4 research outputs found

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants

    Reduction of staircase effect with total generalized variation regularization for electrical impedance tomography

    Get PDF
    Image reconstruction in electrical impedance tomography is an ill-posed inverse problem. To address this problem, regularization methods such as Tikhonov regularization and total variation regularization have been adopted. However, the image is over-smoothed when reconstructing with the Tikhonov regularization and staircase effect appears in the image when using the total variation regularization. In this paper, the total generalized variation regularization method which combines the first-order and the second-order derivative terms to perform as the regularization term is proposed to cope with the above problems. The weight between the two derivative terms is adjusted by the weighting factors. Chambolle-Pock primal-dual algorithm, an efficient iterative algorithm to handle optimization problem and solve dual problem, is developed. Simulation and experiments are performed to verify the performance of the total generalized variation regularization method against other regularization methods. Besides, the relative error and correlation coefficient are also calculated to estimate the proposed regularization methods quantitatively. The results indicate that the staircase effect is effectively reduced and the sharp edge is well-preserved in the reconstructed image.</p

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants
    corecore