detection result.

Similar to the previous subsection, we characterize the buyer’s decision i(β) to decide whether

or not to accept the proposal {t(β), b(β)} in the following.

Proposition 6.3. For a given proposal {t(β), b(β)}, there exists a threshold βS such that the buyer

with benefit parameter β ≥ βS will decide to accept the proposal, and reject otherwise.

PROOF: For a given proposal {t(β), b(β)}, a buyer with benefit parameter β1 will decide to reject

if his/her utility is negative

β1D
(
t(β′)

)
− b(β′) < 0,∀β′ ∈ [β, β̄]. (6.13)

where β′ ∈ [β, β̄] represents all the possible values of the benefit parameter conveyed from the

buyer to the sensor. Given that the buyer with parameter β1 does not accept the proposal, the buyer

will not accept it for any β2 such that β2 ≤ β1. This is because

β2D
(
t(β′)

)
− b(β′) ≤ β1D

(
t(β′)

)
− b(β′) < 0

∀β′ ∈ [β, β̄]. With a similar reasoning, we can state that if the buyer with parameter β3 decides to

accept the proposal, the buyer will also accept for parameter value β4 such that β4 ≥ β3. Hence,

there must exist a threshold βS above which the buyer accepts the proposal and rejects otherwise.

Since the sensor only knows the statistical information of β, it designs {t(β), b(β)} to maximize

the expected profit:

max
t(β),b(β)

Eβ{i(β)b(β) + αD
(
t(β)

)
− ct(β)} (6.14)

Knowing that there exists a threshold βS above which the buyer always accepts the proposal

and below which the buyer will not, the utility function for the sensor in (6.14) becomes:

max
t(β),b(β),βS

E
β≤βS
{αD

(
t(β)

)
− ct(β)}+ E

β≥βS
{b(β) + αD

(
t(β)

)
− ct(β)}
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or equivalently,

max
t(β),b(β),βS

E
β
{αD

(
t(β)

)
− ct(β)}+ E

β≥βS
{b(β)} (6.15)

subject to the constraints:

βD
(
t(β)

)
− b(β) ≥ 0,∀β ≥ βS (6.16)

βD
(
t(β)

)
− b(β) ≥ βD

(
t(β′)

)
− b(β′) ∀β ≥ βS,∀β′ ∈ [β, β̄] (6.17)

The constraint in (6.16) is the individual rationality (IR) constraint, which says that the buyer

whose benefit parameter is above βS should have non-negative profit and accept the proposal. The

constraint in (6.17) is the incentive compatibility (IC) constraint, which ensures that the buyer

cannot gain extra profit by falsifying its benefit parameter, when its true valuation towards the de-

tection result is β. Since the sensor does not know the buyer’s benefit parameter beforehand, the

buyer may strategically lie about β to gain undue advantage. For instance, if the buyer reports

a lower benefit parameter to the sensor than its true valuation towards the detection result β, the

sensor might decrease the payment amount because the sensor thinks that the buyer is less inter-

ested in the detection result. On the other hand, a higher benefit parameter than the truthful value

might lead the sensor to invest more energy so that a larger detection accuracy can be achieved.

Suppose the buyer’s real benefit parameter is β, the utility when the buyer truthfully reports this

parameter is U = βD
(
t(β)

)
− b(β). When the buyer falsifies the parameter to be β′, the utility is

U ′ = βD
(
t(β′)

)
− b(β′). By applying the IC constraint in (6.17), i.e., U ≥ U ′, we ensure that the

buyer truthfully reports the benefit parameter.

Next, we eliminate the decision variable b(β) from the optimization problem in (6.15) via the

following lemma.

Lemma 6.1. The optimization problem in (6.15) under constraints (6.16) and (6.17) is equivalent

to solving:

max
t(β),βS

E
β
{αD

(
t(β)

)
− ct(β)}+ E

β≥βS

{(
β − 1− F (β)

f(β)

)
D
(
t(β)

)}
(6.18)
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PROOF: See Appendix A.6

Note that in Lemma 6.1, β − 1−F (β)
f(β)

= h(β) is the critical function defined in Section 6.3.2.

Hence, no matter whether the sensor consumes a fixed amount of energy or is able to vary the

amount of energy consumption, the critical function plays an important role in decision making

when only statistical information of β is available. Moreover, we define the function

g(β) =

 0, β ≤ βS

h(β), β > βS
(6.19)

and have the following theorem that provides the solution for the optimization problem (6.15).

Theorem 6.1. The solution to the optimization problem (6.15) is given by:

1. βS = β, or satisfies h(βS) = 0 (6.20)

2. tS(β) = D∗
(

c

α + g(β)

)
(6.21)

3. bS(β) =

βD
(
tS(β)

)
−
∫ β
βS
D
(
tS(u)

)
du ∀β ≥ βS

βSD
(
tS(β∗)

)
∀β ≤ βS

(6.22)

PROOF: See Appendix A.7

When the sensor employs the optimal solution given in Theorem 6.1, the sensor has the expected

profit

U4 =

∫ β̄

β

αD(tS(β))− ctS(β)dβ +

∫ β̄

βS
bS(β)dβ,

which directly follows from (6.15).

Remark 6.2. When the sensor knows the statistical information of β, the optimal solution in The-

orem 2 prevents the buyers with benefit parameter lower than βS from accepting the proposal. In

other words, the sensor sacrifices the potential revenue from these low benefit parameter buyers,
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for the sake of ensuring the mechanism to be incentive compatible, i.e., buyers report their benefit

parameters truthfully. Besides, since g(β) in (6.21) is a non-negative term, the optimal amount of

energy consumption tS is greater than or equal to p∗ derived in (6.3).

6.5 Simulation Results

For illustration purposes, we conduct experiments for the shift-of-mean hypothesis testing problem

as described in Section 6.2.1. We assume that the channel noise variance is σ2 = 0.25. The

benefit parameter of the sensor is α = 10 and the cost of unit energy consumption is c = 8.

Using the probability of correctly detecting the hypothesis given in (6.1) and exploiting (6.3), we

obtain that p∗ = 0.15, which is the optimal amount of energy that maximizes the expected utility

while performing the detection task. Next, we consider that the sensor has complete information

Fig. 6.3: Performance metrics as a function of β when the sensor has complete information of β

of the buyer’s benefit parameter β and investigate the two scenarios where the sensor invests a

fixed amount of energy p∗ as discussed in Section 6.3.1 and the sensor invests the optimal amount
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of energy as discussed in Section 6.4.1, respectively. In evaluating the performance, we make the

comparison between results obtained in Section 6.3 and Section 6.4 by considering the information

of β to be either completely known or have statistical knowledge. The purpose is to illustrate the

performance improvement when spending the optimal amount of energy compared to fixed energy

consumption.

In Fig. 6.3 (a), we plot the amount of energy consumption with respect to β. It can be seen

that the optimal amount of energy, which is larger than p∗ except at β = 0, increases as β becomes

larger. From Fig. 6.3 (b), we can see that the utilities of the sensor increase with respect to β

in both situations. By investing the optimal amount of energy, the sensor can obtain more utility

compared to investing the fixed amount of energy p∗. In Fig. 6.3 (c), the energy efficiency, defined

as the utility per unit energy, is obtained for different values of β. We can observe that although

investing the optimal amount of energy brings more utility and/or profit, the energy efficiency with

fixed amount of energy consumption is higher. The reason is that by investing the optimal amount

of energy, the sensor obtains slightly more profit, at the cost of a relatively large amount of energy

usage compared to p∗. In optimal energy consumption, “optimality” means that by spending that

amount of energy, the expected utility of the sensor is maximized. However, the amount of energy

that needs to be invested is higher resulting in low energy efficiency.

Energy efficiency is a critical factor that affects the sensor energy allocation strategy in per-

forming multiple tasks. In case there are several tasks posted from one or more buyers at the same

time, the sensor should employ the ‘fixed energy consumption’ approach so that more tasks can be

undertaken. In each of the tasks, the sensor has a higher energy efficiency and obtains more profit.

On the other hand, if we only have one detection task from the buyer, the sensor should invest the

optimal amount of energy to derive the largest possible profit.

Next, we assume that the buyer’s benefit parameter β is a random variable that follows a beta

distribution Beta(γ, γ) with support {β = 0, β̄ = 100} and γ = 3. Under this setting, the sensor

is assumed to invest a fixed amount of energy p∗ as described in Section 6.3.2 as well as the case

where it invests the optimal amount of energy as shown in Section 6.4.2. In Fig. 6.4 (a), we plot
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Fig. 6.4: Performance metrics as a function of β when the sensor has statistical information of β

the amount of energy consumption with respect to the buyer’s benefit parameter β. We can see that

the optimal amount of energy tS(β) does not increase until βS = 39.8 is reached. In Fig. 6.4 (b),

we can see that the utility of the sensor in both situations rapidly increases when the threshold βS is

reached. The sensor obtains a higher utility by investing the optimal amount of energy, compared

to the fixed energy consumption strategy. In Fig. 6.4 (c), it can be observed that as β increases, the

energy efficiency for the optimal energy consumption strategy decreases. Similar to Fig. 6.3 where

the exact value of β is known, in Fig. 6.4 we see that when β > βS , the optimal amount of energy

consumption achieves higher utility for the sensor, while at the same time it has higher amount of

energy consumption and lower energy efficiency. From both Fig. 6.3 and Fig. 6.4, we see that for

the same value of the parameter β, the profit under complete information of β is higher than the

profit when only statistical information of β is known. It is because when the exact values of β

are not available, the sensor has to account for the uncertainties of the buyer on whether to accept
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the proposal or not. Besides, some profits must be ‘sacrificed’ to ensure that the buyer truthfully

reveals its benefit parameter. These two reasons account for the profit gap between the two curves.

Finally, we analyze the results for different statistical distributions of β. As before, we assume

β ∼ Beta(γ, γ) within the interval [0, 100], where γ could change. As shown in Fig. 6.5 (a), the

critical point βS is calculated for different values of γ. In Section 6.3.2, we showed that when the

information of β is uncertain, βS determines the amount of payment b if the sensor consumes a

fixed amount of energy p∗. If the sensor varies the amount of energy consumption and proposes

{t(β), b(β)} to the buyer as discussed in Section 6.4.2, βS is the threshold below which the buyer

shall choose not to accept the proposal. It can be seen that βS decreases as γ becomes larger. In

Fig. 6.5: Performance results for different distributions of β

Fig. 6.5 (b), we can see that by investing the optimal amount of energy, the sensor obtains more

utility compared to the case when a fixed amount of energy p∗ is invested. In both situations, the

sensor has higher utilities as γ becomes larger. As a large value of γ indicates smaller variance

(i.e., less uncertainty) of the Beta distribution, it makes sense that more profit can be derived if the

sensor has less uncertainty regarding the parameter β.
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6.6 Energy Efficiency and the Effect on the Energy Con-

sumption Strategy

As we discussed in the previous section, energy efficiency refers to the utility obtained from spend-

ing a unit amount of energy, which determines the energy allocation strategy when the sensor can

distribute the energy to perform multiple tasks, i.e., in a way that achieves highest energy effi-

ciency. In this section, we provide more details on how the energy efficiency affects energy usage

behavior. For simplicity, we only consider the case in which the sensor performs the detection

problem by itself, in the absence of a buyer.

