10,378 research outputs found

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    SOA and BPM, a Partnership for Successful Organizations

    Get PDF
    In order to stay effective and competitive, companies have to be able to adapt themselves to permanent market requirements, to improve constantly their business process, to act as flexible and proactive economic agents. To achieve these goals, the IT systems within the organization have to be standardized and integrated, in order to provide fast and reliable data access to users both inside and outside the company. A proper system architecture for integrating company’s IT assets is a service oriented one. A service-oriented architecture (SOA) is an IT architectural style that allows integration of the company’s business as linked, repeatable tasks called services. A subject closely related to SOA is Business Process Management (BPM), an approach that aims to improve business processes. The paper also presents some aspects of this topic, as well as the relationship between SOA and BPM. They complement each other and help companies improve their business performance.Information Systems, SOA, Web Services, BPM

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of events—the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    A hybrid approach to space power control

    Get PDF
    Conventional control systems have traditionally been utilized for space-based power designs. However, the use of expert systems is becoming important for NASA applications. Rocketdyne has been pursuing the development of expert systems to aid and enhance control designs of space-based power systems. The need for integrated expert systems is vital for the development of autonomous power systems

    Natural Language Dialogue Service for Appointment Scheduling Agents

    Get PDF
    Appointment scheduling is a problem faced daily by many individuals and organizations. Cooperating agent systems have been developed to partially automate this task. In order to extend the circle of participants as far as possible we advocate the use of natural language transmitted by e-mail. We describe COSMA, a fully implemented German language server for existing appointment scheduling agent systems. COSMA can cope with multiple dialogues in parallel, and accounts for differences in dialogue behaviour between human and machine agents. NL coverage of the sublanguage is achieved through both corpus-based grammar development and the use of message extraction techniques.Comment: 8 or 9 pages, LaTeX; uses aclap.sty, epsf.te
    corecore