11,760 research outputs found

    Deconvolutional Latent-Variable Model for Text Sequence Matching

    Full text link
    A latent-variable model is introduced for text matching, inferring sentence representations by jointly optimizing generative and discriminative objectives. To alleviate typical optimization challenges in latent-variable models for text, we employ deconvolutional networks as the sequence decoder (generator), providing learned latent codes with more semantic information and better generalization. Our model, trained in an unsupervised manner, yields stronger empirical predictive performance than a decoder based on Long Short-Term Memory (LSTM), with less parameters and considerably faster training. Further, we apply it to text sequence-matching problems. The proposed model significantly outperforms several strong sentence-encoding baselines, especially in the semi-supervised setting.Comment: Accepted by AAAI-201

    SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization

    Full text link
    Transfer learning has fundamentally changed the landscape of natural language processing (NLP) research. Many existing state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely large capacity of pre-trained models, aggressive fine-tuning often causes the adapted model to overfit the data of downstream tasks and forget the knowledge of the pre-trained model. To address the above issue in a more principled manner, we propose a new computational framework for robust and efficient fine-tuning for pre-trained language models. Specifically, our proposed framework contains two important ingredients: 1. Smoothness-inducing regularization, which effectively manages the capacity of the model; 2. Bregman proximal point optimization, which is a class of trust-region methods and can prevent knowledge forgetting. Our experiments demonstrate that our proposed method achieves the state-of-the-art performance on multiple NLP benchmarks.Comment: The 58th annual meeting of the Association for Computational Linguistics (ACL 2020

    Simple to Complex Cross-modal Learning to Rank

    Get PDF
    The heterogeneity-gap between different modalities brings a significant challenge to multimedia information retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a shared multi-modal embedding space to measure the cross-modality similarity. However, previous methods often establish the shared embedding space based on linear mapping functions which might not be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously, or a small number of rankings are selected randomly to train the embedding space at each iteration. Such strategies, however, always suffer from outliers as well as reduced generalization capability due to their lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal embedding space based on non-linear mapping functions. This strategy enhances the model's robustness to outliers and achieves better generalization via training the model gradually from easy rankings by diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the proposed challenging problem with fast convergence in practice. Extensive experimental results on several benchmark datasets indicate that the proposed method achieves significant improvements over the state-of-the-arts in this literature.Comment: 14 pages; Accepted by Computer Vision and Image Understandin
    • …
    corecore