
Tornado Attack on RC4

with

Applications to WEP & WPA ⋆

Pouyan Sepehrdad1, Petr Sušil1, Serge Vaudenay1, and Martin Vuagnoux2

1 EPFL, Lausanne, Switzerland
2 base23 SA, Switzerland

pou.sepehrdad@gmail.com,

petr.susil@epfl.ch, serge.vaudenay@epfl.ch,

martin@vuagnoux.com

Abstract. In this paper, we construct several tools for building and manipulating pools of biases in the analysis

of RC4. We report extremely fast and optimized active and passive attacks against IEEE 802.11 wireless commu-

nication protocol WEP and a key recovery and a distinguishing attack against WPA. This was achieved through a

huge amount of theoretical and experimental analysis (capturing WiFi packets), refinement and optimization of all

the former known attacks and methodologies against RC4 stream cipher in WEP and WPA modes. We support all

our claims on WEP by providing an implementation of this attack as a publicly available patch on Aircrack-ng. Our

new attack improves its success probability drastically. Our active attack, based on ARP injection, requires 22500

packets to gain success probability of 50% against a 104-bit WEP key, using Aircrack-ng in non-interactive mode.

It runs in less than 5 seconds on an off-the-shelf PC. Using the same number of packets, Aicrack-ng yields around

3% success rate. Furthermore, we describe very fast passive only attacks by just eavesdropping TCP/IPv4 packets

in a WiFi communication. Our passive attack requires 27500 packets. This is much less than the number of packets

Aircrack-ng requires in active mode (around 37500), which is a huge improvement. Deploying a similar theory,

we also describe several attacks on WPA. Firstly, we describe a distinguisher for WPA with complexity 242 and

advantage 0.5 which uses 242 packets. Then, based on several partial temporary key recovery attacks, we recover

the full 128-bit temporary key of WPA by using 242 packets. It works with complexity 296. So far, this is the best

key recovery attack against WPA. We believe that our analysis brings on further insight to the security of RC4.

1 Introduction

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anonymously posted in 1994. Nowadays,

RC4 is widely used in SSL/TLS, Microsoft Lotus, Oracle Secure SQL, Apple OCE, Microsoft Windows and Wi-

Fi 802.11 wireless communications. 802.11 [23] used to be protected by WEP (Wired Equivalent Privacy) which is

now replaced by WPA (Wi-Fi Protected Access), due to security weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by XORing it with the RC4 keystream. The RC4

key is a pre-shared key prepended with a 3-byte nonce IV. The IV is sent in clear for self-synchronization. Indeed,

the adversary knows that the key is constant except the IV which is known. Nowadays, WEP is considered as being

terribly weak, since passive attacks can recover the full key by assuming that the first bytes of every plaintext frame is

known. This happens to be the case due to the protocol specifications.

In order to fix this problem, the Wi-Fi Alliance has replaced WEP by WPA [23]. The peer authentication is based

on IEEE 802.1X which accommodates a simple authentication mode based on a pre-shared key (WPA-PSK). The

authentication creates a Temporary Key (TK). The TK then goes through a temporary key integrity protocol (TKIP)

to derive per-packet keys (PPK). The idea is that the TK is changed into a TKIP-mixed Transmit Address and Key

(TTAK) key to be used for a number of frames, limited to 216. Each frame applies a simple transformation to the

TTAK and a counter TSC to derive the RC4 per-packet key PPK. Again, the 3 first bytes of the RC4 key are known

(they depend on the counter). In addition to the key derivation, WPA provides a packet integrity protection scheme

MIC [13]. Thus, only passive key recovery attacks can be considered.

⋆ This paper is the full version of our FSE 2013 [60] paper and the corrected version of our paper published at Eurocrypt 2011 [62].

Related Work. We recall three approaches for the cryptanalysis of RC4: attacks based on the weaknesses of the Key

Scheduling Algorithm (KSA), attacks based on the weaknesses of the Pseudorandom Generator Algorithm (PRGA),

and the blackbox analysis [61], which looks at RC4 as a blackbox and discovers weaknesses in RC4.

As for the KSA, one of the first weaknesses published on RC4 was discovered by Roos [56] in 1995. This correla-

tion relates the secret key bytes to the initial state of PRGA. Recently, Maitra et al. [35] generalized Roos-type biases

and introduced a related key distinguisher for RC4. Roos [56] and Wagner [75] identified classes of weak keys which

reveal the secret key if the first bytes of the key are known. This property has been largely exploited to break WEP

(see [6,14,20,33,32,61,4,68,73]). Another class of results concerns the inversion problem of the KSA: given the final

state of the KSA, the problem is to recover the secret key [5,52].

