494 research outputs found

    Deep into the Eyes: Applying Machine Learning to improve Eye-Tracking

    Get PDF
    Eye-tracking has been an active research area with applications in personal and behav- ioral studies, medical diagnosis, virtual reality, and mixed reality applications. Improving the robustness, generalizability, accuracy, and precision of eye-trackers while maintaining privacy is crucial. Unfortunately, many existing low-cost portable commercial eye trackers suffer from signal artifacts and a low signal-to-noise ratio. These trackers are highly depen- dent on low-level features such as pupil edges or diffused bright spots in order to precisely localize the pupil and corneal reflection. As a result, they are not reliable for studying eye movements that require high precision, such as microsaccades, smooth pursuit, and ver- gence. Additionally, these methods suffer from reflective artifacts, occlusion of the pupil boundary by the eyelid and often require a manual update of person-dependent parame- ters to identify the pupil region. In this dissertation, I demonstrate (I) a new method to improve precision while maintaining the accuracy of head-fixed eye trackers by combin- ing velocity information from iris textures across frames with position information, (II) a generalized semantic segmentation framework for identifying eye regions with a further extension to identify ellipse fits on the pupil and iris, (III) a data-driven rendering pipeline to generate a temporally contiguous synthetic dataset for use in many eye-tracking ap- plications, and (IV) a novel strategy to preserve privacy in eye videos captured as part of the eye-tracking process. My work also provides the foundation for future research by addressing critical questions like the suitability of using synthetic datasets to improve eye-tracking performance in real-world applications, and ways to improve the precision of future commercial eye trackers with improved camera specifications

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    A framework for context-aware driver status assessment systems

    Get PDF
    The automotive industry is actively supporting research and innovation to meet manufacturers' requirements related to safety issues, performance and environment. The Green ITS project is among the efforts in that regard. Safety is a major customer and manufacturer concern. Therefore, much effort have been directed to developing cutting-edge technologies able to assess driver status in term of alertness and suitability. In that regard, we aim to create with this thesis a framework for a context-aware driver status assessment system. Context-aware means that the machine uses background information about the driver and environmental conditions to better ascertain and understand driver status. The system also relies on multiple sensors, mainly video and audio. Using context and multi-sensor data, we need to perform multi-modal analysis and data fusion in order to infer as much knowledge as possible about the driver. Last, the project is to be continued by other students, so the system should be modular and well-documented. With this in mind, a driving simulator integrating multiple sensors was built. This simulator is a starting point for experimentation related to driver status assessment, and a prototype of software for real-time driver status assessment is integrated to the platform. To make the system context-aware, we designed a driver identification module based on audio-visual data fusion. Thus, at the beginning of driving sessions, the users are identified and background knowledge about them is loaded to better understand and analyze their behavior. A driver status assessment system was then constructed based on two different modules. The first one is for driver fatigue detection, based on an infrared camera. Fatigue is inferred via percentage of eye closure, which is the best indicator of fatigue for vision systems. The second one is a driver distraction recognition system, based on a Kinect sensor. Using body, head, and facial expressions, a fusion strategy is employed to deduce the type of distraction a driver is subject to. Of course, fatigue and distraction are only a fraction of all possible drivers' states, but these two aspects have been studied here primarily because of their dramatic impact on traffic safety. Through experimental results, we show that our system is efficient for driver identification and driver inattention detection tasks. Nevertheless, it is also very modular and could be further complemented by driver status analysis, context or additional sensor acquisition

    CLERA: A Unified Model for Joint Cognitive Load and Eye Region Analysis in the Wild

    Full text link
    Non-intrusive, real-time analysis of the dynamics of the eye region allows us to monitor humans' visual attention allocation and estimate their mental state during the performance of real-world tasks, which can potentially benefit a wide range of human-computer interaction (HCI) applications. While commercial eye-tracking devices have been frequently employed, the difficulty of customizing these devices places unnecessary constraints on the exploration of more efficient, end-to-end models of eye dynamics. In this work, we propose CLERA, a unified model for Cognitive Load and Eye Region Analysis, which achieves precise keypoint detection and spatiotemporal tracking in a joint-learning framework. Our method demonstrates significant efficiency and outperforms prior work on tasks including cognitive load estimation, eye landmark detection, and blink estimation. We also introduce a large-scale dataset of 30k human faces with joint pupil, eye-openness, and landmark annotation, which aims to support future HCI research on human factors and eye-related analysis.Comment: ACM Transactions on Computer-Human Interactio

    An Optokinetic Nystagmus Detection Method for Use With Young Children

    Get PDF
    Sangi, M., Thompson, B., & Turuwhenua, J. (2015). An Optokinetic Nystagmus Detection Method for Use With Young Children. IEEE Journal of Translational Engineering in Health and Medicine, 3, 1600110. http://doi.org/10.1109/JTEHM.2015.2410286 ©IEEEThe detection of vision problems in early childhood can prevent neurodevelopmental disorders such as amblyopia. However, accurate clinical assessment of visual function in young children is challenging. optokinetic nystagmus (OKN) is a reflexive sawtooth motion of the eye that occurs in response to drifting stimuli, that may allow for objective measurement of visual function in young children if appropriate child-friendly eye tracking techniques are available. In this paper, we present offline tools to detect the presence and direction of the optokinetic reflex in children using consumer grade video equipment. Our methods are tested on video footage of children (N = 5 children and 20 trials) taken as they freely observed visual stimuli that induced horizontal OKN. Using results from an experienced observer as a baseline, we found the sensitivity and specificity of our OKN detection method to be 89.13% and 98.54%, respectively, across all trials. Our OKN detection results also compared well (85%) with results obtained from a clinically trained assessor. In conclusion, our results suggest that OKN presence and direction can be measured objectively in children using consumer grade equipment, and readily implementable algorithms

    Biometric Liveness Detection Using Gaze Information

    Get PDF
    This thesis is concerned with liveness detection for biometric systems and in particular for face recognition systems. Biometric systems are well studied and have the potential to provide satisfactory solutions for a variety of applications. However, presentation attacks (spoofng), where an attempt is made at subverting them system by making a deliberate presentation at the sensor is a serious challenge to their use in unattended applications. Liveness detection techniques can help with protecting biometric systems from attacks made through the presentation of artefacts and recordings at the sensor. In this work novel techniques for liveness detection are presented using gaze information. The notion of natural gaze stability is introduced and used to develop a number of novel features that rely on directing the gaze of the user and establishing its behaviour. These features are then used to develop systems for detecting spoofng attempts. The attack scenarios considered in this work include the use of hand held photos and photo masks as well as video reply to subvert the system. The proposed features and systems based on them were evaluated extensively using data captured from genuine and fake attempts. The results of the evaluations indicate that gaze-based features can be used to discriminate between genuine and imposter. Combining features through feature selection and score fusion substantially improved the performance of the proposed features
    corecore