3 research outputs found

    Fragment- and negative image-based screening of phosphodiesterase 10A inhibitors

    Get PDF
    A novel virtual screening methodology called fragment- and negative image-based (F-NiB) screening is introduced and tested experimentally using phosphodiesterase 10A (PDE10A) as a case study. Potent PDE10A-specific small-molecule inhibitors are actively sought after for their antipsychotic and neuroprotective effects. The F-NiB combines features from both fragment-based drug discovery and negative image-based (NIB) screening methodologies to facilitate rational drug discovery. The selected structural parts of protein-bound ligand(s) are seamlessly combined with the negative image of the target's ligand-binding cavity. This cavity- and fragment-based hybrid model, namely its shape and electrostatics, is used directly in the rigid docking of ab initio generated ligand 3D conformers. In total, 14 compounds were acquired using the F-NiB methodology, 3D quantitative structure-activity relationship modeling, and pharmacophore modeling. Three of the small molecules inhibited PDE10A at similar to 27 to similar to 67 mu M range in a radiometric assay. In a larger context, the study shows that the F-NiB provides a flexible way to incorporate small-molecule fragments into the drug discovery

    Cavity-based negative images in molecular docking

    Get PDF
    In drug development, computer-based methods are constantly evolving as a result of increasing computing power and cumulative costs of generating new pharmaceuticals. With virtual screening (VS), it is possible to screen even hundreds of millions of compounds and select the best molecule candidates for in vitro testing instead of investing time and resources in analysing all molecules systematically in laboratories. However, there is a constant need to generate more reliable and effective software for VS. For example, molecular docking, one of the most central methods in structure-based VS, can be a very successful approach for certain targets while failing completely with others. However, it is not necessarily the docking sampling but the scoring of the docking poses that is the bottleneck. In this thesis, a novel rescoring method, negative image-based rescoring (R-NiB), is introduced, which generates a negative image of the ligand binding cavity and compares the shape and electrostatic similarity between the generated model and the docked molecule pose. The performance of the method is tested comprehensively using several different protein targets, benchmarking sets and docking software. Additionally, it is compared to other rescoring methods. R-NiB is shown to be a fast and effective method to rescore the docking poses producing notable improvement in active molecule recognition. Furthermore, the NIB model optimization method based on a greedy algorithm is introduced that uses a set of known active and inactive molecules as a training set. This approach, brute force negative image-based optimization (BR-NiB), is shown to work remarkably well producing impressive in silico results even with very limited active molecule training sets. Importantly, the results suggest that the in silico hit rates of the optimized models in docking rescoring are on a level needed in real-world VS and drug discovery projects.Tietokoneiden laskentatehojen ja lääketutkimuksen tuotekehityskulujen kasvaessa tietokonepohjaiset menetelmät kehittyvät jatkuvasti lääkekehityksessä. Virtuaaliseulonnalla voidaan seuloa jopa satoja miljoonia molekyylejä ja valita vain parhaat molekyyliehdokkaat laboratoriotestaukseen sen sijaan, että tuhlattaisiin aikaa ja resursseja analysoimalla järjestelmällisesti kaikki molekyylit laboratoriossa. Tästä huolimatta on koko ajan jatkuva tarve kehittää luotettavampia ja tehokkaampia menetelmiä virtuaaliseulontaan. Esimerkiksi telakointi, yksi keskeisimmistä työkaluista rakennepohjaisessa lääkeainekehityksessä, saattaa toimia erinomaisesti yhdellä kohteella ja epäonnistua täysin toisella. Ongelma ei välttämättä ole telakoitujen molekyylien luonnissa vaan niiden pisteytyksessä. Tässä väitöskirjassa tähän ongelmaan esitellään ratkaisuksi uudenlainen pisteytysmenetelmä R-NiB, jossa verrataan ligandinsitomisalueen negatiivikuvan muodon ja sähköstaattisen potentiaalin samankaltaisuutta telakoituihin molekyyleihin. Menetelmän suorituskykyä testataan usealla eri molekyylisarjalla, lääkeainekohteella, telakointiohjelmalla ja vertaamalla tuloksia muihin pisteytysmenetelmiin. R-NiB:n näytetään olevan nopea ja tehokas menetelmä telakointiasentojen pisteytykseen tuottaen huomattavan parannuksen aktiivisten molekyylien tunnistukseen. Tämän lisäksi esitellään ns. ahneeseen algoritmiin perustuva negatiivikuvan optimointimenetelmä, joka käyttää sarjaa tunnettuja aktiivisia ja inaktiivisia molekyylejä harjoitusjoukkona. Tämän BR-NiB-menetelmän näytetään toimivan ainakin tietokonemallinnuksessa todella hyvin tuottaen vaikuttavia tuloksia jopa silloin, kun harjoitusjoukko koostuu vain muutamista aktiivisista molekyyleistä. Mikä tärkeintä, in silico -tulokset viittaavat optimointimenetelmän osumaprosentin telakoinnin uudelleenpisteytyksessä olevan riittävän korkea myös oikeisiin virtuaaliseulontaprojekteihin