Regarding the PRGA, the analysis has been largely motivated by distinguishing attacks [15,17,38,40] or initial

state reconstruction from the keystream bytes [18,30,41,72] with complexity 2241 for the best state recovery attack.

Relevant studies of the PRGA reveal biases in the keystream output bytes in [39,54]. Mironov recommends in [42]

that the first 512 initial keystream bytes must be discarded to avoid these weaknesses. Recently, Ohigashi et al. [50]

showed that even if these initial bytes are discarded, RC4 can still be broken in broadcast schemes.

In 1996, Jenkins published two biases in the PRGA of RC4 on his website [26], which were used in an attack

by Klein later [29]. These biases were generalized by Mantin in his Master’s Thesis [37]. In 2008, Paul, Rathi and

Maitra [53] discovered a bias in the index which generates the first keystream word of RC4. Another bias in the PRGA

was discovered by Maitra and Paul in [34]. Finally, Sepehrdad, Vaudenay and Vuagnoux [61] discovered 48 new

correlations in the PRGA between state bytes, key bytes and the keystream and 9 new correlations between the key

bytes and the keystream.

RC4 can also be used in broadcast schemes, when the same plaintext is encrypted with different keys. In this mode,

the attacker often endeavours to find unconditional or conditional biases on the keystream (see [39,36,59,25,1,50] for

the most relevant attacks.).

In practice, key recovery attacks on RC4 need to bind the KSA and the PRGA weaknesses to correlate secret

key words to the keystream words. Some biases in the PRGA [29,53,34] have been successfully bound to the Roos

correlation [56] to provide known plaintext attacks. Another approach is the blackbox analysis [61], which does not

require any binding and can discover a correlation among the key bytes and the keystream directly. This was exploited

in [61].

The WEP key recovery process is harder in practice than in theory. Indeed, some bytes of the keystream may

be unknown (see Appendix 1 of [73] for a description of the known and unknown bytes in ARP and IP packets).

Moreover, the theoretical success probability has often been miscalculated and conditions to recover the secret key are

not the same depending on the paper. For example, [68,73,4,61] check the most 106 probable keys instead of the first

one as in [14,33,32,29,64,65]. Additionally, the IEEE 802.11 standard does not specify how the IVs should be chosen.

Thus, some attacks consider randomly picked IVs or incremental IVs (both little-endian and big-endian encoded).

Some implementations specifically avoid some class of IVs which are weak with respect to some attacks.

To unify the results, we consider recovering a random 128-bit long secret key with random IVs. This often corre-

sponds to the default IV behavior of the 802.11 GNU/Linux stack. We compare the previous and the new results using

both a theoretical and a practical approach.

– In [14], Fluhrer, Mantin and Shamir’s (FMS) attack is only theoretically described. The authors postulate that 4

million packets would be sufficient to recover the secret key of WEP with the success probability of 50% with

incremental IVs. A practical implementation of this attack was realized by Stubblefield, Ioannidis and Rubin

[64,65]. They showed that between 5 million to 6 million packets are needed to recover the secret key using the

FMS attack. Note that in 2001, almost all wireless cards was using incremental IVs in big-endian.

– There is no proper theoretical analysis of the Korek [32,33] key recovery attacks. Only practical implementations

such as Aircrack-ng [10] are available. Additionally, Aircrack-ng classifies the most probable secret keys and

performs a brute-force attack. The success probability of 50% is obtained when about 100000 packets are captured

with random IVs. Note that the amount of the brute-forced keys depends on the value of the secret key and the

“Fudge” factor (the number of trials on the key), a parameter chosen by the attacker. By default, around 1000

to 1000000 keys are brute-forced. In this paper, we improve the conditions of the Korek attacks and prove their

success probability.

2

– The ChopChop attack was introduced in [31,67], which allows an attacker to interactively decrypt the last m bytes

of an encrypted packet by sending 128×m packets in average to the network. The attack does not reveal the main

key and is not based on any special property of the RC4 stream cipher.

– In [29], Klein showed theoretically that his new attack needs about 25000 packets with random IVs to recover the

WEP secret key with the probability of 50%. Note that there is no practical implementation of the Klein attack,

but both the PTW [68] and the VV07 [73] attacks, which theoretically improve the WEP key recovery process,

need more than 25000 packets, which shows that the theoretical success probability of the Klein attack was over

estimated. We implemented this attack and we obtained the success probability of 50% for approximately 60000

packets (random IVs).

– Tews, Weinmann and Pyshkin showed in [68] that the WEP secret key can be recovered with only 40000 packets

for the same success probability (random IVs). However, this attack brute-forces the most 106 probable secret

keys. Thus, a comparison with the previous attacks is less obvious. Moreover, there is no theoretical analysis of

this attack, only practical results are provided by the authors. We confirm this practical result.

