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Abstract—Image reconstruction in electrical impedance 
tomography is an ill-posed inverse problem. To address this 
problem, regularization methods such as Tikhonov regularization 
and total variation regularization have been adopted. However, 
the image is over-smoothed when reconstructing with the 
Tikhonov regularization and staircase effect appears in the image 
when using the total variation regularization. In this paper, total 
generalized variation regularization method which combines the 
first-order and the second-order derivative terms to perform as 
the regularization term is proposed to cope with the above 
problems. The weight between the two derivative terms is 
adjusted by the weighting factors. Chambolle-Pock primal-dual 
algorithm, an efficient iterative algorithm to handle optimization 
problem and solve dual problem, is developed. Simulation and 
experiments are performed to verify the performance of the total 
generalized variation regularization method against other 
regularization methods. Besides, relative error and correlation 
coefficient are also calculated to estimate the proposed 
regularization methods quantitatively. The results indicate that 
the staircase effect is effectively reduced and the sharp edge is well 
preserved in the reconstructed image.  
 

Index Terms—Electrical impedance tomography, image 
reconstruction, staircase effect, total generalized variation. 

I. INTRODUCTION 

LECTRICAL impedance tomography (EIT) is a 
visualization and measurement technique designed to 

reconstruct the complex conductivity distribution of the 
detected area [1], [2]. It is realized by injecting current and 
measuring the voltage data on its boundary [3]. Due to its 
advantages of safety, low cost, high speed, non-invasion and 
non-radiation, EIT is widely applied in industrial process 
imaging, nondestructive testing of materials, geophysical 
exploration and biomedical imaging [4]-[7]. In the biomedical 
application, it has shown great potential in the thorax imaging, 
lung ventilation monitoring, tumor detecting and brain 
function [8]-[15]. The conductivity of the biological tissues 
can be reconstructed from the measured voltage. 

However, the recovering of an unknown conductivity 
distribution from boundary voltage data is a severely ill-posed 
inverse problem, which hinders the application of EIT [16], 
[17]. Usually, the number of the independent measured data is 
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much fewer than that of the unknown conductivity, leading to 
an inevitable under-determined problem. In addition, a small 
disturbance of noise to the boundary voltage will exert a great 
influence on the calculated conductivity distribution. To solve 
the ill-posed inverse problem, a variety of regularization 
methods with a regularization term added to the objective 
function has been presented to stabilize the solution [18]-[20]. 
Among these methods, Tikhonov regularization is commonly 
used as it stabilizes the solution. However, as a regularization 
method of L2-norm, Tikhonov regularization makes the edges 
of reconstructed image over-smoothed and results in an image 
with low sharpness [21], [22]. To solve this problem, total 
variation (TV) regularization is proposed with the L1-norm as 
the regularization term. It prevents the edges from being 
over-smoothed and the sharp edge of the reconstructed image 
is preserved [23], [24]. Nevertheless, unwanted staircase effect 
is produced with TV regularization method [25]. To overcome 
the problem of staircase effect, a variety of improved TV 
regularization methods have been presented. In [26], in order 
to solve the problem of staircase effect in the image of 
cone-beam computed tomography, a new family of Hessian 
Schatten penalties is proposed. In [27], a nonlocal TV 
regularization associated with the quadratic perturbation of a 
regularization functional model is studied to restrain the 
staircase effect in the recovered image. In [28], two detection 
operators are proposed to solve the staircase effect problem 
and an adaptive image denoising TV model is proposed. In 
[29], an improved TV regularization is proposed based on a 
denoising model by using an edge detection function to inhibit 
the staircase effect and remove mixed noise. The methods 
mentioned above are all based on the TV method. Due to the 
inherent defect of TV, the stair effect is merely reduced to a 
certain extent. Total generalized variation (TGV) 
regularization method is firstly proposed in [30]. It is an 
effective method to approximate a polynomial function with 
arbitrary order. Up until now, the applications of TGV are 
mostly concentrated on image processing. In [31], a new color 
transfer model based on adaptive TGV regularization is 
presented to address the staircase effect and the image detail in 
the synthetic images is well preserved. In [32], a TGV model is 
established to remove the multiplicative noise and overcome 
the staircase effect. In this paper, the TGV regularization 
method is investigated for image reconstruction in EIT and an 
efficient Chambolle-Pock primal-dual algorithm is developed 
to solve the proposed regularization method.  

