123 research outputs found

    Undetectable Communication: The Online Social Networks Case

    Get PDF
    Online Social Networks (OSNs) provide users with an easy way to share content, communicate, and update others about their activities. They also play an increasingly fundamental role in coordinating and amplifying grassroots movements, as demonstrated by recent uprisings in, e.g., Egypt, Tunisia, and Turkey. At the same time, OSNs have become primary targets of tracking, profiling, as well as censorship and surveillance. In this paper, we explore the notion of undetectable communication in OSNs and introduce formal definitions, alongside system and adversarial models, that complement better understood notions of anonymity and confidentiality. We present a novel scheme for secure covert information sharing that, to the best of our knowledge, is the first to achieve undetectable communication in OSNs. We demonstrate, via an open-source prototype, that additional costs are tolerably low

    FRAMEWORK FOR ANONYMIZED COVERT COMMUNICATIONS: A BLOCKCHAIN-BASED PROOF-OF-CONCEPT

    Get PDF
    In this dissertation, we present an information hiding approach incorporating anonymity that builds on existing classical steganographic models. Current security definitions are not sufficient to analyze the proposed information hiding approach as steganography offers data privacy by hiding the existence of data, a property that is distinct from confidentiality (data existence is known but access is restricted) and authenticity (data existence is known but manipulation is restricted). Combinations of the latter two properties are common in analyses, such as Authenticated Encryption with Associated Data (AEAD), yet there is a lack of research on combinations with steganography. This dissertation also introduces the security definition of Authenticated Stegotext with Associated Data (ASAD), which captures steganographic properties even when there is contextual information provided alongside the hidden data. We develop a hierarchical framework of ASAD variants, corresponding to different channel demands. We present a real-world steganographic embedding scheme, Authenticated SteGotex with Associated tRansaction Data (ASGARD), that leverages a blockchain-based application as a medium for sending hidden data. We analyze ASGARD in our framework and show that it meets Level-4 ASAD security. Finally, we implement ASGARD on the Ethereum platform as a proof-of-concept and analyze some of the ways an adversary might detect our embedding activity by analyzing historical Ethereum data.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    On the Gold Standard for Security of Universal Steganography

    Get PDF
    While symmetric-key steganography is quite well understood both in the information-theoretic and in the computational setting, many fundamental questions about its public-key counterpart resist persistent attempts to solve them. The computational model for public-key steganography was proposed by von Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first universal public-key stegosystem - i.e. one that works on all channels - achieving security against replayable chosen-covertext attacks (SS-RCCA) and asked whether security against non-replayable chosen-covertext attacks (SS-CCA) is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every efficiently sampleable channel, but did not achieve universality. He posed the question whether universality and SS-CCA-security can be achieved simultaneously. No progress on this question has been achieved since more than a decade. In our work we solve Hopper's problem in a somehow complete manner: As our main positive result we design an SS-CCA-secure stegosystem that works for every memoryless channel. On the other hand, we prove that this result is the best possible in the context of universal steganography. We provide a family of 0-memoryless channels - where the already sent documents have only marginal influence on the current distribution - and prove that no SS-CCA-secure steganography for this family exists in the standard non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl

    Thesis Summary: Toward a theory of Steganography

    Get PDF
    Abstract Informally, steganography refers to the practice of hiding secret messages in communications over a public channel so that an eavesdropper (who listens to all communications) cannot even tell that a secret message is being sent. In contrast to the active literature proposing new concrete steganographic protocols and analysing flaws in existing protocols, there has been very little work on formalizing steganographic notions of security, and none giving complete, rigorous proofs of security in a satisfying model. This thesis initiates the study of steganography from a cryptographic point of view. We give a precise model of a communication channel and a rigorous definition of steganographic security, and prove that relative to a channel oracle, secure steganography exists if and only if one-way functions exist. We give tightly matching upper and lower bounds on the maximum rate of any secure stegosystem. We introduce the concept of steganographic key exchange and public-key steganography, and show that provably secure protocols for these objectives exist under a variety of standard number-theoretic assumptions. We consider several notions of active attacks against steganography, show how to achieve each under standard assumptions, and consider the relationships between these notions. Finally, we extend the concept of steganograpy as covert communication to include the more general concept of covert computation

    Enhancing Mobile Cloud Computing Security Using Steganography

    Get PDF
    Cloud computing is an emerging and popular method of accessing shared and dynamically configurable resources via the computer network on demand. Cloud computing is excessively used by mobile applications to offload data over the network to the cloud. There are some security and privacy concerns using both mobile devices to offload data to the facilities provided by the cloud providers. One of the critical threats facing cloud users is the unauthorized access by the insiders (cloud administrators) or the justification of location where the cloud providers operating. Although, there exist variety of security mechanisms to prevent unauthorized access by unauthorized user by the cloud administration, but there is no security provision to prevent unauthorized access by the cloud administrators to the client data on the cloud computing. In this paper, we demonstrate how steganography, which is a secrecy method to hide information, can be used to enhance the security and privacy of data (images) maintained on the cloud by mobile applications. Our proposed model works with a key, which is embedded in the image along with the data, to provide an additional layer of security, namely, confidentiality of data. The practicality of the proposed method is represented via a simple case study

    Foreword and editorial - July issue

    Full text link

    Towards private and robust machine learning for information security

    Get PDF
    Many problems in information security are pattern recognition problems. For example, determining if a digital communication can be trusted amounts to certifying that the communication does not carry malicious or secret content, which can be distilled into the problem of recognising the difference between benign and malicious content. At a high level, machine learning is the study of how patterns are formed within data, and how learning these patterns generalises beyond the potentially limited data pool at a practitioner’s disposal, and so has become a powerful tool in information security. In this work, we study the benefits machine learning can bring to two problems in information security. Firstly, we show that machine learning can be used to detect which websites are visited by an internet user over an encrypted connection. By analysing timing and packet size information of encrypted network traffic, we train a machine learning model that predicts the target website given a stream of encrypted network traffic, even if browsing is performed over an anonymous communication network. Secondly, in addition to studying how machine learning can be used to design attacks, we study how it can be used to solve the problem of hiding information within a cover medium, such as an image or an audio recording, which is commonly referred to as steganography. How well an algorithm can hide information within a cover medium amounts to how well the algorithm models and exploits areas of redundancy. This can again be reduced to a pattern recognition problem, and so we apply machine learning to design a steganographic algorithm that efficiently hides a secret message with an image. Following this, we proceed with discussions surrounding why machine learning is not a panacea for information security, and can be an attack vector in and of itself. We show that machine learning can leak private and sensitive information about the data it used to learn, and how malicious actors can exploit vulnerabilities in these learning algorithms to compel them to exhibit adversarial behaviours. Finally, we examine the problem of the disconnect between image recognition systems learned by humans and by machine learning models. While human classification of an image is relatively robust to noise, machine learning models do not possess this property. We show how an attacker can cause targeted misclassifications against an entire data distribution by exploiting this property, and go onto introduce a mitigation that ameliorates this undesirable trait of machine learning
    corecore