– Vaudenay and Vuagnoux [73] presented an improvement to the previous attacks, where the same success probabil-

ity can be reached with an average of 32700 packets with random IVs. This attack also tests the 106 most probable

secret keys. Moreover, only practical results are provided by the authors. We confirm this practical result.

– According to [4], Beck and Tews re-implemented the [73] attack in 2009, obtaining the same success probability

with only 24200 packets using Aircrack-ng in the “interactive mode”. Using this strategy, much less number of

packets is required (see Section 8.1 for more details). No other previous attack used this strategy, so a comparison

between this result and other results in the literature is not straightforward. The 106 most probable secret keys are

brute-forced. Note that we were not able to reproduce this result.

– In 2010, Sepehrdad, Vaudenay and Vuagnoux [61] described new key recovery attacks on RC4, which reduce the

amount of packets to 9800 packets for the same success probability. The most 106 probable keys are brute-forced

as well. However, the IVs were not randomly chosen and some attacks such as the FMS were over represented.

– In 2011, Sepehrdad, Vaudenay and Vuagnoux [62] introduced an optimized key recovery attack on WEP, obtaining

the same success probability as the previous attacks with only 4000 packets, but they did not verify their theoretical

results with experiments.

In this paper, we construct a precise theory behind the WEP attack. We show that the analysis in [62] concluding

that it is feasible to derive 50% success rate with 4000 packets should be revisited. We illustrate that the variance

of some random variables in [62] are not as expected and the assumption of the independence and distribution of a

few random events in [62] are not correct. All our analysis has been precisely checked through extensive amount of

experiments. We show that we can recover a 128-bit long WEP key using 22500 packets in less than 5 seconds using

an ordinary PC. With less number of packets, a successful attack will run for a longer period, due to brute-forcing

more keys.

WPA was proposed as a replacement for WEP in 2003 [23]. Almost all known and new key recovery attacks on

WEP could be applied to WPA if there were several packets using the same RC4 key. Indeed, only the Fluhrer, Mantin

and Shamir attack [14] is filtered. However, WPA uses a different secret key for every encrypted packet. Since 2003, a

few cryptanalysis results were published against WPA, but most such attacks work only in case some special features

of WPA are enabled (for instance QoS). Currently, dictionary attacks [10] and recovering the PIN code of WPS [74] by

brute-force (see below) are the main techniques that break WPA practically. In case the user chooses a safe password

and WPS is disabled, we are not aware of any method that can perform a key recovery attack on WPA in a short period

of time. Below, we list the most well-known attacks on WPA in the literature:

– Dictionary Attack: Eavesdropping the network, the goal of the attacker is to get a WPA handshake [24,10]; the hash

of the key is communicated between the client and the Access Point (AP) when the client begins the connection.

3

The attacker can wait or launch a deauthenticate-attack against the client. When he gets the hash, he can try to find

the key with a dictionary attack, a rainbow attack [49] or one of the multiple attacks that exist on hashed keys in

general.

– A flaw in WiFi Protected Setup (WPS) is known from the end of 2011 by Tactical Network Solutions (TNS) [74].

From this exploit, the WPA password can be recovered almost instantly in plaintext once the attack on the access

point WPS is initiated, which normally takes 2-10 hours.

– In 2009, Beck and Tews released an attack on WPA [4]. This is not a key recovery attack, but still exploits

weaknesses in TKIP to allow the attacker to decrypt ARP packets and to inject traffic into a network, even allowing

him to perform a DoS (Denial of Service) or an ARP poisoning. In order to be practical, the attack requires some

additional quality of services features (described by IEEE 802.11e) to be enabled.

– The Ohigashi-Morii Attack [51] is an improvement of the Beck-Tews attack on WPA-TKIP. Indeed, this attack is

efficient for all modes of WPA and not just those with QoS features. The time to inject a fake packet is reduced to

approximately 15 minutes to 1 minute at the best. For this attack, a man-in-the-middle attack is superposed to the

Beck-Tews attack, with tips to reduce the execution time of the attack. In [71], the time complexity of Ohigashi-

Morii attack was improved. This new attack focuses on a new vulnerability of QoS packet processing and this

vulnerability can remove the condition that the Access Point (AP) needs to support IEEE 802.11e.

– The Hole196 vulnerability was found by Airtight Networks [46] in 2010. The name “Hole196” refers to the page

number in the IEEE 802.11 Standard (Revision, 2007) where the vulnerability is buried. This attack is not a key

recovering attack, the attacker has to be an authorized user of the network. All Wi-Fi networks using WPA or

WPA2, regardless of the authentication (PSK or 802.1x) and encryption (AES) they use, are vulnerable.