In Section 6.2, we formulated the problem that the optimal amount of energy p∗ maximizes

U(p) = αD(p) − cp, where we assumed that the utility is 0 for detecting the PoI incorrectly. To

be more general, we denote the penalty of a wrong detection as Cm. Hence, the objective function

becomes U(p) = αD(p)−Cm
(
1−D(p)

)
−cp and the corresponding optimal energy consumption

is p∗ = D∗( c
α+Cm

). For illustration purposes, in Fig. 6.6 we plot the expected utility U(p) and

energy efficiency U(p)/p with respect to p when the sensor performs shift-of-mean hypothesis

testing tasks, where we use α = 14, c = 5, σ2 = 0.25, and Cm takes value from {0, 10, 20}. From

Fig. 6.6 (a), we can see that for a given value of cm, U(p) increases with respect to p up to a certain

point before it begins to decrease. The reason is that beyond the optimal point p∗, the system

performance in terms of detection accuracy saturates while the cost of energy consumption keeps

increasing. As expected, it can also be observed that the utility curve with a smaller value of Cm

lies above the utility curve with a larger value of Cm. As the detection accuracy improves with

respect to p, the discrepancies between the curves with different values of Cm become smaller as

p increases. Moreover, note that the optimal amount of energy p∗ that maximizes U(p) becomes

larger asCm increases. It is because that p∗ = D∗( c
α+Cm

) andD∗(·) is a decreasing function, so that

a larger value of Cm gives a larger value of p∗. In Fig. 6.6 (b), the energy efficiency monotonously

decreases for Cm = 0, 10. For Cm = 20, the energy efficiency increases with respect to p up to

a certain point before it begins to decrease. When there are many task options to choose from,
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Fig. 6.6: U(p) and energy efficiency with respect to energy amount p.

energy distribution among different tasks should be properly designed to maximize the efficiency

of available energy usage. On the other hand, when there is only one task to perform, one should

invest the optimal amount of energy p∗ in order to obtain maximum utility.

From the perspective of energy efficiency, there are scenarios, e.g., the blue and red curves in

Fig. 6.6 (b), where smaller the value of p, larger is the value of energy efficiency. In fact, when

p = 0, the expected utility from a random guess is positive and the energy efficiency goes to

infinity. However, in real applications, it is not practical to participate in many tasks by spending a

little bit of energy for each one. The reason is that the sensor is expected to be able to detect the PoI

with a certain level of accuracy and build up a reputation, which is beneficial in the market so that

more buyers become interested in working with them. Detection accuracy is a quality of service

(QoS) measure in many applications and a high level of QoS is required to ensure satisfaction of

customers [1].
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6.7 Summary

This chapter investigated the energy usage problem for detection problems in IoT systems from

a utility theory point of view. By exploring the cost-benefit relationship, we derived the optimal

amount of energy usage that maximizes the expected profit while detecting a PoI. We further

considered incentives from a buyer and applied a Stackelberg leader-follower model for payment

negotiation between the sensor and the buyer. We obtained the optimal energy usage t and payment

b that maximizes the expected profit of the sensor while guaranteeing the buyer’s expected utility to

be non-negative. Two scenarios where the sensor has complete or statistical information of buyer’s

benefit parameter β were studied. The formulation can be applied to many signal processing and

communication problems beyond detection in the context of IoT paradigms. Potential applications

also include incentivization and payment negotiation in distributed detection and crowdsoucing,

e.g., where the participants exhibit selfish behaviors.

In the future, we plan to extend our analysis to the general setting shown in Fig. 6.1 and in-

vestigate a broad range of problems that include a sensor’s energy allocation among multiple tasks

and the incentive mechanism between multiple buyers and multiple sensors. Another promising

direction of research is to consider the case where the sensors in IoT systems are scarce and in-

troduce competition among the buyers. This would require the concepts of auction mechanism or

matching theory in order to maximize the system’s entire welfare. Finally, in payment negotiation

we have only considered a Stackelberg model where the sensor acts as the leader and the buyer

acts as the follower. It would be interesting to consider the case when the leader-follower roles are

reversed. In this case, the buyer will gain an advantage in terms of its profit.
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CHAPTER 7

HUMAN MACHINE COLLABORATION FOR

SEMI-AUTONOMOUS BINARY DECISION

MAKING

7.1 Introduction

This chapter develops a semi-autonomous human machine collaboration system to perform sig-

nal detection. Detecting a phenomenon of interest (PoI) is a key step for successful operation of

many complex autonomous systems in realistic environments. Signal detection plays an important

role in potential applications such as wireless communications, target tracking, security, surveil-

lance, navigation and healthcare. The task of determining which of the two probability models

best matches a set of observations, i.e., binary hypothesis testing, is a very commonly considered

problem in signal detection and has been well studied in the literature. Frameworks and fusion

rules under both centralized and distributed settings in different contexts have been explored to

enhance the performance of binary hypothesis testing [142, 147].

In conventional detection theory, it is typically assumed that observations are collected by

machines (or physical sensors) and a decision is made according to a pre-designed decision rule.
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While intelligent decision making systems composed of physical sensors/machines are prevalent

in many aspects of our life, critical decisions bearing great importance are quite often made by

humans, e.g., decisions in national security, natural disaster prevention, medical diagnosis and

surgery plans. In these critical situations, incorporating human expertise in addition to automated

machine-only systems can be beneficial in making high quality decisions.

7.1.1 Related Work

Considering that humans are important components in the decision making process, different mod-

els have been proposed to characterize the attributes corresponding to human-based and machine-

based sources of information and to develop efficient decision fusion rules for such multi-source

decision systems. A crowdsourcing support system was constructed in [134] for the fusion of

data from physical and human sensors in real-time to improve its sensor coverage and the quality

of decisions. In [9], the authors designed a user refinement stage on top of the Joint Director of

Labs (JDL) fusion model and demonstrated the importance of the human judgement in decision

fusion. In the framework studied in [8], the machine is able to detect the human psychological

states such as anxiety and anger in real time and adapt its behavior for the purpose of improve

the human decision making performance. Hard and soft data fusion was investigated when both

human and physical sensors were assumed to make threshold-based decisions using identical ob-

servations [153].

Taking a perspective that is different from the above authors, here, we explore the workload

distribution between humans and machines in human-machine collaboration systems. According

to [61], humans surpass machines in their ability to improvise and use flexible procedures, exercise

judgement and reason inductively. On the other hand, machines outperform humans in responding

quickly, performing repetitive and routine tasks, and reason deductively (including computational

ability). In addition, humans may be able to observe some features and traits of the PoI that

machines cannot. Thus, humans and machines should work jointly so that they can interact with

and complement each other.
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As a result, human-machine collaborative semi-autonomous systems should be designed by

considering and exploiting the advantages of both humans and machines so as to increase system

effectiveness and performance. To solve the workload allocation problem, traditional literature in

human engineering often suggests breaking an activity into several elementary tasks and allocating

each one to the best fit operator (human or machine) for that task [60]. However, this approach has

been criticized in different contexts. First, the definition and scope of the tasks are quite subjective

based on the cognition and reasoning ability of the humans. It makes the task decomposition and

assignment inconsistent. Next, as humans and machines collaborate to achieve some system-wide

objective, humans can not control or operate the machines properly when they are not experts in

running the machines [137]. Hence, humans and machines, instead of being treated as two separate

entities, should be considered jointly in task environments so that they can interact and comple-

ment each other. However, existing literature that studies human interaction with automation either

analyzes the topic at a high conceptual level (e.g., in human engineering) [99,150] or focuses on ex-

perimental demonstrations targeted at specific domains (e.g., in experimental psychology) [26,84].

To the best of our knowledge, no prior work has constructed a concrete quantitative model to opti-

mize the dynamic workload distribution between the human and the machine in performing signal

detection tasks, i.e, when to use machine automation and when to request human participation.

7.1.2 Major Technical Contributions

In this chapter, we consider that the human and the machine have different sources of information

regarding the PoI. Specifically, the machine acquires an objective measurement and the human has

expert knowledge that comes from other information sources, experience, inductive reasoning, etc,

which is not available to the machine. We bring in a human as an expert/consultant1 in addition to

the machine’s observation for decision making while achieving the best trade-off among multiple

objectives that include system performance and human labor cost. The aim is to design a human-

machine collaboration framework that blends both machine observations and human expertise to

1The terms “expert” and “consultant” will be used interchangeably throughout the chapter.
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solve binary hypothesis testing problems semi-autonomously. The main contributions made in this

chapter are summarized as:

• We investigate the conditions under which incorporating human consultation improves the

overall system performance and quantify the amount of improvement that can be achieved.

We derive the optimal human consultation region2 by balancing the trade-off between per-

formance improvement and the cost of human consultation. Two scenarios where the human

requires a fixed consultation fee for a given period of time, and where the human is paid

based on the frequency of consultation, are studied.

• A correlation structure is proposed to model the dependency between the machine observa-

tions and human expertise. We show that the amount of dependency is an important factor

that guides the design of human-machine collaboration mechanism.

• We study the performance of the system as additional humans are recruited to work on the

detection tasks. Asymptotic performance of the system that is composed of one machine and

multiple humans is derived.

7.2 Human-Machine Collaboration Model

We consider the binary hypothesis testing problem assuming that there are two possible hypotheses

or “states”,H0 andH1, regarding a phenomenon of interest (PoI), where the observation r under the

two hypotheses has the probability density functions (PDFs) f(r|H0) and f(r|H1), respectively.

The prior probabilities are denoted by π0 = Pr(H0) and π1 = Pr(H1) = 1− π0, respectively. In

the following, we use the notation f(x) to denote the PDF of the random variable x and use the

notation Pr(X) to denote the probability that an event X happens. Given that the observation is r,

a decision rule φ(r) uniquely maps every possible r to either H0 or H1, φ : Γ→ {H0, H1}, where

Γ denotes the observation space. Note that φ represents partitions of Γ into subsets Γi such that

2Human consultation region is defined as a subset of machine’s observation space such that when the machine
observation falls in this region, human consultation is requested. More details are presented in Section 7.2.
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we choose Hi when r ∈ Γi for i = 0, 1. Note that Γ0, also known as the acceptance region, is the

complement of Γ1, Γ0 = Γc1.

We consider that a machine observes r and employs the decision rule φm to decide on the

status of the PoI. As the optimal decision rule that minimizes the Bayesian risk is in the form of

likelihood ratio test (LRT) [142], φm can be expressed as

f(r|H1)

f(r|H0)

H1

R
H0

π0(c10 − c00)

π1(c01 − c11)
, η, (7.1)

where cij is the cost of deciding in favor of Hi when the true hypothesis is Hj for i, j = {0, 1}. We

consider that the state of the PoI is determined by a memoryless process so that decision making

is independent across time. When there is no human participation, we consider that the machine

observes r and compares the likelihood ratio Lm(r) = f(r|H1)
f(r|H0)

to η to make the decision d ∈ {0, 1}.

In previous research works, decision fusion where different decision makers observe the same

PoI has been studied under different contexts [105]. In this work, however, we consider that the

human does not have access to the observation r, but possesses additional information regarding

the PoI through his/her experience or other sources that is not available to the machine. We call the

human’s additional intuition which is not available to the machines as the side information provided

by humans. While the machine’s observation r is a continuous random variable, we consider

that the humans have limited information processing ability and only make categorical decisions

[93]. To model the error behavior in human decision making, the human’s side information s

is characterized using a binary symmetric channel (BSC) as shown in Fig. 7.1. In particular,

Pr(s = i|Hi is true) = β for i = 0, 1, where β represents the accuracy of the human and we

assume that β ≥ 0.5.