This paper is organized as follows: In Section II, the 
mathematical model of the EIT is presented. In Section III, two 
typical regularization methods, Tikhonov and TV, are 
introduced for comparison. In Section IV, the TGV 
regularization method is proposed for image reconstruction of 
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EIT which is solved by the Chambolle-Pock primal-dual 
algorithm. In Section V, the simulation and experiments are 
performed to validate the performance of the TGV 
regularization method in reducing staircase effect and 
preserving the sharp edge in the reconstructed image. Finally, 
Section VI provides the conclusions. 

II. MATHEMATICAL MODEL OF EIT 

Generally, a complete EIT system is comprised of three 
main parts: an array of sensors, a data acquisition system and a 
computer used for image reconstruction. A typical EIT sensor 
array is illustrated in Fig. 1 which consists of sixteen 
electrodes. The electrodes are attached on the external surface 
of detected object. The current is injected into two adjacent 
electrodes and then the resulting voltage is measured from the 
adjacent electrodes [33]. Finally, the internal conductivity 
distribution is reconstructed from the measured data.  
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Fig. 1.  Operating principle of EIT. 
 

Based on Maxwell’s electromagnetic field theory, the 
sensitive field of the EIT system can be expressed as: 
 

0
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                                         (1) 

 
where D is the current density vector, σ is the conductivity, E is 
the electric field and φ is the potential distribution.  

Based on (1), it can be obtained as: 
 

  0                                            (2) 

 
The relationship between the boundary voltage and the 

conductivity distribution is nonlinear and can be expressed as: 
 

( )u f    (3) 

 
where u is the boundary voltage.  

For conductivity distribution with small variation, (3) can be 
solved by simplifying the variation of the boundary voltage to 
a linear form as: 
 

                               
d ( )

=
d

f
u





   (4) 

where ∆σ is the perturbation of the conductivity distribution, 
∆u is the variation of the boundary voltage caused by the 
change of the conductivity. 

The linearized and normalized form of (4) is derived as [34]: 
 

b Ag  (5) 

 
where 1mb R  represents the change of the measured 
boundary voltage, m nA R   is the Jacobian matrix denoting 
the sensitivity of the boundary voltage to the change of 
conductivity and can be calculated based on Geselowitz's 
sensitivity theorem, 1ng R   is the difference of conductivity 

distribution in the reconstructed field, m is the number of 
measurement and n is the number of pixels of the 
reconstructed image.  

III. REGULARIZATION METHODS 

For EIT, the objective of image reconstruction is to obtain 
the unknown conductivity distribution from the known 
measured boundary voltage. It is typically an ill-posed inverse 
problem. Generally, regularization methods are effective in 
dealing with such problem, which improves the stability of the 
solution by adding a regularization term to the least squares 
problem. The general form of the regularization method can be 
expressed as: 
 

   2

2

1

2
F g Ag b R g =                     (6) 

 
Where λ is the regularization parameter which controls the 

tradeoff between the fidelity term 
2

2
gA b  and the 

regularization term R(g).  
Theoretically, the optimal solution can be found when F(g) 

is minimized. Among the regularization methods, Tikhonov 
regularization method has been widely used to solve the 
ill-posed problem. The standard form of the Tikhonov 
regularization method for EIT can be described as: 
 

  2 2

2 2

1

2
F g Ag b g    (7) 

 
The Tikhonov algorithm is stable and performs well for 

image reconstruction of continuous conductivity distribution. 
However, excessive smoothness is imposed on the edge of 
image as the regularization term is L2-norm. As a result, the 
image quality of the reconstructed image is poor. 

To preserve the sharp discontinuous edge, the TV 
regularization method is proposed and can be represented as: 
 

  2

2

1
d

2
F g Ag b g x


       (8) 

 
The TV regularization method is based on the regularization 

term with L1-norm which is advantageous for edge retention. 
However, staircase effect is induced in the smooth region of 
the reconstructed image as piecewise constant function is 
reconstructed.  
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For further improvement of image quality in EIT, an image 
reconstruction method based on the TGV regularization is 
investigated to address the staircase effect in this work.  

