9 research outputs found

    The Perils of Repeating Patterns: Observation of Some Weak Keys in RC4

    Get PDF
    We describe some observed trivially weak keys for the stream cipher RC4. Keys with repeating patterns are found to be key length invariant. The cause of the problem is the simplistic key dependent state permutation in the RC4 initialization

    On Reconstruction of RC4 Keys from Internal States

    Get PDF
    In this work key recovery algorithms from the known internal states of RC4 are investigated. In particular, we propose a bit-by-bit approach to recover the key by starting from LSB's of the key bytes and ending with their MSB's

    SecureSurgiNET:a framework for ensuring security in telesurgery

    Get PDF
    The notion of surgical robotics is actively being extended to enable telesurgery, where both the surgeon and patient are remotely located and connected via a public network, which leads to many security risks. Being a safety-critical application, it is highly important to make telesurgery robust and secure against active and passive attacks. In this article, we propose the first complete framework, called SecureSurgiNET, for ensuring security in telesurgery environments. SecureSurgiNET is primarily based on a set of well-established protocols to provide a fool-proof telesurgical robotic system. For increasing the efficiency of secured telesurgery environments, the idea of a telesurgical authority is introduced that ensures the integrity, identity management, authentication policy implementation, and postoperative data security. An analysis is provided describing the security and throughput of Advanced Encryption Standard during the intraoperative phase of SecureSurgiNET. Moreover, we have tabulated the possible attacks on SecureSurgiNET along with the devised defensive measures. Finally, we also present a time complexity analysis of the SecureSurgiNET through simulations. © The Author(s) 2019

    On Reconstruction of RC4 Keys from Internal States

    Full text link

    Cryptanalysis of symmetric key primitives

    Get PDF
    Block ciphers and stream ciphers are essential building blocks that are used to construct computing systems which have to satisfy several security objectives. Since the security of these systems depends on the security of its parts, the analysis of these symmetric key primitives has been a goal of critical importance. In this thesis we provide cryptanalytic results for some recently proposed block and stream ciphers. First, we consider two light-weight block ciphers, TREYFER and PIFEA-M. While TREYFER was designed to be very compact in order to fit into constrained environments such as smart cards and RFIDs, PIFEA-M was designed to be very fast in order to be used for the encryption of multimedia data. We provide a related-key attack on TREYFER which recovers the secret key given around 2 11 encryptions and negligible computational effort. As for PIFEA-M, we provide evidence that it does not fulfill its design goal, which was to defend from certain implementation dependant differential attacks possible on previous versions of the cipher. Next. we consider the NGG stream cipher, whose design is based on RC4 and aims to increase throughput by operating with 32-bit or 64-bit values instead of with 8-bit values. We provide a distinguishing attack on NGG which requires just one keystream word. We also show that the first few kilobytes of the keystream may leak information about the secret key which allows the cryptanalyst to recover the secret key in an efficient way. Finally, we consider GGHN, another RC4-like cipher that operates with 32-bit words. We assess different variants of GGHN-Iike algorithms with respect to weak states, in which all internal state words and output elements are even. Once GGHN is absorbed in such a weak state, the least significant bit of the plaintext words will be revealed only by looking at the ciphertext. By modelling the algorithm by a Markov chain and calculating the chain absorption time, we show that the average number of steps required by these algorithms to enter this weak state can be lower than expected at first glance and hence caution should be exercised when estimating this numbe

    Tornado Attack on RC4 with Applications to WEP & WPA

    Get PDF
    In this paper, we construct several tools for building and manipulating pools of biases in the analysis of RC4. We report extremely fast and optimized active and passive attacks against IEEE 802.11 wireless communication protocol WEP and a key recovery and a distinguishing attack against WPA. This was achieved through a huge amount of theoretical and experimental analysis (capturing WiFi packets), refinement and optimization of all the former known attacks and methodologies against RC4 stream cipher in WEP and WPA modes. We support all our claims on WEP by providing an implementation of this attack as a publicly available patch on Aircrack-ng. Our new attack improves its success probability drastically. Our active attack, based on ARP injection, requires 22500 packets to gain success probability of 50\% against a 104-bit WEP key, using Aircrack-ng in non-interactive mode. It runs in less than 5 seconds on an off-the-shelf PC. Using the same number of packets, Aicrack-ng yields around 3\% success rate. Furthermore, we describe very fast passive only attacks by just eavesdropping TCP/IPv4 packets in a WiFi communication. Our passive attack requires 27500 packets. This is much less than the number of packets Aircrack-ng requires in active mode (around 37500), which is a huge improvement. Deploying a similar theory, we also describe several attacks on WPA. Firstly, we describe a distinguisher for WPA with complexity 2^{42} and advantage 0.5 which uses 2^{42} packets. Then, based on several partial temporary key recovery attacks, we recover the full 128-bit temporary key of WPA by using 2^{42} packets. It works with complexity 2^{96}. So far, this is the best key recovery attack against WPA. We believe that our analysis brings on further insight to the security of RC4

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)
    corecore