71 research outputs found

    Profiling Large-scale Live Video Streaming and Distributed Applications

    Get PDF
    PhDToday, distributed applications run at data centre and Internet scales, from intensive data analysis, such as MapReduce; to the dynamic demands of a worldwide audience, such as YouTube. The network is essential to these applications at both scales. To provide adequate support, we must understand the full requirements of the applications, which are revealed by the workloads. In this thesis, we study distributed system applications at different scales to enrich this understanding. Large-scale Internet applications have been studied for years, such as social networking service (SNS), video on demand (VoD), and content delivery networks (CDN). An emerging type of video broadcasting on the Internet featuring crowdsourced live video streaming has garnered attention allowing platforms such as Twitch to attract over 1 million concurrent users globally. To better understand Twitch, we collected real-time popularity data combined with metadata about the contents and found the broadcasters rather than the content drives its popularity. Unlike YouTube and Netflix where content can be cached, video streaming on Twitch is generated instantly and needs to be delivered to users immediately to enable real-time interaction. Thus, we performed a large-scale measurement of Twitchs content location revealing the global footprint of its infrastructure as well as discovering the dynamic stream hosting and client redirection strategies that helped Twitch serve millions of users at scale. We next consider applications that run inside the data centre. Distributed computing applications heavily rely on the network due to data transmission needs and the scheduling of resources and tasks. One successful application, called Hadoop, has been widely deployed for Big Data processing. However, little work has been devoted to understanding its network. We found the Hadoop behaviour is limited by hardware resources and processing jobs presented. Thus, after characterising the Hadoop traffic on our testbed with a set of benchmark jobs, we built a simulator to reproduce Hadoops job traffic With the simulator, users can investigate the connections between Hadoop traffic and network performance without additional hardware cost. Different network components can be added to investigate the performance, such as network topologies, queue policies, and transport layer protocols. In this thesis, we extended the knowledge of networking by investigated two widelyused applications in the data centre and at Internet scale. We (i)studied the most popular live video streaming platform Twitch as a new type of Internet-scale distributed application revealing that broadcaster factors drive the popularity of such platform, and we (ii)discovered the footprint of Twitch streaming infrastructure and the dynamic stream hosting and client redirection strategies to provide an in-depth example of video streaming delivery occurring at the Internet scale, also we (iii)investigated the traffic generated by a distributed application by characterising the traffic of Hadoop under various parameters, (iv)with such knowledge, we built a simulation tool so users can efficiently investigate the performance of different network components under distributed applicationQueen Mary University of Londo

    Research Article An Improved Particle Swarm Optimization Based on Deluge Approach for Enhanced Hierarchical Cache Optimization in IPTV Networks

    Get PDF
    Abstract: In recent years, IP network has been considered as a new delivery network for TV services. A majority of the telecommunication industries have used IP network to offer on-demand services and linear TV services as it can offer a two-way and high-speed communication. In order to effectively and economically utilize the IP network, caching is the technique which is usually preferred. In IPTV system, a managed network is utilized to bring out TV services, the requests of Video on Demand (VOD) objects are usually combined in a limited period intensively and user preferences are fluctuated dynamically. Furthermore, the VOD content updates often under the control of IPTV providers. In order to minimize this traffic and overall network cost, a segment of the video content is stored in caches closer to subscribers, for example, Digital Subscriber Line Access Multiplexer (DSLAM), a Central Office (CO) and Intermediate Office (IO). The major problem focused in this approach is to determine the optimal cache memory that should be assigned in order to attain maximum cost effectiveness. This approach uses an effective Grate Deluge algorithm based Particle Swarm Optimization (GDPSO) approach for attaining the optimal cache memory size which in turn minimizes the overall network cost. The analysis shows that hierarchical distributed caching can save significant network cost through the utilization of the GDPSO algorithm

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work

    Implementation and Performance Evaluation of an NGN prototype using WiMax as an Access Technology