IV. TGV REGULARIZATION METHOD 

A. TGV Regularization Method for EIT 
The TGV regularization is a generalization form of the TV 

regularization [35]. For TGV regularization with the order 
1k  and the positive weights 0 1 1( , ,..., )k     , it can be 

expressed as:  
 

                     sup dTGV divkk f v xf                          (9) 

 
where  
 

2( ,Sym ( )) and , 0,..., 1 div
k k l

lcv C l kv            (10) 

 
and where f is the image function,  is the image domain and 

2   , 2( ,Sym ( ))k k
cC    is the space of compactly 

supported symmetric k-tensor fields, .   is the L  norm, 

 2Symk  is the symmetric tensor space with the kth order. 

When k is 1 and α is 1, (9) is converted to TV regularization, 
i.e.    1

1 TVTGV f f .When k  is 2, the second-order TGV 

is defined as [36]: 
 

                   22 sup dTGV divf f v x


                      (11) 

 
where 
 

  2 2
0 1, div,,Symk

c vvv C                (12)   

  
Equation (11) can be also written as: 

 

   2
1 0d dTGV f f v x v x  

 
            (13) 

 
where α1 and α0 are used to weigh the first and second 
derivatives of the second-order TGV regularization function 

Based on the Legendre-Fincher transform, the second-order 
TGV is rewritten in L1- norm as: 

 

                       2
1 01 1

TGV f f v v                   (14) 

  

where    T / 2v v v     denotes a symmetrized gradient 

operator.  
It can be observed from (14) that the weights α1 and α0 

establish the tradeoff between the discontinuous and smooth 
solutions. Compared with the TV regularization method which 
reconstructs the piecewise constant function, the TGV shows 
advantages in reconstructing piecewise polynomial function. 
As a result, the staircase effect appearing in the TV 
regularization may be reduced [37], [38]. 

In this paper, the second-order TGV regularization method 
is investigated for the image reconstruction in EIT. Equation 
(6) is then described as: 
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2

2
1 02 1 1

( )= TGV( )
2

2

F g gAg b
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    (15) 

 
In the image reconstruction of EIT, the objective function is 

expressed as a regularized least square minimization: 
 

argmin ( )
g

g F g                                          (16) 

 
B.  Chambolle-Pock Primal-Dual Algorithm 

According to the Legendre-Fenchel duality, the dual form of 
(16) can be derived as: 

 

      2

2
, ,

, ( ),maxmin
2u v p P q Q

u v p v q Ag b


 
             (17) 

 
where  
 

                           1 2 1( , )P p p p p 


                        (18) 

  11 12

21 22

,
, 0

q qQ q qq q 


                            (19)   

 
To solve the minimization problem in (17), the 

Chambolle-Pock primal-dual algorithm which deals with 
optimization along with its dual is studied [39], [40]. In this 
work, the Chambolle-Pock primal-dual algorithm for TGV 
regularization in EIT image reconstruction is written in 
Algorithm 1.  

 
Algorithm 1 Chambolle-Pock primal-dual algorithm for TGV regularization 

Initialize: Set , , , , ,w v v p p q ,and g0 are to zeros values. 

Given constant λ and L. Let 1 / , 1 /L L    

For k = 0, 1, 2, ··· do 

1. 1 proj ( ( ))k k k k
P p vp p       

2.
1 ( ( ( )))projk k k

Q vq q      

3. 1 prox ( + ( ))k k kw w Ag b     

4. 1 1 T 1(div A )k k k kp wg g        

5. 1 1 1( div )k k k kv v p q       

6. 1 12k k kg g g    

7. 1 12k k kv v v    
end do 

 
In Algorithm 1, div represents the negative conjugate of 

symmetric gradient operator ε, that is, div   . The 
proximal mappings onto convex sets P and Q are given by: 
 

1

proj ( )
| |

max( , )
P

p
p

p


                            (20) 

0

proj ( )
| |

max( , )
Q

q
q

q


                             (21) 
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V. RESULTS AND DISCUSSIONS 

In this section, the performance of the proposed TGV 
regularization method in the image reconstruction of the EIT is 
investigated with numerical simulation and experimental 
work. 

A. Simulation and Discussions 

All the simulations are performed with MATLAB2016a 
installed on a computer environment with Intel Core 2 multiple 
CPUs of 2.3 GHz. EIDORS is used in the construction of the 
forward model which is solved based on finite element method 
(FEM). A complete boundary condition is applied for current 
injection. The triangular mesh is adopted in the forward 
problem while the square mesh is employed in the inverse 
solution to display the sharp edge of the detected object, as 
shown in Fig. 2. To avoid inverse crime, the number of 
elements in the inverse problem is smaller than that in the 
forward problem. The conductivity of inclusion and 
background are set as 2 S/m and 1 S/m, respectively. Six 
models, named as model (a) to model (f), are simulated as 
shown in Fig. 3. 

