10,013 research outputs found

    Benne: A Modular and Self-Optimizing Algorithm for Data Stream Clustering

    Full text link
    In various real-world applications, ranging from the Internet of Things (IoT) to social media and financial systems, data stream clustering is a critical operation. This paper introduces Benne, a modular and highly configurable data stream clustering algorithm designed to offer a nuanced balance between clustering accuracy and computational efficiency. Benne distinguishes itself by clearly demarcating four pivotal design dimensions: the summarizing data structure, the window model for handling data temporality, the outlier detection mechanism, and the refinement strategy for improving cluster quality. This clear separation not only facilitates a granular understanding of the impact of each design choice on the algorithm's performance but also enhances the algorithm's adaptability to a wide array of application contexts. We provide a comprehensive analysis of these design dimensions, elucidating the challenges and opportunities inherent to each. Furthermore, we conduct a rigorous performance evaluation of Benne, employing diverse configurations and benchmarking it against existing state-of-the-art data stream clustering algorithms. Our empirical results substantiate that Benne either matches or surpasses competing algorithms in terms of clustering accuracy, processing throughput, and adaptability to varying data stream characteristics. This establishes Benne as a valuable asset for both practitioners and researchers in the field of data stream mining

    Approximation with Error Bounds in Spark

    Full text link
    We introduce a sampling framework to support approximate computing with estimated error bounds in Spark. Our framework allows sampling to be performed at the beginning of a sequence of multiple transformations ending in an aggregation operation. The framework constructs a data provenance tree as the computation proceeds, then combines the tree with multi-stage sampling and population estimation theories to compute error bounds for the aggregation. When information about output keys are available early, the framework can also use adaptive stratified reservoir sampling to avoid (or reduce) key losses in the final output and to achieve more consistent error bounds across popular and rare keys. Finally, the framework includes an algorithm to dynamically choose sampling rates to meet user specified constraints on the CDF of error bounds in the outputs. We have implemented a prototype of our framework called ApproxSpark, and used it to implement five approximate applications from different domains. Evaluation results show that ApproxSpark can (a) significantly reduce execution time if users can tolerate small amounts of uncertainties and, in many cases, loss of rare keys, and (b) automatically find sampling rates to meet user specified constraints on error bounds. We also explore and discuss extensively trade-offs between sampling rates, execution time, accuracy and key loss

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Boosting the Basic Counting on Distributed Streams

    Get PDF
    We revisit the classic basic counting problem in the distributed streaming model that was studied by Gibbons and Tirthapura (GT). In the solution for maintaining an (ϵ,δ)(\epsilon,\delta)-estimate, as what GT's method does, we make the following new contributions: (1) For a bit stream of size nn, where each bit has a probability at least γ\gamma to be 1, we exponentially reduced the average total processing time from GT's Θ(nlog(1/δ))\Theta(n \log(1/\delta)) to O((1/(γϵ2))(log2n)log(1/δ))O((1/(\gamma\epsilon^2))(\log^2 n) \log(1/\delta)), thus providing the first sublinear-time streaming algorithm for this problem. (2) In addition to an overall much faster processing speed, our method provides a new tradeoff that a lower accuracy demand (a larger value for ϵ\epsilon) promises a faster processing speed, whereas GT's processing speed is Θ(nlog(1/δ))\Theta(n \log(1/\delta)) in any case and for any ϵ\epsilon. (3) The worst-case total time cost of our method matches GT's Θ(nlog(1/δ))\Theta(n\log(1/\delta)), which is necessary but rarely occurs in our method. (4) The space usage overhead in our method is a lower order term compared with GT's space usage and occurs only O(logn)O(\log n) times during the stream processing and is too negligible to be detected by the operating system in practice. We further validate these solid theoretical results with experiments on both real-world and synthetic data, showing that our method is faster than GT's by a factor of several to several thousands depending on the stream size and accuracy demands, without any detectable space usage overhead. Our method is based on a faster sampling technique that we design for boosting GT's method and we believe this technique can be of other interest.Comment: 32 page

    A Neighborhood-preserving Graph Summarization

    Full text link
    We introduce in this paper a new summarization method for large graphs. Our summarization approach retains only a user-specified proportion of the neighbors of each node in the graph. Our main aim is to simplify large graphs so that they can be analyzed and processed effectively while preserving as many of the node neighborhood properties as possible. Since many graph algorithms are based on the neighborhood information available for each node, the idea is to produce a smaller graph which can be used to allow these algorithms to handle large graphs and run faster while providing good approximations. Moreover, our compression allows users to control the size of the compressed graph by adjusting the amount of information loss that can be tolerated. The experiments conducted on various real and synthetic graphs show that our compression reduces considerably the size of the graphs. Moreover, we conducted several experiments on the obtained summaries using various graph algorithms and applications, such as node embedding, graph classification and shortest path approximations. The obtained results show interesting trade-offs between the algorithms runtime speed-up and the precision loss.Comment: 17 pages, 10 figure

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p
    corecore