Our human-machine collaboration model is presented in Fig. 7.2. The machine monitors the

PoI and receives observation r constantly. When requested, human consultation is brought in to

further improve the detection accuracy. For instance, a) To determine the absence H0 or existence

H1 of an adversarial target, the machine measures the power of potential emitted signals while the
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Fig. 7.1: Human expertise modeled using BSC

human’s binary decision can be based on the human’s visual observation regarding the PoI which

may exhibit an error behavior described by a BSC. b) In quantitative trading, we want to predict

whether the stock price will increase (H1) or decrease (H0). The machine’s observation can be

based on some historical data of a certain index, while the human’s binary decision, modeled as a

BSC, may be based on his/her understanding of the company as well as the public news. Beyond

these two illustrative examples, our formulation is suitable to model numerous semi-autonomous

systems for situational awareness and command and control, both in military and civilian domains,

that involve human participation.

We refer to the machine’s observation space that requires human assistance as the human con-

sultation region denoted by Γhs, which is a subspace of the entire observation space Γ. On the

other hand, if r /∈ Γhs, the machine makes a decision d automatically by employing the decision

rule φm. For the case when human consultation is requested for decision making, a fusion center

(FC) makes the final decision d by exploiting the human side information s and the machine’s

observation r via an LRT detector. Assuming that s and r are independent of each other given H1

or H0, the fusion rule at the FC φf simplifies to:

Lf (r) =
Pr(r, s|H1)

Pr(r, s|H0)

H1

R
H0

η, (7.2)

where Lf (r) = Lm(r)1−β
β

if s = 0 and Lf (r) = Lm(r) β
1−β if s = 1. For simplicity, we assume

the costs of the hypothesis testing problem to be c00 = c11 = 0 and c10 = c01 = c. In the rest of
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Fig. 7.2: Flowchart of the human-machine collaboration mechanism.

the chapter, we refer to this cost structure as uniform costs. Hence, η in (7.1) and (7.2) becomes

η = π0
π1

, π∗. In this case, the Bayesian cost of the hypothesis testing problem is proportional to

the average probability of error Pe. Hence, we use Bayesian cost or Pe to characterize the system

performance.

The following lemma presents the necessary and sufficient condition for system performance

improvement as a result of human consultation. We derive a critical observation region such that in

this region, bringing in human expertise and applying the decision rule φf achieves better detection

accuracy compared to machine’s decision making by employing the decision rule φm.

Lemma 7.1. Compared to the automatic decision making of the machine, human consultation

(side information) enhances the accuracy of the system if and only if the observation r falls in a

critical observation region, i.e., r ∈ Γ! ≡ {r|π
∗(1−β)
β
≤ Lm(r) < π∗β

(1−β)
}.

PROOF: See Appendix A.8.

Lemma 7.1 and its proof imply that when r ∈ Γ!, the probability that the machine makes a correct

decision is less than the human accuracy β and incorporating human side information can improve

the system performance. When r /∈ Γ!, the accuracy of the machine’s decision is greater than
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β and bringing in human side information neither improves nor degrades detection performance.

In semi-autonomous systems, human consultation/participation always incurs a cost. Hence, we

choose not to request human side information if it does not improve the system performance.

As a direct result of Lemma 7.1, Proposition 7.1 presents a criterion to request human consul-

tation when the machine cannot make high quality decisions.

Proposition 7.1. To ensure that the detection accuracy of the system does not fall below a threshold

ζ ∈ (0.5, β), the minimum human consultation region is given by Γζ = {r|π
∗(1−ζ)
ζ

< Lm(r) <

π∗ζ
(1−ζ)}

Next, we quantify the improvement of detection accuracy by incorporating human consultation

via the following theorem.

Theorem 7.1. Given that the machine’s observation is r and using the detection accuracy of the

machine’s decision as a benchmark, adding human consultation increases the probability of mak-

ing a correct decision by (or equivalently, decreases the error probability by)

t(r) =


β − g(Lm(r)), if r ∈ Γ!,

0, otherwise,
(7.3)

where g(τ) represents the probability that the decision of φm is correct given that Lm(r) = τ :

g(τ) =


τ/π∗

1+τ/π∗
, if τ ≥ π∗,

1
1+τ/π∗

, if 0 < τ < π∗,

(7.4)

PROOF: From the proof of Lemma 7.1, it is obvious that the probability of making a correct

decision at the LRT detector when the likelihood ratio is Lm(r) can be expressed as g(Lm(r)).

Next, consider that when r ∈ Γ!, the probability of making a correct decision by employing φf is

β. The accuracy of the machine’s decision by employing φm is given by g(Lm(r)) ≤ β. Hence,

the increase in decision accuracy is β − g(Lm(r)). When r /∈ Γ!, we showed that φm = φf and
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bringing in human consultation yields the same system performance.

To give more intuition on the result, we analytically show that φm and φf have the same prob-

ability of making a correct decision when r /∈ Γ!. From Theorem 7.1, we know that if r /∈ Γ!, the

accuracy of the machine’s automatic decision given r is Ym(r) = g(Lm(r)). If human consultation

is incorporated, we need to consider the value of the side information s in calculating the proba-

bility of making correct decisions. Note that without specifying whether H1 or H0 is true, s and r

are not independent of each other because of the inherent hypothesis they are sampled from. From

the proof of Lemma 7.1 we know that if the machine observes r, the probabilities that H0 and H1

are true can be expressed as

Pr(H0|r) =
1

1 + Lm(r)/π∗
, P r(H1|r) =

Lm(r)/π∗

1 + Lm(r)/π∗
, (7.5)

respectively. Hence, the probabilities that human’s side information are s = 1 and s = 0 respec-

tively are given as

Pr(s = 1|r) = Pr(H1|r)β + Pr(H0|r)(1− β)

=
βLm(r)/π∗

1 + Lm(r)/π∗
+

1− β
1 + Lm(r)/π∗

, (7.6)

Pr(s = 0|r) = Pr(H1|r)(1− β) + Pr(H0|r)β

=
(1− β)Lm(r)/π∗

1 + Lm(r)/π∗
+

β

1 + Lm(r)/π∗
(7.7)

Note that when s = 1, the accuracy of the FC’s decision is g(Lm(r)β
1−β ) and when s = 0, the accu-

racy is g(Lm(r)(1−β)
β

). Hence, the FC has the overall probability Yf (r) = Pr(s = 1|r)g(Lm(r)β
1−β ) +

Pr(s = 0|r)g(Lm(r)(1−β)
β

) of making correct decisions. By exploiting r /∈ Γ! and after simplifica-

tion, we have Ym(r) = Yf (r).

As discussed in different contexts in the literature, adding a second source of information (or

more samples of the observations) improves the system performance on an average. In our setup,

we can see that the improvement of bringing in human side information only occurs when the
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machine’s observation r falls in the critical region. Hence, we should choose r in the consultation

region such that t(r) defined in (7.3) is greater than 0. In the system model shown in Fig. 7.2 where

the human consultation region is Γhs, we have the amount of improvement in decision accuracy

compared to φm given by

ε(Γhs) =

∫
r∈{Γhs∩Γ!}

(β − g(Lm(r))f(r)dr (7.8)

where ∩ represents the set intersection operator and f(r) is the PDF of the observation r given

by f(r) = π0f(r|H0) + π1f(r|H1). Note that the error probability of the machine’s decision by

employing φm is

PM
e =π0

∫
r∈{r|Lm(r)≥η}

f(r|H0)dr + π1

∫
r∈{r|Lm(r)<η}

f(r|H1)dr (7.9)

As a result, the error probability of the integrated system is Pe = PM
e − ε(Γhs). To reduce the

amount of human work and save the costs incurred by human consultation, we should choose the

smallest consultation region, i.e., Γhs = Γ!, that still guarantees the best system performance.

For a concrete illustration of our analysis, we let the observation r be a Gaussian random vari-

able N (+m,σ2
r) under H1 and N (−m,σ2

r) under H0. Gaussian distributions are widely used in

the literature as they characterize a lot of problems in experimental psychology, wireless commu-

nication, medical diagnosis, etc. Furthermore, we assume equal priors π0 = π1 = 1/2 so that we

have η = 1 in (7.1). In this scenario, based on Theorem 7.1, the critical observation region can be

simplified to Γ! = {r|r− ≤ r < r+}, where r+ = σ2
r log( β

1−β )/2m and r− = σ2
r log(1−β

β
)/2m.

Note that under the assumption that β ≥ 0.5, we have r+ ≥ 0, r− ≤ 0 and r+ + r− = 0.

As we stated, Γ! is the smallest human consultation region so that best system performance can

be achieved. More generally, we investigate the error probability of the system when the human

consultation region changes in the next proposition.

Proposition 7.2. When Γhs = [−γ, γ], where γ ≥ 0, the average error probability of the system
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for the above hypothesis testing problem is expressed as

Pe(γ) =

 Φ(−γ−m
σr

) +
(
Φ(γ−m

σr
)− Φ(−γ−m

σr
)
)
(1− β), if γ ≤ r+

Φ(−γ−m
σr

) +
(
Φ(γ+m

σr
)− Φ( r

++m
σr

)
)
β +

(
Φ(γ+m

σr
)− Φ( r

−+m
σr

)
)
(1− β), if γ > r+,

(7.10)

where Φ(x) = 1√
2π

∫ x
−∞ e

−z2dz is the cumulative distribution function (CDF) of the standard nor-

mal distribution.

PROOF: See Appendix A.9.

Fig. 7.3: Average error probability as a function of human consultation region upper bound.

For illustration, we plot the probability of error of our system with respect to the human con-

sultation region upper bound γ in Fig. 7.3. The Gaussian distributed observations have means ±2

and standard deviation σr = 2 under H1 and H0. For different values of β = 0.75, 0.85, 0.95, it is

observed that the probability of error decreases as γ increases. For each of the three cases, there is

a cutoff point after which the probability of error does not drop any more. The value of the cutoff

point becomes larger as β increases (since r+ = σ2
r log( β

1−β )/2m). Also, after the cutoff point r+

is reached, the system has better accuracy as the human has more expertise, i.e., β is larger.



148

7.3 Human Participation with Constraints

In this section, we analyze the design of Γhs by considering two constraining factors associated

with human consultation in realistic applications, i.e., limited attention duration and participation

cost. For analytical convenience, we continue with the assumption that under H0 and H1, the

machine’s observation r follows Gaussian distribution with means −m and m, respectively and

variance σ2. We assume that the priors are equal and the costs are uniform so that η = 1. In this

case, recall that r+ = −r− so that the length of Γ! is 2r+.

7.3.1 Human with Limited Attention Duration

In many situations, the human, who acts as a consultant, has many pressing tasks to attend to.

Suppose that the hypothesis testing for this PoI is only one of the many concurrent tasks that the

human has to attend to. The human has limited attention duration towards this particular task in

the sense that we consider that the region Γhs has a fixed length. The objective is to determine the

optimal region with fixed length L that requires human consultation ΓLhs. Depending on whether

L ≥ 2r+ or L < 2r+, the results are presented in Proposition 7.3 and Proposition 7.4, respectively.

Proposition 7.3. When L ≥ 2r+, the optimal consultation region for human ΓLhs reduces to Γ!

PROOF: From the result of Proposition 7.2, the system performance is improved because of

human consultation only in Γ!. Thus, we let ΓLhs = Γ! and the remaining attention span L − 2r+

can be released.

Proposition 7.4. When L < 2r+, the human consultation region ΓLhs with length L that achieves

the minimum of probability of error is [−L/2, L/2].

