19,227 research outputs found

    FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments

    Full text link
    High-speed trajectory planning through unknown environments requires algorithmic techniques that enable fast reaction times while maintaining safety as new information about the operating environment is obtained. The requirement of computational tractability typically leads to optimization problems that do not include the obstacle constraints (collision checks are done on the solutions) or use a convex decomposition of the free space and then impose an ad-hoc time allocation scheme for each interval of the trajectory. Moreover, safety guarantees are usually obtained by having a local planner that plans a trajectory with a final "stop" condition in the free-known space. However, these two decisions typically lead to slow and conservative trajectories. We propose FASTER (Fast and Safe Trajectory Planner) to overcome these issues. FASTER obtains high-speed trajectories by enabling the local planner to optimize in both the free-known and unknown spaces. Safety guarantees are ensured by always having a feasible, safe back-up trajectory in the free-known space at the start of each replanning step. Furthermore, we present a Mixed Integer Quadratic Program formulation in which the solver can choose the trajectory interval allocation, and where a time allocation heuristic is computed efficiently using the result of the previous replanning iteration. This proposed algorithm is tested extensively both in simulation and in real hardware, showing agile flights in unknown cluttered environments with velocities up to 3.6 m/s.Comment: IROS 201

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    Search-based Motion Planning for Aggressive Flight in SE(3)

    Get PDF
    Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this work, we develop a search-based trajectory planning approach that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with non-zero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.Comment: 8 pages, submitted to RAL and ICRA 201

    Search-based 3D Planning and Trajectory Optimization for Safe Micro Aerial Vehicle Flight Under Sensor Visibility Constraints

    Full text link
    Safe navigation of Micro Aerial Vehicles (MAVs) requires not only obstacle-free flight paths according to a static environment map, but also the perception of and reaction to previously unknown and dynamic objects. This implies that the onboard sensors cover the current flight direction. Due to the limited payload of MAVs, full sensor coverage of the environment has to be traded off with flight time. Thus, often only a part of the environment is covered. We present a combined allocentric complete planning and trajectory optimization approach taking these sensor visibility constraints into account. The optimized trajectories yield flight paths within the apex angle of a Velodyne Puck Lite 3D laser scanner enabling low-level collision avoidance to perceive obstacles in the flight direction. Furthermore, the optimized trajectories take the flight dynamics into account and contain the velocities and accelerations along the path. We evaluate our approach with a DJI Matrice 600 MAV and in simulation employing hardware-in-the-loop.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 201

    Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles

    Full text link
    In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex, unknown, unstructured environments, they must be able to navigate with guaranteed safety, even when faced with a cluttered environment they have no prior knowledge of. While trajectory optimization-based local planners have been shown to perform well in these cases, prior work either does not address how to deal with local minima in the optimization problem, or solves it by using an optimistic global planner. We present a conservative trajectory optimization-based local planner, coupled with a local exploration strategy that selects intermediate goals. We perform extensive simulations to show that this system performs better than the standard approach of using an optimistic global planner, and also outperforms doing a single exploration step when the local planner is stuck. The method is validated through experiments in a variety of highly cluttered environments including a dense forest. These experiments show the complete system running in real time fully onboard an MAV, mapping and replanning at 4 Hz.Comment: Accepted to ICRA 2018 and RA-L 201

    Fast Second-order Cone Programming for Safe Mission Planning

    Full text link
    This paper considers the problem of safe mission planning of dynamic systems operating under uncertain environments. Much of the prior work on achieving robust and safe control requires solving second-order cone programs (SOCP). Unfortunately, existing general purpose SOCP methods are often infeasible for real-time robotic tasks due to high memory and computational requirements imposed by existing general optimization methods. The key contribution of this paper is a fast and memory-efficient algorithm for SOCP that would enable robust and safe mission planning on-board robots in real-time. Our algorithm does not have any external dependency, can efficiently utilize warm start provided in safe planning settings, and in fact leads to significant speed up over standard optimization packages (like SDPT3) for even standard SOCP problems. For example, for a standard quadrotor problem, our method leads to speedup of 1000x over SDPT3 without any deterioration in the solution quality. Our method is based on two insights: a) SOCPs can be interpreted as optimizing a function over a polytope with infinite sides, b) a linear function can be efficiently optimized over this polytope. We combine the above observations with a novel utilization of Wolfe's algorithm to obtain an efficient optimization method that can be easily implemented on small embedded devices. In addition to the above mentioned algorithm, we also design a two-level sensing method based on Gaussian Process for complex obstacles with non-linear boundaries such as a cylinder
    • …
    corecore