34,286 research outputs found

    A Survey on Energy Efficient Routing In MANETs Using Multi-Objective Genetic Algorithm

    Get PDF
    Mobile ad hoc networks (MANET) are self-establishing network that contains short radio range and limited bandwidth and they do not have any specified infrastructure. The ad hoc network changes its topology suddenly. In such this type of situation, establishing correct and efficient routes from source to destination is an important design issue in mobile ad hoc networks and its challenging goal is to provide energy efficient routing protocol. For finding the shortest path between the sources to destination, the routing technique genetic algorithm (GA) plays an important role. Such type of routing technique will reduce in finding the route again and again when any failure occurs in the path. Hence, it will take less time in sending again the packet to the destination and therefore it results in increasing throughput in the Mobile Ad hoc Network. In this paper, we have discussed the routing protocols, its classifications, advantage and disadvantages of the routing protocols and taxonomy of energy efficient routing protocols in Mobile Ad hoc network. DOI: 10.17762/ijritcc2321-8169.160411

    A secure and lightweight ad-hoc routing algorithm for personal networks

    Get PDF
    Over the past few years, there has been increasing interest in utilizing Personal Area Networks (PANs) to offer users innovative and personalized services. This interest is a consequence of the widespread use of mobile devices such as laptops, mobile phones, PDAs, digital cameras, wireless headsets, etc. to carry out a variety of user-centric tasks. The PAN itself is built upon an ad-hoc network where devices trust their neighbors to route their packets. The cooperative nature of ad-hoc networks allows malicious nodes to easily cripple the network by inserting false route information, replaying old messages, modifying messages of other nodes, etc. An applicable area still under research, and the focus of this paper, is secure routing protocols for ad-hoc networks. To achieve availability in the PAN, the routing protocol used must be robust against both dynamically changing topology and malicious attacks. However, the heterogeneous nature of Personal Network (PN) devices means that traditional security mechanisms are too resource intensive to be sufficient by themselves. This paper describes a new ad-hoc secure routing protocol for Personal Networks (PNs), suitable in a limited multi-hop scenario. This protocol is based on ADOV and relies on efficient cryptographic primitives to safeguard the security and privacy of PN users. Following that, a number of attacks in the area of ad-hoc networks are discussed, and it is shown that the new algorithm protects against multiple un-coordinated active attackers, in spite of compromised nodes in the network

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    BGCA: bandwidth guarded channel adaptive routing for ad hoc networks

    Get PDF
    To support truly peer-to-peer applications in ad hoc wireless networks, a judicious and efficient ad hoc routing protocol is needed. Much research has been done on designing ad hoc routing protocols and some well known protocols are also being implemented in practical situations. However, one major drawback in existing state-of-the-art protocols, such as the AODV (ad hoc on demand distance vector) routing protocol, is that the time-varying nature of the wireless channels among the mobile terminals is ignored, let alone exploited. In this paper, by using a previously proposed adaptive channel coding and modulation scheme which allows a mobile terminal to dynamically adjust the data throughput via changing the amount of error protection incorporated, we devise a new ad hoc routing algorithm that dynamically changes the routes according to the channel conditions. Extensive simulation results indicate that our proposed protocol is more efficient in that shorter delays and higher rates are achieved.published_or_final_versio

    Security in Ad-Hoc Routing Protocols

    Full text link
    Mobile Ad-Hoc Networks (MANETs) are becoming increasingly popular as more and more mobile devices find their way to the public, besides traditional" uses such as military battlefields and disaster situations they are being used more and more in every-day situations. With this increased usage comes the need for making the networks secure as well as efficient, something that is not easily done as many of the demands of network security conflicts with the demands on mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). The concept and structure of MANETs make them prone to be easily attacked using several techniques often used against wired networks as well as new methods particular to MANETs. Security issues arise in many different areas including physical security, key management, routing and intrusion detection, many of which are vital to a functional MANET. In this paper we focus on the security issues related to ad hoc routing protocols in particular. The routing in ad hoc networks remains a key issue since without properly functioning routing protocols, the network simply will not work the way it's intended to. Unfortunately, routing may also be one of the most difficult areas to protect against attacks because of the ad hoc nature of MANETs. We will present the main security risks involved in ad-hoc routing as well as the solutions to these problems that are available today.

    A Novel Scalable Multicast Mesh Routing Protocol for Mobile ad hoc Networks

    Get PDF
    In recent years the use of portable and wireless equipment is becoming more widespread, and as in many situations communication infrastructure might not be available, wireless networks such as Mobile Ad Hoc Networks (MANETs) are becoming increasingly important. A mobile ad hoc network is a collection of nodes that exchanges data over wireless paths. The nodes in this network are free to move at any time, therefore the network topology changes in an unpredictable way. Since there is no fixed infrastructure support in mobile ad hoc networks, each node functions as a host and a router. Due to mobility, continuous change in topology, limited bandwidth, and reliance on batteries; designing a reliable and scalable routing protocol for mobile ad hoc networks is a challenging task. Multicast routing protocols have been developed for routing packets in mobile ad hoc networks. Existing protocols suffer from overheads and scalability. As the number of senders, groups, and mobility speed increases, the routing overhead and the packet collision increases, and therefore the packet delivery ratio decreases. Thus none of the existing proposed multicast routing protocols perform well in every situation. In this study a novel multicast routing protocol for ad hoc networks is proposed. It is an efficient and scalable routing protocol, and named Network Sender Multicast Routing Protocol (NSMRP). NSMRP is a reactive mesh based multicast routing protocol. A central node called mesh sender (MS) is selected periodically from among the group(s) sender(s) to create one mesh in order to be used in forwarding control and data packets to all multicast group(s) member(s). One invitation message will be periodically flooded to all group(s) member(s) by MS to join the group(s). The proposed routing protocol is evaluated by simulation and compared with a well known routing protocol. The results are analyzed and conclusions are drawn

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Get PDF
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008
    • …
    corecore