PROOF: See Appendix A.10.

From Proposition 7.4 and its proof, we can see that the error probability reduction by adding

human consultation takes the largest value at r = 0. As r deviates away from 0, the error reduction
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rate decreases. In order to achieve the largest amount in error probability reduction with concen-

tration duration L, ΓLhs should be centered at r = 0. Simulations are provided to corroborate this

result. We assume that the human expertise parameter is β = 0.9. Fig. 7.4 shows the probability of

error with respect to the center of the human consultation region Γhs, with length L taking values

from {0.5, 2, 4}. It is observed that when the center of Γhs is located at the origin, as stated in

Proposition 7.4, the system has the lowest probability of error. The performance degrades as the

human consultation region center shifts away from the origin. When ΓLhs completely moves out of

[r−, r+], the probability of error does not increase any more.

Fig. 7.4: Bayesian risk when human consultation region has length L.

7.3.2 Human with Participation Cost

The fee paid to human consultants for their participation is the main source of expenses in our

human machine collaboration framework. There is a need to balance the trade-off between the

cost of hiring humans and the improvement in system performance. First, we consider that there

is a fixed cost cT for hiring a human during a time window T , in which a total of T independent

detection tasks are performed. We consider that cT has the same unit as the costs of the hypothesis
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testing problem, i.e., cij for i, j ∈ {0, 1}. The following proposition addresses the conditions under

which we should hire a human for consultation.

Proposition 7.5. A human expert is hired only when the expected reduction of Bayesian cost,

calculated by the left hand side of (7.11), exceeds the human consultation fee cT :

T
(
B1 − (B1 +B2)(1− β)

)
c

hire

R
not hire

cT , (7.11)

where B1 = Φ( r
++m
σr

)− Φ(m
σr

), B2 = Φ( r
+−m
σr

)− Φ(−m
σr

).

PROOF: With the fee for the human cT over a time period T , we would like to make full use of

the side information, i.e, bring in human consultation in the critical region r ∈ Γ! = [r−, r+]. Note

that because of symmetry, the error probability reduction Γhs = [r−, r+] is two times the reduction

of error when Γhs = [0, r+]. Also, recall that we have derived the error probability reduction when

Γhs = [0, γ] in Proposition 7.2. Hence, the error probability reduction when Γhs = [r−, r+] is

given by 2de(r
+) = B1 − (B1 +B2)(1− β), (de(r+) which can be obtained by replacing γ by r+

in the expression of de(γ) given in (A.33) from the proof of Proposition 7.2). Consequently, during

time period T the expected reduction of Bayesian cost is given by T
(
B1− (B1 +B2)(1−β)

)
c.

Next, we analyze the scenario where the human is paid according to the frequency of partici-

pation, i.e, there is a unit cost ct for each time the human provides consultation. In this case, we

design the following human consultation region Γcths to minimize the expected cost.

Proposition 7.6. The optimal human consultation region Γcths with unit participation cost ct is

Γcths =


∅, if ct > c(β − 1/2)

[−rct , rct ], if ct ≤ c(β − 1/2),

where rct = σ2
r

2m
log( βc−ct

ct+(1−β)c
).

PROOF: See Appendix A.11.
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Let the human consultation region Γcths be [−γ, γ], and we plot the unit time Bayesian cost with

respect to γ for three different values of ct = {5, 2, 0} in Fig. 7.5. In this experiment c = 10,

β = 0.9, and we can see that when ct = 5 > c(β − 1/2), the Bayesian risk monotonously

increases as γ increases, suggesting that Γcths = ∅. When ct = 2 < c(β − 1/2), the Bayesian risk

first decreases when γ is in [0, rct ] and then increases when γ ∈ (rct ,∞], confirming the optimal

consultation region Γcths = [−rct , rct ] given in Proposition 7.6. Furthermore, note that when ct = 0,

the upper bound of Γcths, i.e., rct reaches r+, and thereafter the Bayesian cost remains constant.

Fig. 7.5: Bayesian cost as a function of human consultation region upper bound, when human is
paid based on participation frequency.

7.4 Correlation Between the Human Side Information and

Machine Observation

In Section 7.2, we made the assumption that human side information s and the machine observation

r are independent of each other, i.e., f(r|Hi, s = j) = f(r|Hi) for i, j = 0, 1. However, the

assumption of independence does not hold in practice because of the inherent correlation between
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the attributes observed by the human and the machine. To make our analysis more general, we

incorporate this correlation and denote the conditional PDF of r as f(r|Hi, s = j) = fij(r) for

i, j = 0, 1. Exploiting the Bayesian relationship f(r, s = j|Hi) = f(r|Hi, s = j)Pr(s = j|Hi)

and assuming that s is modeled via the BSC channel shown in Fig. 7.1, the FC’s decision rule φ′f

computes the likelihood ratio given by L′f (r)

L′f (r) =
f(r, s = j|H1)

f(r, s = j|H0)
=


L′0(r) = f10(r)(1−β)

f00(r)β
, if s = 0

L′1(r) = f11(r)β
f01(r)(1−β)

, if s = 1

Decision is made by comparing L′f (r) to the threshold η. On the other hand, when human con-

sultation is not requested, the machine employs the decision rule φ′m and automatically makes a

decision by comparing the likelihood ratio

L′m(r) =
f(r|H1)

f(r|H0)
=
f11(r)β + f10(r)(1− β)

f00(r)β + f01(r)(1− β)

to the threshold η. Analogous to the derivation in Section 7.2, when the machine’s observation is r,

the detection accuracy of φ′m is Y ′m(r) = g(L′m(r)). The detection accuracy of bringing in human

side information and employing φ′f is Y ′f (r) = Pr′(s = 1|r)g(L′1(r)) + Pr′(s = 0|r)g(L′0(r)),

where Pr′(s = j|r), which represents the probability that s = j given machine’s observation r, is

given in (7.6) and (7.7). Note that in the calculation of Pr′(s = j|r), we need to replace Lm(r) by

L′m(r).

The critical region where the detection accuracy is enhanced after bringing in human side

information can be expressed as Γ′! = {r|Y ′f (r) − Y ′m(r) > 0}. Moreover, when the human

consultation region is Γhs, the probability of making a correct decision at the FC is

P ′c =

∫
r∈Γhs

Y ′f (r)f(r)dr +

∫
r∈Γ∗hs

Y ′m(r)f(r)dr (7.12)

where Γ∗hs represents the complement of the set Γhs. Hence, the probability of error of the system
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is P ′e = 1− P ′c.

Next, we investigate the performance deterioration because of mistakenly assuming that s and r

are independent when they are correlated with each other. If s and r are assumed to be independent

as in Section 7.2, φ′′f uses the likelihood ratio

L′′f (r) =


L′′0(r) = L′m(r)1−β

β
, if s = 0

L′′1(r) = L′m(r) β
1−β , if s = 1

Let Γ′′ij denote the set of observations in Γhs such that φ′′f decides Hi to be true based on s = j,

namely,

Γ′′0j = {r|r ∈ Γhs & L′′j (r) < η}

Γ′′1j = {r|r ∈ Γhs & L′′j (r) ≥ η}

Similarly, we use Γ′ij to represent the set of observations in Γhs such that φ′f decides Hi when

s = j:

Γ′0j = {r|r ∈ Γhs & L′j(r) < η}

Γ′1j = {r|r ∈ Γhs & L′j(r) ≥ η}

In case where the FC makes the decision by comparing L′′f (r) to η when the true likelihood ratio

is L′f (r), the error probability compared to P ′e is incremented by

δ =

∫
r∈(Γ′′00−Γ′00)∪(Γ′′10−Γ′10)

Pr′(s = 0|r)
(
2g(L′0(r))− 1

)
dr

+

∫
r∈(Γ′′01−Γ′01)∪(Γ′′11−Γ′11)

Pr′(s = 1|r)
(
2g(L′1(r))− 1

)
dr

where the set Γa − Γb consists of elements that are in Γa but not in Γb.
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For a concrete illustration of the dependence structure of the machine observation r and the

human side information s, we consider that the human observes a continuous attribute t. The

binary decision s (side information) is made by comparing t with a threshold. In particular, we

assume that r and t follow the bivariate normal distribution3:r
t

 ∼ N

µri
µti

 ,

 σ2
r ρσrσt

ρσrσt σ2
t


 (7.13)

under Hi for i = 0, 1. r is the machine observation and t is the attribute observed by the human. ρ

is the correlation parameter. Assuming equal priors and uniform costs, we consider that the human

makes a binary decision s by comparing t with the threshold τ = (µt1 + µt0)/2. Since t has

Gaussian marginal PDFs, we have β = 1 − Φ(µt1−µt0
2σt

). In this scenario, r and s are dependent

with each other because of the inherent correlation between r and t. By the Bayesian rule, we

have fij(r) = f(r|Hi, s = j) = f(r|Hi)Pr(s=j|r,Hi)
Pr(s=j|Hi) for i, j ∈ {0, 1}. In the following, we provide

the procedure to derive the expression for f11: a) f(r|H1) is a Gaussian PDF with mean µr1

and standard deviation σt, which is denoted as N (r, µr1, σt), b) under H1, the conditional PDF

of t given r is a Gaussian PDF with mean µ1
t|r = µt1 + ρ σt

σr
(r − µr1) and standard deviation

σ1
t|r =

√
1− ρ2µt. Hence, we have Pr(s = 1|r,H1) = Pr(t ≥ τ |r,H1) = 1 − Φ(

τ−µ1
t|r

σ1
t|r

), c)

under H1, the PDF of t is Gaussian with mean µt1 and standard deviation σt. Hence, we have

Pr(s = 1|H1) = Pr(t ≥ τ |H1) = 1 − Φ( τ−µt1
σt

). Combining the three parts together and

exploiting the property that Φ(x) = 1− Φ(−x), we have

f11(r) =

N (r, µr1, σt)Φ

(
µt1−µt0

2
+ρ

σt
σr

(r−µr1)√
1−ρ2σt

)
Φ
(
µt1−µt0

2σt

)
3In this section, we change the means of r under both hypotheses from ±m to µr1, µr0 for ease of notation.
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All the four equations for i, j ∈ {0, 1} can be written in a compact form given by

fij(r) =

N (r, µri, σt)Φ

(
I(i)

I(j)
µt1−µt0

2
+ρ

σt
σr

(r−µrj)√
1−ρ2σt

)
Φ
(
I(i)I(j)(µt1−µt0)

2σt

)
where I(z) is an indicator function acting on z ∈ {0, 1} so that I(0) = −1 and I(1) = 1.

Fig. 7.6: Error probability of φ′m and φ′f as functions of the machine observation r.

For simulation, we set µr1 = 3, µr0 = −3, µt1 = 2, µt0 = −2, σr = σt = 1 and ρ ∈ (−1, 1).

When the machine observation is r, the error probability of making a decision when employing φ′m

and φ′f , i.e., Y ′m(r) and Y ′f (r), are plotted in Fig. 7.6. For different values of ρ, the curve of Y ′f (r)

has different shapes, leading to the critical region of human consultation to be different (note that

the critical region is where Y ′f (r) < Y ′m(r)). When ρ = 0, r and t are uncorrelated4 and it reduces

to the scenario discussed in Section 7.2 where we have Y ′m(r) = Ym(r) and Y ′f (r) = Yf (r). In Fig.