    Get PDF
    Telecommunications networks have evolved to IP-based networks, commonly known as Next Generation Networks (NGN). The biggest challenge in providing high quality realtime multimedia applications is achieving a Quality of Service (QoS) consistent with user expectations. One of the key additional factors affecting QoS is the existence of different QoS mechanisms on the heterogeneous technologies used on NGN platforms. This research investigates the techniques used to achieve consistent QoS on network technologies that use different QoS techniques. Numerous proposals for solving the end-to-end QoS problem in IP networks have adopted policy-based management, use of signalling protocols for communicating applications QoS requirements across different Network Elements and QoS provisioning in Network Elements. Such solutions are dependent on the use of traffic classification and knowledge of the QoS requirements of applications and services on the networks. This research identifies the practical difficulties involved in meeting the QoS requirements of network traffic between WiMax and an IP core network. In the work, a solution based on the concept of class-of-service mapping is proposed. In the proposed solution, QoS is implemented on the two networks and the concept of class-of-service mapping is used to integrate the two QoS systems. This essentially provides consistent QoS to applications as they traverse the two network domains and hence meet end-user QoS expectations. The work is evaluated through a NGN prototype to determine the capabilities of the networks to deliver real-time media that meets user expectations

    A hybrid network/host mobility management scheme for next generation networks

    Get PDF
    Includes bibliographical references.The author proposes a hybrid network/host interworking scheme to allow the MN to transition smoothly between different access networks supporting two distinct mobility approaches

    QoS provisioning and mobility management for IP-based wireless LAN

    Get PDF
    Today two major technological forces drive the telecommunication era: the wireless cellular systems and the Internet. As these forces converge, the demand for new services, increasing bandwidth and ubiquitous connectivity continuously grows. The next-generation mobile systems will be based solely or in a large extent, on the Internet Protocol (IP). This thesis begins by addressing the problems and challenges faced in a multimedia, IP-based Wireless LAN environment. The ETSI HiperLAN/2 system has been mainly selected as the test wireless network for our theoretical and simulation experiments. Apart from the simulations, measurements have been taken from real life test scenarios, where the IEEE 802.11 system was used (UniS Test-bed). Furthermore, a brief overview of the All-IP network infrastructure is presented. An extension to the conventional wireless (cellular) architecture, which takes advantage of the IP network characteristics, is considered. Some of the trends driving the 3G and WLANs developments are explored, while the provision of quality of service on the latter for real-time and non-real-time multimedia services is investigated, simulated and evaluated. Finally, an efficient and catholic Q0S framework is proposed. At the same time, the multimedia services should be offered in a seamless and uninterrupted manner to users who access the all-IP infrastructure via a WLAN, meeting the demands of both enterprise and public environments anywhere and anytime. Thus providing support for mobile communications not only in terms of terminal mobility, as is currently the case, but also for session, service and personal mobility. Furthermore, this mobility should be available over heterogeneous networks, such as WLANs, IJMTS, as well as fixed networks. Therefore, this work investigates issues such as, multilayer and multi-protocol (SIP-Mobile IP-Cellular IP) mobility management in wireless LAN and 3G domains. Several local and global mobility protocols and architectures have been tested and evaluated and a complete mobility management framework is proposed. Moreover, integration of simple yet efficient authentication, accounting and authorisation mechanisms with the multimedia service architecture is an important issue of IP-based WLANs. Without such integration providers will not have the necessary means to control their provided services and make revenue from the users. The proposed AAA architecture should support a robust AAA infrastructure providing secure, fast and seamless access granting to multimedia services. On the other hand, a user wishing a service from the All-IP WLAN infrastructure needs to be authenticated twice, once to get access to the network and the other one should be granted for the required service. Hence, we provide insights into these issues by simulating and evaluating pre-authentication techniques and other network authentication scenarios based on the wellknown IEEE 802.lx protocol for multimedia IP-based WLANs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore