93,261 research outputs found

    Self-Stabilizing Wavelets and r-Hops Coordination

    Full text link
    We introduce a simple tool called the wavelet (or, r-wavelet) scheme. Wavelets deals with coordination among processes which are at most r hops away of each other. We present a selfstabilizing solution for this scheme. Our solution requires no underlying structure and works in arbritrary anonymous networks, i.e., no process identifier is required. Moreover, our solution works under any (even unfair) daemon. Next, we use the wavelet scheme to design self-stabilizing layer clocks. We show that they provide an efficient device in the design of local coordination problems at distance r, i.e., r-barrier synchronization and r-local resource allocation (LRA) such as r-local mutual exclusion (LME), r-group mutual exclusion (GME), and r-Reader/Writers. Some solutions to the r-LRA problem (e.g., r-LME) also provide transformers to transform algorithms written assuming any r-central daemon into algorithms working with any distributed daemon

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    Dynamic sharing of a multiple access channel

    Get PDF
    In this paper we consider the mutual exclusion problem on a multiple access channel. Mutual exclusion is one of the fundamental problems in distributed computing. In the classic version of this problem, n processes perform a concurrent program which occasionally triggers some of them to use shared resources, such as memory, communication channel, device, etc. The goal is to design a distributed algorithm to control entries and exits to/from the shared resource in such a way that in any time there is at most one process accessing it. We consider both the classic and a slightly weaker version of mutual exclusion, called ep-mutual-exclusion, where for each period of a process staying in the critical section the probability that there is some other process in the critical section is at most ep. We show that there are channel settings, where the classic mutual exclusion is not feasible even for randomized algorithms, while ep-mutual-exclusion is. In more relaxed channel settings, we prove an exponential gap between the makespan complexity of the classic mutual exclusion problem and its weaker ep-exclusion version. We also show how to guarantee fairness of mutual exclusion algorithms, i.e., that each process that wants to enter the critical section will eventually succeed

    Distributed match-making

    Get PDF
    In many distributed computing environments, processes are concurrently executed by nodes in a store- and-forward communication network. Distributed control issues as diverse as name server, mutual exclusion, and replicated data management involve making matches between such processes. We propose a formal problem called distributed match-making as the generic paradigm. Algorithms for distributed match-making are developed and the complexity is investigated in terms of messages and in terms of storage needed. Lower bounds on the complexity of distributed match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for particular network topologies

    Synthesis of Parametric Programs using Genetic Programming and Model Checking

    Get PDF
    Formal methods apply algorithms based on mathematical principles to enhance the reliability of systems. It would only be natural to try to progress from verification, model checking or testing a system against its formal specification into constructing it automatically. Classical algorithmic synthesis theory provides interesting algorithms but also alarming high complexity and undecidability results. The use of genetic programming, in combination with model checking and testing, provides a powerful heuristic to synthesize programs. The method is not completely automatic, as it is fine tuned by a user that sets up the specification and parameters. It also does not guarantee to always succeed and converge towards a solution that satisfies all the required properties. However, we applied it successfully on quite nontrivial examples and managed to find solutions to hard programming challenges, as well as to improve and to correct code. We describe here several versions of our method for synthesizing sequential and concurrent systems.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    On Secure Workflow Decentralisation on the Internet

    Get PDF
    Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment
    corecore