7.7, we plot the error probability of the FC for different values of ρ. The red line representing the

error probability when r and s are independent is plotted as a benchmark for comparison. In the

left and right subplots, we set σr = σt = 1 and σr = σt = 2, respectively. It can be observed that
4If r and t follow Bivariate normal distributions, uncorrelatedness implies independence.
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some values of ρ are beneficial for the system performance while some other values of ρ degrade

the detection accuracy. It is observed in Fig. 7.7 that in both subplots, small values of ρ usually

yield lower values of the probability of error than for the large values of ρ. This is analogous to

the results of how correlation affects estimation performance that were studied in [107]. We can

also see that the shape of the curve is quite affected by the system parameters (in this case, σr and

σt of the signal r and t). The question of finding the optimal ρ that yields the best performance of

human-machine decision making will be studied in our future work.

Fig. 7.7: Error probability of φ′f for different correlation parameter ρ.

7.5 System Performance Composed of Multiple Human Ex-

perts

In this section, we consider the scenario where multiple humans (n ≥ 2) participate in the col-

laborative decision making process. When there are tasks that require more stringent detection

accuracy, hiring multiple humans and bringing in side information from various experts becomes

necessary. However, the derivation of exact error probability reduction as discussed in Section 7.2

is intractable as the number of human participants is more than one. To evaluate system perfor-

mance and to guide the worker recruiting strategy, we compute the asymptotic detection perfor-
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mance at the fusion center via the Bhattacharyya distance5: lim
C→∞

lnPe
C ≤ −BD(pH0 , pH1), where

Pe is the average error probability of the FC, C is the number of data samples and pH0 , pH1 are the

likelihoods under H0 and H1, respectively. For discrete probability distributions:

BD(pH0 , pH1) = − ln
∑
x∈X

√
pH0(x)pH1(x)

and for continuous distributions:

BD(pH0 , pH1) = − ln

∫
x∈X

√
pH0(x)pH1(x)dx

Intuitively, Pe decreases exponentially as the amount of available data C increases, andBD(pH0 , pH1)

upper bounds the decay rate. It is desired to have a larger Bhattacharyya distance in order to mini-

mize the upper bound of Pe.

Consider that there is a group of n human experts with different backgrounds who collabora-

tively provide their side information to help the FC decide between the two hypotheses H0 and

H1. Following the BSC model shown in Fig. 7.1, the ith human’s side information is denoted as si

with expertise βi, for i = 1, 2, . . . , n. Assuming that each si is independent of all other human side

informations, the combined side information vector s̄ = [s1, s2, . . . , sn] has the probability mass

function (PMF) p(s̄|H0) =
∏n

i=1 β
1−si
i (1 − βi)si under H0 and p(s̄|H1) =

∏n
i=1 β

si
i (1 − βi)1−si

under H1. The machine observation r is employed together with the side information vector

s̄ to make the final decision. Assuming that r and s̄ are independent and following the nota-

tions given in Section 7.2, the joint probability distributions of r and s̄ under both hypotheses

can be expressed as pH0(r, s̄) = f(r|H0)p(s̄|H0) = N (r;−m,σ2
r)
∏n

i=1 β
1−si
i (1 − βi)

si , and

pH1(r, s̄) = f(r|H1)p(s̄|H1) = N (r;m,σ2
r)
∏n

i=1 β
si
i (1 − βi)

1−si , where N (r;±m,σ2
r) repre-

sents the conditional PDFs of r under H0 and H1 that are Gaussian distributions with means −m
5Bhattacharyya distance is a special case of Chernoff distance with the coefficient λ = 1/2. For analytical pur-

poses, we assume the humans’ side information and the machine’s observation are independent in this section.
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and m, respectively, and variance σ2
r . Hence, the Bhattacharyya distance is given by:

BD(pH0 , pH1)

=− ln
∑
s̄∈S̄

∫
r∈R

√
pH0(r, s̄)pH1(r, s̄)dr

=− ln

2n

√√√√ n∏
i=1

βi(1− βi)
∫
r∈R

√
N (r;−m,σ2

r)N (r;m,σ2
r)dr


=
m2

2σ2
r

+
n∑
i=1

(
− 1

2
ln(βi(1− βi))− ln 2

)
(7.14)

where in the last step, we use the fact that the Bhattacharyya distance of two Gaussian random

variables, i.e., − ln
∫
r∈R

√
N (r,−m,σ2

r)N (r,m, σ2
r)dr is equal to m2

2σ2
r

[102].

The result in (7.14) suggests that because of the contribution of the ith human whose side

information has accuracy βi, the Bhattacharyya distance is increased by ς = −1/2 ln(βi(1−βi))−

ln 2, which is non-negative when βi ∈ [0, 1]. Only when βi = 1/2, we have ς = 0 indicating that

the human does not contribute any useful side information. As βi increases beyond 0.5, ς becomes

larger and the information contribution from the human is more significant6.

To characterize the decision making property of the human decision makers, we assume that βi

is random and follows a certain PDF. The mean and the variance of the random variable, denoted

by E(βi) = µβ and V ar(βi) = σ2
β , are used to represent the average and heterogeneity of the

humans’ accuracy, respectively. We may interpret µβ to be the average level of expertise and σ2
β

to be the level of diversity of expertise in the group. A large value of σ2
β indicates that the humans

in the group have diverse decision making/cognitive abilities resulting in a large variance in their

decision making accuracy.

Theorem 7.2. Suppose that a group of n human decision makers with average level of expertise µβ

and level of diversity σ2
β collaborate with the machine for performing a detection task, the lower

bound of the expected Bhattacharyya distance at the FC increases as µβ, σ2
β become larger.

6When βi < 0.5, the side information has the same information contribution with the one with prediction accuracy
1−βi. It can be thought as flipping the answer si when βi < 0.5 and making the prediction accuracy greater than 0.5.
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PROOF: From (7.14), the expected Bhattacharyya distance can be expressed as

E[BD(pH0 , pH1)] =
m

2σ2
β

+ E

[
n∑
i=1

(
− 1

2
ln(βi(1− βi))− ln 2

)]

= nE
[
−1

2
ln(βi(1− βi))

]
+

m

2σ2
β

− n ln 2 (7.15)

Note that h(·) = −1/2 ln(·) in (7.15) is a convex function. Hence, we have the following result by

applying Jensen’s inequality

E
(
− 1

2
ln
(
β(1− β)

))
≥ −1

2
ln
(
E
(
β(1− β)

))
= −1

2
ln(µβ − µ2

β − σ2
β) (7.16)

Since −1/2 ln(·) in (7.16) is a decreasing function and µβ − µ2
β is decreasing for µβ ∈ {0.5, 1},

it is clear that −1
2

ln(µβ − µ2
β − σ2

β) increases as µ and σ2
β become larger. Hence, the term

E
[
−1

2
ln
(
βi(1− βi)

)]
and consequently the lower bound on the expected Bhattacharyya distance

given in (7.15) becomes larger as µβ, σβ increase.

Using the lower bound of the expected Bhattacharyya distance as the surrogate judging criterion, it

can be seen that a group performs better if it has higher average accuracy µβ . At the same time, it

is interesting to observe that for a fixed value of µβ , a group that has a larger variance σ2
β achieves

better performance.

Remark 7.1. In a decision making system composed of multiple humans, if the average expertise

of the humans is kept the same, the group with higher diversity (quantified in terms of σ2
β) yields

better decision making performance.

In Fig. 7.8, we show the actual Bhattacharyya distance of conditional distributions of the

observations under the two hypotheses as a function of the number of human experts working on

the task. Our results on decision making composed of multiple human experts, which is obtained

using the surrogate criterion (namely, the lower bound of BD), is corroborated by the numerical
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Fig. 7.8: Bhattacharyya distance as the number of human experts increases for different distribu-
tions of β.

results shown in Fig. 7.8. In each of the four curves, human side information accuracy β is

sampled from i) fixed value at 0.7, ii) uniform distribution U(0.5, 0.9), iii) Beta distribution within

the interval [0.5, 0.9] with parameters (2, 2) and iv) Beta distribution within the interval [0.5, 0.9]

with parameters (5, 5), respectively. Results are obtained by averaging over 5000 Monte Carlo

simulations. Though the expected means of the four distributions of β are the same µβ = 0.7,

they have different variances. The variances of β in the four curves (red, green. yellow, blue)

are 0.013, 0.008, 0.004, 0, respectively. It can be observed that in these four distributions of β,

the Bhattacharyya distance increases linearly as we have more human experts recruited. As the

variance of the distribution from which β is sampled from becomes larger, the rate of BD increase

becomes larger as well. This motivates us to select those groups that are composed of humans of

diverse expertise levels to achieve better decision making performance.



161

7.6 Summary

In this chapter, we studied the problem of potential human assistance while making detections

based on machine observations. Our objective was to systematically design the consultation region

where human assistance will yield improved detection performance leading to a semi-autonomous

decision making system involving human machine collaboration. We took human participation

factors, i.e., limited attention duration and participation costs, into account in the optimization of

consultation region. We brought attention to the fact that the correlation between the machine

observation and human side information is an important factor in quantifying the performance

improvement arising from human consultation. Finally, the asymptotic performance measured in

terms of Bhattacharyya distance was derived as a large number of human experts get involved in

the task.

This study of human consultation in machine automation provides insights in the design of

user-focused intelligent systems, and is the first step towards the development of large scale au-

tonomous human-machine collaboration networks. Advances in this area depend on connecting

the ideas and concepts across different disciplinary boundaries such as behavioral informatics,

optimization theory and experimental psychology. In future work, we aim to analyze how the cor-

relation parameter between the human and machine observations impact the design of consultation

region in a more comprehensive manner. We will consider that humans, instead of making binary

decisions, categorize their observations into a small number of levels (by employing subjective

quantization rules) and how it will impact the system performance.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

8.1 Conclusion

In almost all intelligent and decision making systems developed in the signal processing literature,

the objective function is based solely on objective performance measures and is devoid of any

human perception considerations. The incorporation of human in the loop generalizes cognitive

systems by allowing humans and machines being tightly coupled in the same working environment

for advanced interaction. In this dissertation, we explored the state of the art in how human behav-

ior and decision making can be modeled in the statistical signal processing framework. In Chapter

2, we considered that the rationality of human agents can be modeled by Prospect Theory (PT) and

developed PT based human decision rules in the context of hypothesis testing. We studied several

decision making frameworks that include human participants, modeled using PT, who are a part

of networked human-machine teams. In Chapter 3, we proposed a novel crowdsourcing system to

solve classification problems and accurately characterized the behavioral aspects of crowd workers

(honest workers and spammers). In order to obtain optimal classification performance, we designed

the optimal weight for every worker in the weighted majority voting fusion rule. In Chapter 4, we

studied a novel sequential task ordering algorithm for classification in crowdsourcing composed

of unreliable human workers. In Chapter 5, we investigated the behavior of cognitive memory
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limited humans in binary decision making. In Chapter 6, a unified IoT based inference system was

developed where sensing was treated as a service. To address the selfish concerns of the users,

we jointly optimized the resource usage policy and payment negotiation strategy for the user so

as to maximize the expected profit. In Chapter 7, we designed a human machine collaboration

framework that blends both human expertise and machine observations to solve binary hypothesis

testing problems semi-autonomously. We brought in human consultation in addition to machine

observations to improve the system performance while incorporating the concern of human labor

cost.

8.2 Future Directions in Human Machine Teaming

Human behavior and decision making are complex processes that represent the intricate interplay

between the psychological activity within humans and the influence of outside environment. A

fully cognitive human-machine collaboration architecture requires the machine to be able to un-

derstand, anticipate, and augment the performance of the human; and the human to have the ability

to support, supervise, and enhance the automation conducted by the machine [53]. Application

scenarios of interest may include ones where decisions are made autonomously by machines or

the decisions are made by a human or a semi-autonomous system where humans and machines

collaborate in making the final decision. In addition to the specific future work for each line of

work discussed in Chapters 2-7, we present several ‘big’ research directions so as to accomplish

the interactive symbiosis where humans and machines are tightly coupled together.

1. Behavioral informatics: For the machine to better understand human behavior in differ-

ent applications, it is necessary to explore research findings in psychology that characterize

how human behavior is impacted by time constraints, memory limitations, emotion state as

well as stimulus from the outside environment. To achieve ‘order of magnitude increases in

available, net thinking power resulting from linked human-machine dyads’ [122], it becomes

imperative to perform human cognitive state sensing for designing efficient communication
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interfaces between the human and the machine. Another interesting topic is the real time

prediction of human cognitive workload based on sensor-based brain signals such as elec-

troencephalogram (EEG), as well as the design of system augmentations such as offloading

tasks or assisting users with modality-specific support.

2. Trust in autonomous systems: In human-machine collaboration, the authors in [91] have

described trust as ‘the willingness of a party to be vulnerable to the actions of another party

based on the expectation that the other will perform a particular action important to the

trustor, irrespective of the ability to monitor or control that other party’. In particular, many

autonomous systems employed in high stake applications are black boxes that do not explain

how the decision are made. The challenge is to develop a quantitative definition of trust and

establish clear guidelines to construct human-machine transparency and enhance calibrated

trust between the human and the machine.

3. Situational awareness: Situational awareness (SA) refers to the user’s familiarity of the task

environment, the perception of the task status, and the anticipation of future states. If humans

are not appropriately incorporated in the loop, it is very likely that the human is not aware

of or not familiar with the machine’s task execution. In such a situation where there is over-

reliance on machine automation, the human’s understanding of the work environment, i.e.,

SA, is jeopardized. The loss of SA (also referred to as complacency or automation induced

decision biases in different works) compromises the human’s level of expertise and ability

to perform the automated tasks manually in case of unpredictable automation failure and it

may cause severe breakdown in critical applications like autopilot and submarine navigation

systems. Hence, the concerns of SA must be addressed in the design of human-machine

symbiosis to prevent irreparable damage.

4. Herding, nudging and incentives: Humans are also known to be subject to herding and

nudging phenomena. To elicit desirable outputs from humans, future research work can pro-

ceed with some explorations along these lines. a) The optimum design and task allocation of



165

collaborative human-machine networks. This will include change in strategies of individual

nodes, e.g., adapting the threshold of some or all the nodes or shaping the input to selected

nodes during the inference process. b) The suitable distribution of the tasks and workload

to be performed by humans and machines in complex decision making systems. c) Another

important consideration will be the incentivization measures of humans to actively engage

in the inference process, which can be posed in a reinforcement learning based framework.

While the topics and research directions discussed in this work might serve as starting points to

advance the next generation intelligent and decision making systems that involve human participa-

tion, novel theoretical frameworks for collaborative human-machine decision making in complex

environments require inputs from different disciplines such as statistical signal processing, artifi-

cial intelligence, machine learning, economics, experimental psychology, and neuroscience. The

ultimate goal is to merge the best of humans with the best of machines in task environments so

that humans and machines can interact and complement each other. Developments in this area

are envisaged to result in a significant revolution in the design of many autonomous and semi-

autonomous systems for situational awareness and command and control, both in military and

civilian application, that involve human-machine collaboration.
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APPENDIX A

APPENDIX: PROOFS OF VARIOUS RESULTS

A.1 Proof of Lemma 2.1

We write

PD =

∞∫
−∞

Pr(r ≥ x|H1)fτ (x)dx

=

∞∫
−∞

Q(
x−m1

σs
)

1√
2πσ2

τ

e

(
− (x−mτ )2

2σ2τ

)
dx (A.1)

Construct two independent random variables X ∼ N (mτ , σ
2
τ ) and Y ∼ N (0, σ2

s). Since X+Y ∼

N (mτ , σ
2
s +σ2

τ ), which is the same as the distribution of Z+mτ , where Z ∼ N (0, σ2
s +σ2

τ ). Thus,

Pr(X + Y ≤ m1) = Pr(Z ≤ m1 −mτ )

= 1−Q(
m1 −mτ√
σ2
s + σ2

τ

) = Q(
mτ −m1√
σ2
s + σ2

τ

). (A.2)
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where we use the fact that 1− Q(x) = Q(−x). On the other hand, by the law of total probability

(conditioning on X), we have:

Pr(X + Y ≤ m1)

=

∞∫
−∞

Pr(Y ≤ m1 − x)
1√

2πσ2
τ

e

(
− (x−mτ )2

2σ2τ

)
dx

=

∞∫
−∞

Q(
x−m1)

σs
)

1√
2πσ2

τ

e

(
− (x−mτ )2

2σ2τ

)
dx. (A.3)

Observing that (A.3) is the same as the expression of pd in (A.1), which in turn is equal to the

expression in (A.2), it is easy to conclude that PD = Q( mτ−m1√
σ2
s+σ2

τ

). Following a similar procedure,

PF = Q( mτ−m0√
σ2
s+σ2

τ

) can be proved straightforwardly.

A.2 Proof of Theorem 2.2

Following (2.17), we express the human’s expected utility while making a decision:

U = π0U00 + π1U01 + π1(U11 − U01)PD − π0(U00 − U10)PF

, APD −BPF + C, (A.4)

where A = π1(U11−U01), B = π0(U00−U10) are positive constants and C = π0U00 + π1U01. PD

and PF represent the detection and false alarm probabilities of humans as given in (2.14).

When m0 < mτ < m1, from the expression in (2.14) we can see that PF increases and PD

decreases as σ2
τ becomes larger. Thus, the expected utility U is a decreasing function with respect

to σ2
τ .

Next, we consider mτ ≥ m1. In this case, both PF and PD increase with respect to σ2
τ . We
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substitute the expression of PD and PF in (2.14) in (A.4) and take the derivative with respect to σ2
τ :

∂U

∂σ2
τ

=
1

2
√

2π(σ2
s + σ2

τ )
3
×
(
e
− (mτ−m1)

2

2(σ2s+σ
2
τ ) (mτ−m1)A−e−

(mτ−m0)
2

2(σ2s+σ
2
τ ) (mτ−m0)B

)
.

It follows that ∂U
∂σ2
τ
≥ 0 if and only if

g , e
2(m1−m0)mτ−(m2

1−m
2
0)

2(σ2s+σ
2
τ ) × (

mτ −m1

mτ −m0

) ≥ B

A
,

where g is a function that decreases with respect to σ2
τ .

When g|σ2
τ=0 ≤ B

A
, we have ∂U

∂σ2
τ
≤ 0 for all σ2

τ ≥ 0, which suggests that U is a decreasing

function with respect to σ2
τ . When g|σ2

τ=0 >
B
A

, there exists a point σ2
τ
∗ such that g|σ2

τ<σ
2
τ
∗ > B

A
,

i.e., ∂U
∂σ2
τ
> 0; and g|σ2

τ<σ
2
τ
∗ ≤ B

A
, i.e., ∂U

∂σ2
τ
≤ 0. In other words, U first increases and then decreases

as σ2
τ becomes larger. The threshold σ2

τ
∗ is obtained by solving the equation e

2(m1−m0)mτ−(m2
1−m

2
0)

2(σ2s+σ
2
τ
∗
) ×

(mτ−m1

mτ−m0
) = B

A
.

On the other hand, g is an increasing function with respect to mτ . Note that g|mτ=m1 = 0 and

g|mτ=∞ =∞. Therefore, there exists amτ > m1 such that g|σ2
τ=0,mτ≤mτ ≤ B

A
and g|σ2

τ=0,mτ>mτ >

B
A

. In other words, when m1 ≤ mτ ≤ mτ , U is a decreasing function with respect to σ2
τ and when

mτ > mτ , U is unimodal with respect to σ2
τ . mτ is obtained by solving mτ in the equation

e
2(m1−m0)mτ−(m2

1−m
2
0)

2σ2s × (mτ−m1

mτ−m0
) = B

A
= η.

The analysis of the case mτ < m0 is similar to the above derivations. There exists a mτ <

m0 such that U is a decreasing function with respect to σ2
τ when mτ ≤ mτ ≤ m0, and U is

unimodal with respect to σ2
τ when mτ < mτ . mτ is obtained by solving mτ in the equation

e
−2(m1−m0)mτ+(m2

1−m
2
0)

2σ2s ×(mτ−m0

mτ−m1
) = A

B
= 1

η
, which is equivalent to e

2(m1−m0)mτ−(m2
1−m

2
0)

2σ2s ×(mτ−m1

mτ−m0
) =

η.
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A.3 Proof of Proposition 3.2

When there are M spammers in the crowd with M0 skipping and MN completing all the questions,

the expected weight contributed to the correct class is given by

EC [W] =
W−M∑
w=1

Ep,r

[
N∑
n=0

Ww(n)r(n)P(n)

]
+

M0∑
w=1

Ww(n = 0) +

MN∑
w=1

1

2N
Ww(n = N)

=
N∑
n=0

(W −M)Ww(n)µn
(
N

n

)
(1−m)nmN−n +

N∑
n=0

M0Ww(n)δ(n) +
N∑
n=0

MN

2N
Ww(n)δ(n−N)

=
N∑
n=0

(W−M)Ww(n)µnP(n)+
N∑
n=0

M0

P(0)
Ww(n)P(n)δ(n) +

N∑
n=0

MN

2NP(N)
Ww(n)P(n)δ(n−N)

=
N∑
n=0

Ww(n)S(n)P(n) (A.5)

where r(n) is the product of any n out of N variables rw,i for i = 1, . . . , N , which represents the

probability that n answers are correct given n definitive answers have been submitted1. P(n) =(
N
n

)
(1−m)nmN−n represents the probability that the wth worker submits a total of n definitive

answers. In the last step of (A.5), S(n) = (W −M)µn + M0

mN
δ(n) + MN

2N (1−m)N
δ(n − N). Since

N∑
n=0

P(n) = 1, (A.5) is upper-bounded according to Cauchy-Schwarz inequality:

EC [W] =
N∑
n=0

Ww(n)S(n)P(n)

≤

√√√√ N∑
n=0

(Ww(n)S(n))2P(n)

√√√√ N∑
n=0

P(n) = α (A.6)

Also note that equality holds in (A.6) only ifWw(n)S(n)
√
P(n) = α

√
P(n), where α is a positive

constant such that Ww(n)S(n) = α. Therefore, the optimal weight assignment is obtained

Ww(n)=

[
(W−M)µn+

M0

mN
δ (n)+

MN

2N(1−m)N
δ (n−N)

]−1

(A.7)

1Candidate scores are assigned to the correct class only when all the definitive answers are correct.
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Note that the final classification decision d∗ corresponds to a unique N -bit word, and each bit, 1

or 0, represents the decision of a microtask. From the Proposition 1 in [79], we know that the

classification rule (3.1) is equivalent to the bit-by-bit decision for the ith bit

W∑
w=1

Tw
H1

≷
H0

0 (A.8)

for i = 1, . . . , N , with

Tw = Ww(n) (I1 〈i, w〉 − I0 〈i, w〉) , (A.9)

where Is 〈i, w〉 , s ∈ {0, 1}, is the indicator function that equals 1 if the answer of the wth worker

to the ith question is s, and it equals 0 otherwise.

