2,447 research outputs found

    Efficient Utility-Driven Self-Healing Employing Adaptation Rules for Large Dynamic Architectures

    Full text link
    Self-adaptation can be realized in various ways. Rule-based approaches prescribe the adaptation to be executed if the system or environment satisfy certain conditions and result in scalable solutions, however, with often only satisfying adaptation decisions. In contrast, utility-driven approaches determine optimal adaptation decisions by using an often costly optimization step, which typically does not scale well for larger problems. We propose a rule-based and utility-driven approach that achieves the beneficial properties of each of these directions such that the adaptation decisions are optimal while the computation remains scalable since an expensive optimization step can be avoided. The approach can be used for the architecture-based self-healing of large software systems. We define the utility for large dynamic architectures of such systems based on patterns capturing issues the self-healing must address and we use patternbased adaptation rules to resolve the issues. Defining the utility as well as the adaptation rules pattern-based allows us to compute the impact of each rule application on the overall utility and to realize an incremental and efficient utility-driven self-healing. We demonstrate the efficiency and optimality of our scheme in comparative experiments with a static rule-based scheme as a baseline and a utility-driven approach using a constraint solver

    mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization

    Full text link
    Self-adaptive software systems are often structured into an adaptation engine that manages an adaptable software by operating on a runtime model that represents the architecture of the software (model-based architectural self-adaptation). Despite the popularity of such approaches, existing exemplars provide application programming interfaces but no runtime model to develop adaptation engines. Consequently, there does not exist any exemplar that supports developing, evaluating, and comparing model-based self-adaptation off the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-healing and self-optimization. mRUBiS simulates the adaptable software and therefore provides and maintains an architectural runtime model of the software, which can be directly used by adaptation engines to realize and perform self-adaptation. Particularly, mRUBiS supports injecting issues into the model, which should be handled by self-adaptation, and validating the model to assess the self-adaptation. Finally, mRUBiS allows developers to explore variants of adaptation engines (e.g., event-driven self-adaptation) and to evaluate the effectiveness, efficiency, and scalability of the engines

    Towards Highly Scalable Runtime Models with History

    Full text link
    Advanced systems such as IoT comprise many heterogeneous, interconnected, and autonomous entities operating in often highly dynamic environments. Due to their large scale and complexity, large volumes of monitoring data are generated and need to be stored, retrieved, and mined in a time- and resource-efficient manner. Architectural self-adaptation automates the control, orchestration, and operation of such systems. This can only be achieved via sophisticated decision-making schemes supported by monitoring data that fully captures the system behavior and its history. Employing model-driven engineering techniques we propose a highly scalable, history-aware approach to store and retrieve monitoring data in form of enriched runtime models. We take advantage of rule-based adaptation where change events in the system trigger adaptation rules. We first present a scheme to incrementally check model queries in the form of temporal logic formulas which represent the conditions of adaptation rules against a runtime model with history. Then we enhance the model to retain only information that is temporally relevant to the queries, therefore reducing the accumulation of information to a required minimum. Finally, we demonstrate the feasibility and scalability of our approach via experiments on a simulated smart healthcare system employing a real-world medical guideline.Comment: 8 pages, 4 figures, 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS2020

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    10431 Abstracts Collection -- Software Engineering for Self-Adaptive Systems

    Get PDF
    From 24.10. to 29.10.2010, the Dagstuhl Seminar 10431 ``Software Engineering for Self-Adaptive Systems\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Integration of decentralized economic models for resource self-management in application layer networks

    Get PDF
    Resource allocation is one of the challenges for self-management of large scale distributed applications running in a dynamic and heterogeneous environment. Considering Application Layer Networks (ALN) as a general term for such applications including computational Grids, Content Distribution Networks and P2P applications, the characteristics of the ALNs and the environment preclude an efficient resource allocation by a central instance. The approach we propose integrates ideas from decentralized economic models into the architecture of a resource allocation middleware, which allows the scalability towards the participant number and the robustness in very dynamic environments. At the same time, the pursuit of the participants for their individual goals should benefit the global optimization of the application. In this work, we describe the components of this middleware architecture and introduce an ongoing prototype.Peer Reviewe
    • …
    corecore