    Molecular dynamics and virtual screening approaches in drug discovery

    Get PDF
    Computer-aided drug discovery (CADD) methods are now routinely used in the preclinical phase of drug development. Powerful high-performance computing facilities and the extremely fast CADD methods constantly scale up the coverage of drug-like chemical space achievable in rational drug development. In this thesis, CADD approaches were applied to address several early-phase drug discovery problems. Namely, small molecule binding site detection on a novel target protein, virtual screening (VS) of molecular databases, and characterization of small molecule interactions with metabolic enzymes were studied. Various CADD methods, including molecular dynamics (MD) simulations in mixed solvents, molecular docking, and binding free energy calculations, were employed. Co-solvent MD simulations detected biologically relevant binding sites and provided guidance for screening potential protein-protein interaction inhibitors for a crucial protein of the SARS-CoV-2. VS with fragment- and negative image-based (F-NIB) models identified three active and structurally novel inhibitors of the putative drug target phosphodiesterase 10A. MD simulations and docking provided detailed insights on the effects of active site structural flexibility and variation on the binding and resultant metabolism of small molecules with the cytochrome P450 enzymes. The results presented in this thesis contribute to the increasing evidence that supports employment and further development of CADD approaches in drug discovery. Ultimately, rational drug development coupled with CADD may enable higher quality drug candidates to the human studies in the future, reducing the risk of financially and temporally costly clinical failure. KEYWORDS: Structure-based drug development, Computer-aided drug discovery (CADD), Molecular dynamics (MD) simulation, Virtual screening (VS), Fragmentand negative image-based (F-NIB) model, Structure-activity relationship (QSAR), Cytochrome P450 ligand binding predictionMolekyylidynamiikka- ja virtuaaliseulontamenetelmät lääkeaine-etsinnässä Tietokoneavusteista lääkeaine-etsintää käytetään nykyisin yleisesti prekliinisessä lääketutkimuksessa. Suurteholaskenta ja äärimmäisen nopeat tietokoneavusteiset lääkeaine-etsintämenetelmät mahdollistavat jatkuvasti kattavamman lääkkeenkaltaisten molekyylien kemiallisen avaruuden seulonnan. Tässä väitöskirjassa tietokonepohjaisia menetelmiä hyödynnettiin lääketutkimuksen prekliiniseen vaiheeseen liittyvissä tyypillisissä tutkimusongelmissa. Työhön kuului pienmolekyylien sitoutumisalueiden tunnistus uuden kohdeproteiinin rakenteesta, molekyylitietokantojen virtuaaliseulonta sekä pienmolekyylien ja metabolian entsyymien välisten vuorovaikutusten tietokonemallinnus. Työssä käytettiin useita tietokoneavusteisen lääkeaine-etsinnän menetelmiä, sisältäen molekyylidynamiikkasimulaatiot (MD-simulaatiot) vaihtuvissa liuottimissa, molekulaarisen telakoinnin ja sitoutumisenergian laskennan. Orgaanisen liuottimen ja veden sekoituksessa tehdyt MD-simulaatiot tunnistivat biologisesti merkittäviä sitoutumisalueita SARS-CoV-2:n tärkeästä proteiinista ja ohjasivat infektioon liittyvän proteiini-proteiinivuorovaikutuksen potentiaalisten estäjien etsintää. Virtuaaliseulonnalla tunnistettiin kolme rakenteellisesti uudenlaista tunnetun lääkekehityskohteen, fosfodiesteraasi 10A:n, estäjää hyödyntäen fragmentti- ja negatiivikuvamalleja. MD-simulaatiot ja telakointi tuottivat yksityiskohtaista tietoa sytokromi P450 entsyymien aktiivisen kohdan rakenteen jouston ja muutosten vaikutuksesta pienmolekyylien sitoutumiseen ja metaboliaan. Tämän väitöskirjan tulokset tukevat kasvavaa todistusaineistoa tietokoneavusteisen lääkeaine-etsinnän käytön ja kehityksen hyödyllisyydestä prekliinisessä lääketutkimuksessa. Tietokoneavusteinen lääkeaine-etsintä voi lopulta mahdollistaa korkeampilaatuisten lääkekandidaattien päätymisen ihmiskokeisiin, pienentäen taloudellisesti ja ajallisesti kalliin kliinisen tutkimuksen epäonnistumisen riskiä. AVAINSANAT: Rakennepohjainen lääkeainekehitys, Tietokoneavusteinen lääkeaine-etsintä, Molekyylidynamiikkasimulaatio (MD-simulaatio), Virtuaaliseulonta, Fragmentti- ja negatiivikuvamalli, Rakenne-aktiivisuussuhde, Sytokromi P450 ligandien sitoutumisen ennustu
    corecore