Hence, if a worker submits no definitive answers and skips all the questions, i.e., n = 0, his/her

decision is not taken into consideration for aggregation at the FC. Thus, we can assign any weight to

the worker with n = 0. Essentially we are neglecting Type I spammers and excluding them for clas-

sification. For simplicity and consistency purpose, we drop the second term on the right hand side

of (A.7) and write the weight assignment as Ww(n) =
[
(W −M)µn + MN

2N (1−m)N
δ (n−N)

]−1

.

A.4 Proof of Proposition 3.3

Following Appendix B, the ith bit of the final aggregated N -bit word is determined by (A.8) and

Tw is the weighted decision from the wth worker. Let Hs denote the hypothesis that a microtask

has true answer to be s for s = 0, 1. If the wth worker is honest, the probability mass function

(PMF) of Tw under hypothesis Hs, Pr (Tw|Hs), is given as

Pr
(
Tw = I(−1)t+1Ww(n)|Hs

)
=

 r
1−|s−t|
w,i (1− rw,i)|s−t|ϕn(w), I = 1

pw,i I = 0
t ∈ {0, 1}, (A.10)
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where I = I1 〈i, w〉 + I0 〈i, w〉, ϕn(w) = (1 − pw,i)
∑
C

N∏
j=1,j 6=i

p
kj
w,j(1− pw,j)

1−kj represents the

probability that the wth worker gives a definitive answer to the ith question and the total number

of definitive answers he/she submitted is n. C is defined as the set

C =

{
{k1, . . . , ki−1, ki+1, . . . , kN} :

N∑
j=1,j 6=i

kj =N−n

}
(A.11)

with kj ∈ {0, 1} and n ∈ {1, . . . , N}. On the other hand, if the wth worker is a Type II spammer

who submits a definitive answer randomly, Tw has the following probability mass function:

Pr(Tw) =

 1/2, Tw = Ww(N)

−1/2, Tw = −Ww(N)
(A.12)

Under the assumption that hypotheses H0 and H1 are equally likely, the probability of correct

classification for the ith bit Pc,i is Pc,i =
1+Pd,i−Pf,i

2
, where Pd,i is the probability of detection, i.e.,

deciding the ith bit to be “1” when the true bit is “1” and Pf,i is the probability of false alarm, i.e.,

deciding the ith bit to be “1” when the true bit is “0”.

For the honest workers from a total of W workers, let G0 denote the subgroup that decides “0”

for ith microtask, G1 the subgroup that decides “1” and Gδ the subgroup that decides δ. Moreover,

out of the MN Type II spammers we assume that there are M ′
N spammers deciding “1” for the ith

bit and M ′′
N deciding “0”. We employ the result in (A.10) and assume that the workers answer the

questions independently. Under H1, the probability of the crowd’s answer profile for the ith bit is

{G0, G1, Gδ,M
′
N ,M

′′
N} can be expressed as

Fi =

(
1

2

)M ′N(1

2

)M ′′N ∏
w∈Gδ

pw
∏
w∈G0

(1− rw,i)ϕnw (w)
∏
w∈G1

rw,iϕnw (w) (A.13)

where nw represents the total number definitive questions submitted by the individual. Let qn,−N ≤

n ≤ N , denote the number of honest workers that submit |n| total definitive answers to all the mi-

crotasks. Specifically, n < 0 indicates the group of honest workers that submit “0” for the ith bit
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while n > 0 indicates “1”. For n = 0, q0 represents the number of honest workers that submit δ

for the ith bit. Note that the number of honest workers in subgroups G0 , G1 and Gδ are equal to∑−N
n=−1 qn,

∑N
n=1 qn and q0, respectively. Denoting

G = {(q−N , q−N+1, . . . qN ,M
′
N ,M

′′
N) :

N∑
n=−N

qn = W −MN −M0,M
′
N +M ′′

N = MN}, (A.14)

with natural numbers M ′
N , M ′′

N , and qn for {n = −N, . . . , 0, . . . , N}. From the result in (A.13),

the answer profile for the ith bit G has the following probability under H1

F (G) = mq0

(
1

2

)MN N∏
n=1

(1−µ)q−nµqn
((

N−1

n−1

)
(1−m)nmN−n

)q−n+qn
(A.15)

where we substitute the expression of ϕn(w) using
(
N−1
n−1

)
(1−m)nmN−n. Based on the above

results, the probability of detection Pd,i can be expressed as

Pd,i =
∑
S

(
W,M

G

)
Fi(G) +

1

2

∑
S′

(
W,M

G

)
Fi(G), (A.16)

where
(
W,M
G

)
= (W−M0)!

M ′N !M ′′N !
∏N
n=−N qn!

represents all possible combinations in the answer profile G and

S=

{
G :

N∑
n=1

(qn−q−n)Ww(n)+(M ′
N−M ′′

N)Ww(N) > 0

}
(A.17)

S ′=

{
G :

N∑
n=1

(qn−q−n)Ww(n)+(M ′
N−M ′′

N)Ww(N) = 0

}
(A.18)

where S represents the scenario where
∑W

w=1 Tw > 0 and “1” is decided under H1, and S ′ is the

case where
∑W

w=1 Tw = 0 and the FC decides “1” with probability 1/2.

Similarly, we can obtain Pf,i given pw,i and rw,i as

Pf,i =
∑
S

(
W,M

G

)
Fi
′(G) +

1

2

∑
S′

(
W,M

G

)
Fi
′(G). (A.19)
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where

F ′(G) = mq0

(
1

2

)MN N∏
n=1

(1−µ)qnµq−n
((

N−1

n−1

)
(1−m)nmN−n

)q−n+qn
(A.20)

Then, the expected probability of correct classification for the ith bit Pc,i can be obtained as

Pc,i =
1

2
+

1

2

∑
S

(
W,M

G

)
(Fi (G)− F ′i (G)) +

1

4

∑
S′

(
W,M

G

)
(Fi (G)− F ′i (G)) (A.21)

A correct classification result is obtained if and only if all the bits in the N -bit word are classified

correctly, and recall that the microtasks are completed independently. The probability of correct

classification of the final result is given as

Pc = E

[
N∏
i=1

pc,i

]
=

N∏
i=1

E [pc,i] = PN
c,i, (A.22)

where pc,i is the realization of the probability of correct decision for the ith bit. Therefore, the

crowdsourcing system has overall correct classification probability Pc that is given by

Pc =
[1

2
+

1

2

∑
S

(
W,M

G

)
(F (G)− F ′ (G)) +

1

4

∑
S′

(
W,M

G

)
(F (G)− F ′ (G))

]N
(A.23)

A.5 Proof of Proposition 3.4

For an honest worker, the statistic Tw has PMF given in (A.10) and the expected Tw of an honest

worker under H1 is given by

EH
H1 =E

[
1∑
t=0

N∑
n=1

(−1)t+1Ww(n)(rw,i)
t(1−rw,i)1−tϕn(w)

]
(A.24)
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Substituting the expression of Ww(n) in (3.9), we have

EH
H1 = (2µ− 1)

N∑
n=1

Ww(n)

(
N − 1

n− 1

)
(1−m)nmN−n

=
2µ− 1

W −M

N−1∑
n=1

(
N − 1

n− 1

)(
1−m
µ

)n
mN−n +

(2µ− 1) (1−m)N

(W −M)µN + MN

2N (1−m)N

=
(2µ− 1) (1−m)

(W −M)µ

(
1−m
µ

+m

)N−1

+
(2µ− 1) (1−m)N ZM
(W −M)µNZM +MN

,

where ZM = 2N (1−m)N . The variance of the statistic Tw for an honest worker can be expressed

as:

V H
H1 ,

(
E
[
T 2
w

]
− (EH

H1
)
2
)

= E

[
1∑
t=0

N∑
n=1

(Ww(n))2(rw,i)
t(1−rw,i)1−tϕn(w)

]
−(EH

H1
)2

=
1

(W −M)2

N−1∑
n=1

(
N − 1

n− 1

)(
1−m
µ2

)n
mN−n +

(1−m)N(
(W −M)µN + MN

2N (1−m)N

)2 − (EH
H1

)2

=
1−m

(W −M)2 µ2

(
1−m
µ2

+m

)N−1

+
(1−m)N Z2

M

((W −M)µNZM +MN)2 − (EH
H1

)2

On the other hand, the statistic Tw of Type II spammers has PMF (A.12). In this case, the expected

value of Tw under H1 is given by

ES
H1 =

1∑
t=0

N∑
n=N

(−1)t+1Ww(n)

(
1

2

)t(
1

2

)1−t

= 0 (A.25)

For Type II spammers, the variance of Tw under H1 is given by

V S
H1 ,

(
E
[
T 2
w

]
− (ES

H1
)2
)

= E

[
1∑
t=0

N∑
n=N

(Ww(n))2

(
1

2

)t(
1

2

)1−t
]

=
1(

(W −M)µN + MN

2N (1−m)N

)2 =
Z2
M

((W −M)µNZM +MN)2
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As the number of workers W increases to infinity, according to the Central Limit Theorem, the

statistic
∑W

w=1 Tw can be approximated by a Gaussian random variable:

Tw∼

H1 : N (M1, V1)

H0 : N (M0, V0)
as w →∞

Under H1, we have obtained the mean and variance of Tw for a single honest worker and a spam-

mer. Note that in the crowd there are W −M honest workers and MN Type II spammers. Since

the workers/spammers complete the tasks independently, we have

M1 = (W −M)EH
H1 +MNE

S
H1

=
(2µ− 1) (1−m)

µ

(
1−m
µ

+m

)N−1

+
(W −M) (2µ− 1) (1−m)N ZM

(W −M)µNZM +MN

and

V1 = (W −M)V H
H1 +MNV

S
H1

=
1−m

(W −M)µ2

(
1−m
µ2

+m

)N−1
(
(W −M)(1−m)N +MN

)
Z2
M

((W −M)µNZM +MN)2 − M2
1

W −M

From similar procedures, under H0 we can obtain M0 = −M1 = −M and V0 = V1 = V . Since

the ith bit is determined via (A.8), it is clear to see that the probability of correct classification

of the ith bit is Pc,i = Q(−M√V ). By considering the N bits independently, we obtain the desired

result.

A.6 Proof of Lemma 6.1

The IC constraint in (6.17) is equivalent to the following:

βD
(
t(β)

)
− b(β) ≥ β′D

(
t(β′)

)
− b(β′) + (β − β′)D

(
t(β′)

)
(A.26)
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Define function K(x) = xD
(
t(x)

)
− b(x) and (A.26) becomes:

K(β) ≥ K(β′) + (β − β′)D
(
t(β′)

)
∀β > βS,∀β′

which is equivalent to:

K(β)−K(β′) ≥ (β − β′)D
(
t(β′)

)
∀β > βS,∀β′ (A.27)

Switching the role of β and β′, we have:

K(β′)−K(β) ≥ (β′ − β)D
(
t(β)

)
∀β′ > βS,∀β (A.28)

Combining (A.27) and (A.28) we have:

(β − β′)D
(
t(β′)

)
≤ K(β)−K(β′) ≤ (β − β′)D

(
t(β)

)
(A.29)

From (A.29), we can see that when β′ < β, D
(
t(β′)

)
< D

(
t(β)

)
, which suggests that D

(
t(·)
)

is

an increasing function.