 

 

 
(a)                                                (b) 

Fig. 2. Meshes for forward and inverse problems: (a) is the triangular mesh in 
the forward problem; (b) is the square mesh in the inverse problem. 
 

 ca b

Model

 Label e fd

 
Fig. 3.  Six different models in the simulation.  
 

 In the regularization methods, the regularization factor is an 
essential parameter for image reconstruction which controls 
the weight between the fidelity term and the regularization 
term. When the regularization factor is too small, the noise can 
not be well suppressed and serious interference is induced on 
the image. Nevertheless, the detailed information is lost for a 
large regularization factor. To determine the regularization 
factor, several methods have been proposed such as 
discrepancy principle, generalized cross-validation and 
L-curve methods. Nevertheless, there is limitation for each 
method. Prior information of the noise in the measurement is 
required for the discrepancy principle method. Although less 
prior information is needed for the other two methods, the 
related calculations are complicated. As a result, the empirical 
method has been applied in this work to determine the 
regularization parameter by repetitive test of image 
reconstruction until satisfactory reconstructed results are 
obtained. In this work, the regularization parameters are 
λ=5×10-2 for Tikhonov, λ=1×10-2 for TV and λ=1×10-6 for 
TGV respectively. In the TGV model, weighting factors are 

significant in the establishment of piecewise smooth 
reconstruction with high quality. As a result, apart from the 
regularization parameter, weighting factors are also required 
in the TGV regularization method which is different from the 
Tikhonov and TV methods.  

Fig. 4 shows the reconstructed images obtained by the 
Tikhonov, TV and TGV regularization methods under 
noiseless condition. In the image reconstruction, the 
conductivity of the inclusion and the background is 
normalized to 1 and 0 respectively. Besides, two different 
categories of models, models with smooth edges (e.g. model 
(a)-(c)) and models with sharp edges (e.g. model (d)-(f)), are 
investigated for comparative analysis. Weighting factors are 
set to α1=10, α0=0.01 and α1=2.5, α0=0.1 for the models with 
smooth edges and models with sharp edges, respectively. It 
can be observed that the reconstructed image with the 
Tikhonov regularization method has the worst quality and 
excessive smoothness appears at the image edges. Compared 
with the Tikhonov regularization method, the quality of the 
image reconstructed by the TV regularization method is 
largely improved and the edge is better preserved. However, 
the reconstructed images of the model (a) and model (b) tend 
to be square. In addition, the staircase effect is obvious in the 
recovered image of all models. In comparison to the TV 
method, the staircase effect is effectively reduced with the 
proposed TGV regularization method. Besides, excessive 
smoothness appeared in the Tikhonov method is avoided. 
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Fig. 4.  Image reconstruction without noise. 
 

In order to further evaluate the performance of the 
algorithms, relative error (RE) and correlation coefficient (CC) 
are used to determine the reconstructed image quantitatively, 
which are defined as: 
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where σ is the calculated conductivity, σ∗ is the real 
conductivity, σi and σi

∗ are the thi  elements of   and   ,   

and   represent the average values of σ and σ∗. 
The RE and CC values of the reconstructed images acquired 

with the three regularization methods are shown in Fig. 5. As 
illustrated in Fig. 5, compared with Tikhonov and TV, the RE 
values are the smallest and the CC values are the largest for the 
models with smooth edges (model (a)-(c)) when using the 
proposed TGV regularization method which indicates high 
quality of image reconstruction as shown in Fig. 4. However, 
the RE and CC values for models with sharp edges (model 
(d)-(f)) calculated by the TGV regularization method are 
almost the same with the TV. The reasons are as follows. For 
model (a)-(c) with smooth edges, only the staircase effect 
should be considered which results in the high image quality. 
For model (d)-(f), both of the reduction of the staircase effect 
and the preservation of the sharp edge should be considered. 
As a result, the performance of edge retention in TGV 
regularization method may be slightly worse than that of TV.  

 

 
(a)                                               (b) 

Fig. 5.  The RE and the CC of the reconstructed images without noise. (a) The 
RE values. (b) The CC values. 
 

