544 research outputs found

    Accurate Range-based Indoor Localization Using PSO-Kalman Filter Fusion

    Get PDF
    Accurate indoor localization often depends on infrastructure support for distance estimation in range-based techniques. One can also trade off accuracy to reduce infrastructure investment by using relative positions of other nodes, as in range-free localization. Even for range-based methods where accurate Ultra-WideBand (UWB) signals are used, non line-of-sight (NLOS) conditions pose significant difficulty in accurate indoor localization. Existing solutions rely on additional measurements from sensors and typically correct the noise using a Kalman filter (KF). Solutions can also be customized to specific environments through extensive profiling. In this work, a range-based indoor localization algorithm called PSO - Kalman Filter Fusion (PKFF) is proposed that minimizes the effects of NLOS on localization error without using additional sensors or profiling. Location estimates from a windowed Particle Swarm Optimization (PSO) and a dynamically adjusted KF are fused based on a weighted variance factor. PKFF achieved a 40% lower 90-percentile root-mean-square localization error (RMSE) over the standard least squares trilateration algorithm at 61 cm compared to 102 cm

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    AN INDOOR BLUETOOTH-CENTRIC PROXIMITY BASED POSITIONING SYSTEM

    Get PDF
    In recent years, positioning and navigation become an important topic in research. The most popular positioning system is an outdoor positioning called Global Positioning System (GPS). However, due to the influence of weak signal strength, weather conditions, diverse geographical and living environments, GPS sometimes cannot support indoor positioning and, if it can, the 5-10 meters error range does not meet the indoor positioning requirement. In order to provide a better solution with higher accuracy for indoor localization, we can benefit from the proliferation of indoor communication devices. Different technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra-wideband (UWB) have been commonly used in indoor positioning systems. However, WiFi has a high energy consumption for indoor localization, as it consumes 3 to 10 watts per hour in the case of using 3 routers to do the job. In addition, due to its dependency on reference tags, the overall cost of the RFID-based approaches may usually cost more than $300 which is economically prohibitive. In terms of UWB, its low area coverage brings great challenges to popularizing its acceptance as a device for indoor positioning. The Bluetooth Low Energy (BLE) based iBeacon solution primarily focuses on the proximity based detection, and its low power consumption and low price bring great potential for its popularity. In this report, assuming that the resident owns a smartphone which is powered on, we present an iBeacon based indoor positioning system and provide some strategies and algorithms to overcome the indoor noise of possibly weak indoor Bluetooth signals. In our system, the Received Signal Strength Index (RSSI) is pre-processed to eliminate noise. Then, the distance between a mobile device and a BLE signal source can be calculated by combination use of pre-processed RSSI, Kalman Filter, and machine learning. In the end, the current mobile device position can be determined by using a triangulation algorithm. Our experimental results, acquired through running experiments in a real-world scenario, show that the localization error can be as low as 0.985m in the 2D environment. We also compared our results against other works with the same research objectives

    WOAIP: Wireless Optimization Algorithm for Indoor Placement Based on Binary Particle Swarm Optimization (BPSO)

    Get PDF
    تحسين نشر نقطة الوصول (AP) له دور كبير في التطبيقات اللاسلكية بسبب الحاجة إلى توفير اتصال فعال بتكاليف نشر منخفضة. تقترح هذه الدراسة التحقيق في خوارزمية تحسين متعددة المستويات تسمى خوارزمية التحسين اللاسلكي للوضع الداخلي (WOAIP) استنادًا إلى تحسين حشد الجسيمات الثنائية (BPSO). يهدف WOAIP إلى الحصول على وضع AP الأمثل متعدد الطوابق مع تغطية فعالة تجعله أكثر قدرة على دعم جودة الخدمة (QoS). تم أخذ خمسة أزواج (التغطية ، نشر AP) من الأوزان ، عتبات الإشارة وقياسات قوة الإشارة المستقبلة (RSS) المحاكية باستخدام برنامج Wireless InSite (WI) في دراسة حالة الاختبار. من خلال مقارنة النتائج التي تم جمعها من WI مع نشر AP المادي المحاكي اللاسلكي الحالي للمبنى المستهدف - قسم علوم الحاسوب في جامعة بغداد. يُظهر تقييم أداء WOAIP زيادة من حيث موضع AP والتحسين المميز من أجل زيادة نسبة التغطية اللاسلكية إلى 92.93٪ مقارنة بـ 58.5٪ من تغطية AP الحالية (أو تحسين التغطية بنسبة 24.5٪ في المتوسط).Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received signal strength (RSS) measurements simulated using Wireless InSite (WI) software were considered in the test case study by comparing the results collected from WI with the present wireless simulated physical AP deployment of the targeted building - Computer Science Department at University of Baghdad. The performance evaluation of WOAIP shows an increase in terms of AP placement and optimization distinguished in order to increase the wireless coverage ratio to 92.93% compared to 58.5% of present AP coverage (or 24.5% coverage enhancement on average)

    A Scalable Deep Neural Network Architecture for Multi-Building and Multi-Floor Indoor Localization Based on Wi-Fi Fingerprinting

    Full text link
    One of the key technologies for future large-scale location-aware services covering a complex of multi-story buildings --- e.g., a big shopping mall and a university campus --- is a scalable indoor localization technique. In this paper, we report the current status of our investigation on the use of deep neural networks (DNNs) for scalable building/floor classification and floor-level position estimation based on Wi-Fi fingerprinting. Exploiting the hierarchical nature of the building/floor estimation and floor-level coordinates estimation of a location, we propose a new DNN architecture consisting of a stacked autoencoder for the reduction of feature space dimension and a feed-forward classifier for multi-label classification of building/floor/location, on which the multi-building and multi-floor indoor localization system based on Wi-Fi fingerprinting is built. Experimental results for the performance of building/floor estimation and floor-level coordinates estimation of a given location demonstrate the feasibility of the proposed DNN-based indoor localization system, which can provide near state-of-the-art performance using a single DNN, for the implementation with lower complexity and energy consumption at mobile devices.Comment: 9 pages, 6 figure

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Graph Optimization Approach to Range-based Localization

    Full text link
    In this paper, we propose a general graph optimization based framework for localization, which can accommodate different types of measurements with varying measurement time intervals. Special emphasis will be on range-based localization. Range and trajectory smoothness constraints are constructed in a position graph, then the robot trajectory over a sliding window is estimated by a graph based optimization algorithm. Moreover, convergence analysis of the algorithm is provided, and the effects of the number of iterations and window size in the optimization on the localization accuracy are analyzed. Extensive experiments on quadcopter under a variety of scenarios verify the effectiveness of the proposed algorithm and demonstrate a much higher localization accuracy than the existing range-based localization methods, especially in the altitude direction

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors
    corecore