The inequalities in (A.29) can be further written as D
(
t(β′)

)
δ ≤ K(β) −K(β′) ≤ D

(
t(β′ +

δ)
)
δ for any δ > 0 such that β − β′ = δ. Since D(t(β′)) is increasing in β′ and is upper bounded,

it is Riemann integrable:
β∫

βS

D
(
t(u)

)
du = K(β)−K(βS) (A.30)

Then, we express E
β>βS

{
b(β)

}
in the following:

E
β>βS

{
b(β)− βD

(
t(β)

)
+ βD

(
t(β)

)}
=

β̄∫
βS

{
−K(β)

}
f(β)dβ + E

β>βS
βD
(
t(β)

)
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=

β̄∫
βS

−
{
K(βS) +

β∫
βS

D
(
t(u)

)
du
}
f(β)dβ + E

β>βS
βD
(
t(β)

)

= E
β>βS

{
βD
(
t(β)

)
−K(βS)

}
−

β̄∫
βS

β̄∫
u

D
(
t(u)

)
f(β)dβdu

= E
β>βS

{
βD
(
t(β)

)
−K(βS)

}
−

β̄∫
βS

D
(
t(u)

)(1− F (u)
)

f(u)
f(u)du

= E
β>βS

{
βD
(
t(β)

)
−K(βS)

}
− E

β>βS
D
(
t(β)

)1− F (β)

f(β)

Thus, the optimization problem (6.15) can be written as:

max
t(β),βS ,b(β)

E
β
{αD

(
t(β)

)
− ct(β)}

+ E
β>βS

{(
β − 1− F (β)

f(β)

)
D
(
p(β)

)}
− E

β>βS
K(βS) (A.31)

From the constraints in (6.16) we know that K(βS) ≥ 0. Thus, we could choose b(β) such that

K(βS) = 0 and, therefore, remove b(β) in the optimization problem. Lemma 6.1 is proved.

A.7 Proof of Theorem 6.1

First, given an energy consumption function t(β), we want to find an optimal βS that gives the

maximum of the objective function (6.1):

max
β∈[β,β̄]

E
{
αD
(
t(β)

)
− ct(β)

}
+ E

β>βS
h(β)D

(
t(β)

)
(A.32)

Since term E
{
αD
(
t(β)

)
− ct(β)

}
does not depend on βS , the first order derivative of (A.32) with

respect to βS equals:

∂

∂βS
E

β>βS
h(β)D

(
t(β)

)
=

∂

∂βS

∫
βS
h(β)D

(
t(β)

)
f(β)dβ
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= −h(βS)D
(
t(βS)

)
f(βS)

where we utilize that if the function φ is defined as φ(x) =
∫
x
f(u)du, then dφ(x)

dx
= −f(x). We

consider that D
(
t(βS) > 0 and f(β) > 0 for β ∈ [β, β̄]. Then, the FOC indicates that the optimal

point βS occurs at h(βS) = 0. Again, there might be several local optimal points and we also

need to check the boundary of the support β to select the global optimum. The first condition in

Theorem 6.1 is proved.

Next, given the buyer’s benefit parameter threshold βS , the objective function of the sensor

becomes

max
t(β)

Eβ
{(
α + g(β)

)
D
(
t(β)

)
− ct(β)

}
We take the derivative of the above expression with respect to t, and get the optimal amount of

energy consumption to be tS(β) = D∗
(

c
α+g(β)

)
.

Finally, employing (A.30) and recalling thatK(βS) = 0, we haveK(β) = βD
(
t(β)

)
−b(β) =

β̄∫
βS
D
(
t(u)

)
du. It follows that bS(β) = βD

(
tS(β)

)
−
∫ β
βS
D
(
tS(u)

)
du if β > βS , and we set b(β)

equal to βSD
(
t(β)

)
for continuity. It could be any amount which is high enough to prevent the

buyer with a lower benefit parameter than βS from participating. Our result indicates that the

sensor would forfeit some small revenues from the buyer with low benefit parameters to ensure the

truthful revelation of the mechanism.

A.8 Proof of Lemma 7.1

First, we show that the detection result of φf differs from that of φm only when r falls in the critical

region. Consider that Lm(r) > π∗β
1−β ≥ π∗. In this case, φm given in (7.1) determines H1 to be true.

On the other hand, φf given in (7.2) also determines H1 to be true regardless the value of s. This

is due to that when Lm(r) > π∗β
1−β , no matter s = 0 or s = 1, we have Lf (r) ≥ π∗, so that H1 is

decided. For the same reason, when Lm(r) < π∗(1−β)
β

, both φm and φf decide H0 to be true.

However, when π∗(1−β)
β

≤ Lm(r) < π∗β
1−β , φm decides H0 if π∗ ≤ Lm(r) < π∗β

1−β and decides
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H0 if π∗(1−β)
β

≤ Lm(r) ≤ π∗. On the other hand, by incorporating human side information and

employing φf , if s = 1, we have Lf (r) ≥ π∗ so that H1 is decided. If s = 0, we have Lf (r) < π∗

so that H0 is decided. Hence, one can see that the detection result of φf is different from the that

of φm in the sense that φf always makes the decision by following the human side information s.

Since with probability β, the human’s side information s is correct, the accuracy of φf is β in the

critical observation region.

Next, we show that the accuracy of the machine’s automatic decision based on (7.1) is less

than β when r ∈ Γ!. Let Lm(r) = f(r|H1)
f(r|H0)

= τ and according to the Bayesian rule, we have

Pr(Hi is true|r) = f(r|Hi)πi
f(r)

for i = 0, 1. It follows that Pr(H1 is true|r)
Pr(H0 is true|r) = f(r|H1)π1

f(r|H0)π0
= τ π1

π0
= τ

π∗
.

When τ ≥ π∗, H1 is declared and the decision has a probability τ/π∗

1+τ/π∗
to be correct. When

0 < τ < π∗, H0 is declared and the probability that the decision is correct is 1
1+τ/π∗

. One can see

that when π∗(1−β)
β

≤ Lm(r) < π∗β
1−β , the accuracy of the machine’s decision can be verified to be

less or equal to β.

A.9 Proof of Proposition 7.2

First, let us assume H0 is true without loss of generality, and the error probability can be calculated

by adding up the error probabilities induced in human consultation region and machine operation

region. In the region r ∈ (−∞,−γ) ∪ (γ,∞) where machine makes the decision by employing

φm, error occurs with a probability Pr(r ∈ [γ,∞]|H0) = 1 − Φ(γ+m
σr

) = Φ(−γ−m
σr

). However,

the error probability incurred in human consultation region r ∈ [−γ, γ]should be analyzed in

two scenarios: a)when γ ≤ r+, we have Γhs ⊆ Γ! and decision is made based on human side

information which has a error probability 1−β. Hence, the error probability in human consultation

region is Pr(r ∈ [−γ, γ]|H0)(1 − β) =
(
Φ(γ−m

σr
)− Φ(−γ−m

σr
)
)
(1−β). b) when γ > r+, we have

Γhs ⊇ Γ! and the human decides H1 when r+ ≤ r ≤ γ if s = 0 is received, and decides H1

when r− ≤ r ≤ γ if s = 1 is received. Under the assumption that H0 is true, the human receives

s = 0 with probability β and s = 1 with probability 1 − β. It follows that the error probability
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incurred in Γhs can be written as Pr(r ∈ [r+, γ]|H0, s = 0) + Pr(r ∈ [r−, γ]|H0, s = 1) =(
Φ(γ+m

σr
)−Φ( r

++m
σr

)
)
β+
(
Φ(γ+m

σr
)−Φ( r

−+m
σr

)
)
(1−β).

By symmetry, it can be shown that the error probability under H1 is the same with that under

H0. By summing up the error probabilities from both of the human and machine operation regions,

the result shown in (7.10) is proved.

A.10 Proof of Proposition 7.4

Since Bayesian risk is proportional to the average probability of error. It is equivalent to prove that

[−L/2, L/2] results in the minimum average probability of error.

For 0 ≤ γ ≤ L/2, denote de(γ) to be the reduction of average error probability due to the

employment of φf instead of φm in the region r ∈ [0, γ], namely, de(γ) = Pe(r ∈ [0, γ] & φm) −

Pe(r ∈ [0, γ] & φf ). Following the analysis in the proof of Theorem 7.1, the error probability in-

curred by employing φm in the region r ∈ [0, γ] is Pr(r ∈ [0, γ]|H0)Pr(H0). The error probability

by employing φf reduces to Pr(r ∈ [0, γ])(1− β). Hence, we have:

de(γ) = A1 − (A1 + A2)(1− β) (A.33)

whereA1 = Pr(r ∈ [0, γ]|H0)Pr(H0) = 1/2
(
Φ(γ+m

σr
)−Φ(m

σr
)
)
,A2 = Pr(r ∈ [0, γ]|H1)Pr(H1) =

1/2
(
Φ(γ−m

σr
)− Φ(−m

σr
)
)
.

Taking the first and second order derivatives of de(γ) with respect to γ, we get: d′e(γ) =

β

2
√

2πσr
e
− (r+m)2

2σ2r − 1−β
2
√

2πσr
e
− (r−m)2

2σ2r , and d′′e(γ) = − β

2
√

2πσ3
r
e
− (r+m)2

2σ2r (r+m)+ 1−β
2
√

2πσ3
r
e
− (r−m)2

σ2r (r−m).

It can be easily verified that d′′e(γ) < 0 for 0 ≤ γ ≤ r+. Thus, d′e(γ), which is the average

error probability reduction rate, is decreasing when γ increases from 0 to r+. By symmetry, the

average error probability reduction rate is also decreasing when γ decreases from 0 to r−. Recall

that our objective is to select a region ΓLhs within [r−, r+] that has human consultation in order to

reduce the average error probability as much as possible. Therefore, ΓLhs should lie in the region

that has the maximum value of error probability reduction rate, which as stated in Theorem 7.1, is
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[−L/2, L/2].

A.11 Proof of Proposition 7.6

Since each time the human provides a consultation, there is a cost ct, our objective is to determine

whether it is worthwhile to bring in the human given an observation r. Without loss of generality,

assume r ≥ 0 where φm always determines H1 to be true. Recall the posterior probability ratio

given in (7.5) and Pr(H1|r) + Pr(H0 |r) = 1, the probability of error given observation r is

Pr(H0 true|r) = 1/(1 + e
2mr

σ2r ). On the other hand, φf makes the decision based on human’s side

information and the probability of error: Pe(φf |r) = 1−β. Therefore, after bringing in the human

consultation at observation r, the expected reduction of Bayesian cost, can be written as:

db(r) = c(
1

1 + e2mr/σ2
r
− (1− β)).

To ensure ct is well spent, we only ask for the human to participate when db(r) ≥ ct at observation

r. Since db(r) is a decreasing function with respect to r, it is easy to verify that the maximum

value r∗ that satisfies db(r) ≥ ct is less than 0 when ct > c(β − 1/2). As we have assumed r ≥ 0,

Γcth = ∅ in this case. When ct ≤ c(β−1/2), we should have Γcth = [0, rct ] to ensure that db(r) ≥ ct,

where rct is calculated by setting db(r) = ct as given in Proposition 7.6. Note that db(r = r+) = 0,

indicating that it is not worthwhile to bring in human consultation with any positive cost. Besides,

as discussed in Lemma 7.1, we do not allow human to participate when r > r+, where human side

information does not improve the system performance while asking for additional participation

fees.

When r ≤ 0, the optimal human consultation region is symmetric to the region when r ≥ 0,

and therefore, the result is proved.
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