The real-time performance is one of the key elements to 
evaluate the reconstruction algorithms in the application of 
tomography techniques [41]-[44]. TABLE I compares the 
calculation time of the six simulation models when using the 
three regularization methods. It can be observed that the 
calculation time of the proposed TGV regularization method is 
a bit longer compared with the Tikhonov and TV methods. 
However, the calculation time is acceptable due to its 
advantages in reducing staircase effect and avoiding excessive 
smoothness. 

 
TABLE I 

THE CALCULATION TIME OF THE THREE REGULARIZATION METHODS.  

Method 
Time/s 

Model 
(a) 

Model 
(b) 

Model 
(c) 

Model 
(d) 

Model 
(e) 

Model 
(f) 

Tikhonov 1.1063 1.0735 1.0719 1.0938 1.0455 1.0846 
TV 1.5828 1.6016 1.5609 1.5796 1.6634 1.6568 

TGV 1.7777 1.8125 1.7735 1.8082 1.8551 1.8267 

 

In practical application, the interference caused by noise is 
inevitable. In order to test the anti-noise performance of the 
three regularization methods, 5% and 10% random noise are 
added to the measured voltage in the simulation. The measured 
voltage when the noise is added, Unoise, can be expressed as: 

 

noise (1 random )U U U                              (24) 

 
where U is the voltage without noise, η is the noise level, U  is 
the mean value of U, random is a random vector with values on 
the open interval (0, 1) and 1random mR  . 

Fig. 6 shows the simulation results with 5% noise level. It 
can be noticed that slight deformation appears when compared 
with the noiseless condition. However, with the proposed 
TGV method, clearer edge is observed when compared with 
the Tikhonov method and staircase effect is reduced when 
compared with the TV method. 
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Fig. 6.  Image reconstruction with 5% noise level. 
 

The RE and CC values calculated with the three 
regularization methods under 5% noise level are shown in Fig. 
7.  Due to the inference of noise, the RE values become larger 
and the CC values get smaller compared with noiseless 
condition in Fig. 5. In comparison to the Tikhonov and TV 
methods, the smallest RE value and the largest CC value are 
obtained when using the TGV regularization method, which 
validate the performance of the proposed method in case of 
noise. 
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(a)                                                         (b) 

Fig. 7.  The RE and the CC of the reconstructed images with 5% noise level. (a) 
The RE values. (b) The CC values. 
 

In order to further study the effect of noise on the quality of 
reconstructed images, 10% noise level is added to the 
simulated voltage. Under the interference of strong noise, the 
images reconstructed by the three regularization methods 
show obvious deformation, as shown in Fig. 8. Nevertheless, 
the images recovered by the TGV have the most excellent 
quality and the staircase effect appeared in the TV is inhibited. 
 

 Model Tikhonov TV TGV

b

a

c

d

e

f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Fig. 8. Image reconstruction with 10% noise level. 
 

To qualitatively estimate the impact of the 10% noise level 
on the reconstructed images, the RE values and CC values are 
computed and depicted in Fig. 9. It can be observed that RE 
values are higher and the CC values are smaller compared with 
those in Fig. 7 which indicates further deterioration of the 
reconstructed images as shown in Fig. 8. In Fig. 9, the RE 
value is the smallest and the CC value is almost the largest for 
the TGV regularization method which further verifies its 
performance in image reconstruction. 

 

                            
(a)                                                        (b) 

Fig. 9.  The RE and the CC of the reconstructed images with 10% noise level. 
(a) The RE values. (b) The CC values. 
 

In order to verify the proposed algorithm, a hybrid model 
with two different edges is also studied, as shown in Fig. 10. 
 

 

 
Fig. 10.  The hybrid model in which a smooth model and a sharp model exist. 
 

The reconstructed images of the hybrid model with 0%, 5% 
and 10% noise level added are shown in Fig. 11. It can be seen 
that the images recovered with the TGV regularization method 
have clearer edges compared with Tikhonov method and the 
staircase effect is reduced in comparison to the TV method. 
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Fig. 11.  Reconstructed images of hybrid model under three noise levels 
 

The RE and CC values calculated by the three regularization 
methods under different noise levels are given in Fig. 12. 
Compared with the other two methods, the TGV regularization 
method shows the smallest RE value and the largest CC value 
at the three noise levels. It ensures the performance of the 
proposed method in the image reconstruction of hybrid model. 
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                         (a)                                                         (b) 

 
Fig. 12.  The RE and the CC of the reconstructed images with different noise 
level noise level. (a) The RE values. (b) The CC values. 
 

