6,659 research outputs found

    Classical simulations of Abelian-group normalizer circuits with intermediate measurements

    Full text link
    Quantum normalizer circuits were recently introduced as generalizations of Clifford circuits [arXiv:1201.4867]: a normalizer circuit over a finite Abelian group GG is composed of the quantum Fourier transform (QFT) over G, together with gates which compute quadratic functions and automorphisms. In [arXiv:1201.4867] it was shown that every normalizer circuit can be simulated efficiently classically. This result provides a nontrivial example of a family of quantum circuits that cannot yield exponential speed-ups in spite of usage of the QFT, the latter being a central quantum algorithmic primitive. Here we extend the aforementioned result in several ways. Most importantly, we show that normalizer circuits supplemented with intermediate measurements can also be simulated efficiently classically, even when the computation proceeds adaptively. This yields a generalization of the Gottesman-Knill theorem (valid for n-qubit Clifford operations [quant-ph/9705052, quant-ph/9807006] to quantum circuits described by arbitrary finite Abelian groups. Moreover, our simulations are twofold: we present efficient classical algorithms to sample the measurement probability distribution of any adaptive-normalizer computation, as well as to compute the amplitudes of the state vector in every step of it. Finally we develop a generalization of the stabilizer formalism [quant-ph/9705052, quant-ph/9807006] relative to arbitrary finite Abelian groups: for example we characterize how to update stabilizers under generalized Pauli measurements and provide a normal form of the amplitudes of generalized stabilizer states using quadratic functions and subgroup cosets.Comment: 26 pages+appendices. Title has changed in this second version. To appear in Quantum Information and Computation, Vol.14 No.3&4, 201

    Efficient quantum processing of ideals in finite rings

    Full text link
    Suppose we are given black-box access to a finite ring R, and a list of generators for an ideal I in R. We show how to find an additive basis representation for I in poly(log |R|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for R itself. We then show that our algorithm is a useful primitive allowing quantum computers to rapidly solve a wide variety of problems regarding finite rings. In particular we show how to test whether two ideals are identical, find their intersection, find their quotient, prove whether a given ring element belongs to a given ideal, prove whether a given element is a unit, and if so find its inverse, find the additive and multiplicative identities, compute the order of an ideal, solve linear equations over rings, decide whether an ideal is maximal, find annihilators, and test the injectivity and surjectivity of ring homomorphisms. These problems appear to be hard classically.Comment: 5 page

    Hidden Translation and Translating Coset in Quantum Computing

    Get PDF
    We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of non-abelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Zpn\Z_{p}^{n}, whenever pp is a fixed prime. For the induction step, we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden Subgroup, and prove a powerful self-reducibility result: Translating Coset in a finite solvable group GG is reducible to instances of Translating Coset in G/NG/N and NN, for appropriate normal subgroups NN of GG. Our self-reducibility framework combined with Kuperberg's subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.Comment: Journal version: change of title and several minor update

    An Efficient Quantum Algorithm for some Instances of the Group Isomorphism Problem

    Full text link
    In this paper we consider the problem of testing whether two finite groups are isomorphic. Whereas the case where both groups are abelian is well understood and can be solved efficiently, very little is known about the complexity of isomorphism testing for nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of groups corresponding to one of the most natural ways of constructing nonabelian groups from abelian groups: the groups that are extensions of an abelian group AA by a cyclic group ZmZ_m with the order of AA coprime with mm. More precisely, the running time of that algorithm is almost linear in the order of the input groups. In this paper we present a quantum algorithm solving the same problem in time polynomial in the logarithm of the order of the input groups. This algorithm works in the black-box setting and is the first quantum algorithm solving instances of the nonabelian group isomorphism problem exponentially faster than the best known classical algorithms.Comment: 20 pages; this is the full version of a paper that will appear in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010
    • …
    corecore