To test the performance of the TGV regularization method 
when subjected to different levels of noise, the model (a) with 
smooth edge and model (e) with sharp edge are investigated 
under the noise level of 0%, 2.5%, 5%, 7.5% and 10%. The 
related RE and CC values obtained with the three 
regularization methods are displayed in Fig. 13. It can be seen 
that the RE values increase while the CC values decreases with 
the increase of the noise level. In comparison to Tikhonov and 
TV methods, model (a) with the smooth edge reconstructed by 
TGV regularization method has the smallest RE values and the 
largest CC values as shown in Fig. 13(a). For model (e) with 
the sharp edge, the RE and CC values that are obtained with 
the TGV regularization method are almost the same with that 
acquired with TV when the noise level is low, which are better 
than the Tikhonov method. However, under high noise level, 
the TGV regularization method shows the smallest RE and 
nearly largest CC, as depicted in Fig. 13(b).  
 

     
(a) 

 
(b) 

Fig. 13.  (a) The RE and CC values for smooth models with different noise 
level. (b) The RE and CC values for sharp models with different noise level. 
 

B. Experimental Results  

In this section, static experiments are carried out with the 
Swisstom Pioneer EIT system in the University of Bath. The 
experimental results are analyzed to evaluate the feasibility of 
the proposed TGV regularization method. Sixteen electrodes 
are installed at equal intervals around the inner side of a 
cylindrical glass container with the diameter of 14 cm and the 
height of 25 cm. In the measurement, the adjacent current 
excitation and the adjacent voltage measurement are adopted. 
The EIT system works well in the frequency ranging from 45 
kHz to 200 kHz. In this work, a lower frequency of 47 kHz is 

selected as it helps imaging resistivity and not to worry about 
the permittivity. The current with the amplitude of 1 mA is 
injected into electrodes of the EIT system. The positions of the 
objects and the reconstructed images obtained with the 
Tikhonov, TV and TGV regularization methods are displayed 
in Fig. 14. As can be seen from Fig. 14, compared with the 
Tikhonov regularization method, the TV method is preferred 
for its performance in edge preservation. However, the 
staircase effect makes it hard to recover both square and 
circular objects. With the proposed TGV regularization 
method, the over-smoothness in the Tikhonov method and the 
staircase effect in the TV method are effectively reduced. It is 
especially advantageous in reconstructing cross model and 
hybrid complicated model where smooth turns and sharp turns 
exist at the same time. It may be a bit challenging when 
recovering one large and two smaller round objects nearby. 
Nevertheless, the reconstructed image performs the most 
excellent among the three regularization methods. 

 

Fig. 14.  Reconstructed images based on experimental models. 
 

For a quantitative analysis, the RE and the CC values of the 
reconstructed images in the experiment are provided in Fig. 15. 
It can be observed that the TGV regularization method shows 
the smallest RE values and the largest CC values among the 
three regularization methods, which validates that the quality 
of reconstructed images obtained by the TGV regularization 
method is better than the other two methods. 
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Fig. 15.  Comparison of RE and CC values. (a) The RE values. (b) The CC 
values. 
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VI. CONCLUSION 

A novel TGV regularization method has been proposed for 
image reconstruction of EIT. It reduces the staircase effect and 
preserves the sharp edge in the reconstructed image by 
combining the first-order and the second-order derivatives as 
the regularization term. The weight between the two 
derivatives is adjusted by two weighting factors. Besides, the 
Chambolle-Pock primal-dual algorithm is applied to solve the 
proposed regularization method. Simulation and quantitative 
analysis are performed to investigate the performance of the 
TGV regularization method. It is found that the proposed TGV 
regularization method is more superior to the Tikhonov and 
TV methods in the image reconstruction of models with 
smooth and with sharp edges, especially when noise is added. 
It avoids the over-smoothness in the Tikhonov method and 
reduces the staircase effect in the TV method. In addition, the 
TGV method also performs well for recovering hybrid 
complex models. Experiments are also carried out for further 
validation and the experimental results testify that the 
proposed TGV regularization method is effective in reducing 
the staircase effect and the reconstructed images have much 
higher quality. 
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