– An attack against the Michael message integrity code of WPA was presented in [3], that allows an attacker to reset

the internal Message Integrity Check (MIC) state and concatenates a known message with an unknown message

which keeps the unknown MIC valid for the new entire packet.

– In 2004, Moen, Raddum and Hole [43] discovered that the recovery of at least two RC4 packet keys in WPA leads

to a full recovery of the temporal key and the message integrity check key. Once from the same segment of 216

consecutive packets two RC4 keys are successfully recovered, the Moen, Raddum and Hole attack can be applied.

This leads to a TK key recovery attack on WPA with complexity 2104 using 2 packets.

We extend Moen, Raddum and Hole attack. We first recover several weak bytes of the key and then we apply

Moen, Raddum and Hole attack. As a result, we propose a key recovery attack against WPA with complexity 296 and

by using 242 packets.

Our overall contribution. In this paper, we construct tools for building and manipulating pools of biases. With our

theory, we analyze several statistical strategies for a partial key recovery. We apply it to recover some weak bits of the

WPA key TK by using 242 packets. We apply our analysis to WEP and show experimentally that the best attacks so far

can still be improved. We then transform our partial key recovery attack into a distinguisher for WPA. Our distinguisher

was further improved recently [57] deploying another technique. Finally, we build a full session key recovery attack

against WPA with complexity 296 and using 242 packets. We review some errors in our previous publications [61,62]

and verify our results by experiment.

Structure of the paper. We first present RC4, WEP, WPA and Aircrack-ng in Section 2. Tools for manipulating the

pool of biases in RC4 are presented in Section 3. Two significant statistical biases in RC4 are elaborated in Section 4

for the target key bytes. Then, we study key recovery attacks to be able to recover some “weak bits” of the temporary

key of WPA in Section 5. Then, we present a full temporary key recovery attack for WPA in Section 5.4. We also

introduce a distinguisher for WPA in Section 5.5. Finally, We present an optimized attack on WEP in Section 6 and

then we compare our results with Aircrack-ng 1.1 in Section 7. Finally, we present some open problems and challenges

in Section 8 and conclude.

4

2 Preliminaries

2.1 Description of RC4 and Notations

The stream cipher RC4 consists of two algorithms: the Key Scheduling Algorithm (KSA) and the Pseudo Random

Generator Algorithm (PRGA). RC4 has a state defined by two registers (words) i and j and an array (of N words) S

defining a permutation over ZN . The KSA generates an initial state for the PRGA from a random key K of L words as

described in Fig. 1.

Note that in this paper, we define all the operators such as addition, and multiplication in the ring of integers modulo

N represented as Z/NZ, or ZN , where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N.

Throughout this paper, we denote K̄[i] := K[0] + · · ·+K[i]. Note that in this paper, we recover K̄[i]’s, instead of

K[i]’s, because this approach increases the success probability of key recovery (see [73] for more details). We let z

denote the keystream derived from the key K using RC4. The first bytes of a plaintext frame are often known (see

[73]), as well as the IV (the first 3 bytes of the key K). That is, we assume that the adversary can use z and the IV in a

known plaintext attack.

It starts with an array {0,1, . . . ,N−1}, where N = 28 and swaps N pairs, depending on the value of the secret key

K. At the end, we obtain the initial state S′0 = SN−1.

KSA PRGA

1: for i = 0 to N−1 do

2: S[i]← i

3: end for

4: j← 0

5: for i = 0 to N−1 do

6: j← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0

2: j← 0

3: loop

4: i← i+1

5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 1. The KSA and the PRGA Algorithms of RC4

Once the initial state S′0 is created, it is used by the second algorithm of RC4, the PRGA. Its role is to generate

a keystream of words of log2 N bits, which will be XORed with the plaintext to obtain the ciphertext. Thus, RC4

computes the loop of the PRGA each time a new keystream word zi is needed, according to the algorithm in Fig. 1.

Note that each time a word of the keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4⋆(t) of RC4 defined by a parameter t as shown in Fig. 2. Namely,

after the round t, j is assigned randomly. This model has already been used in the literature, such as in [40,56,52].

Let Si[k] (resp. S′i[k]) denote the value of the permutation defined by array S at index k, after the round i of the KSA

(resp. the PRGA). We also denote SN−1 = S′0. Let ji (resp. j′i) be the value of j after the round i of the KSA (resp.

PRGA) where the rounds are indexed with respect to i. Thus, the KSA has rounds 0,1, . . . ,N− 1 and the PRGA has

rounds 1,2, The KSA and the PRGA are defined by

KSA PRGA

j−1 = 0 j′0 = 0

ji = ji−1 +Si−1[i]+K[i mod L] j′i = j′i−1 +S′i−1[i]
S−1[k] = k S′0[k] = SN−1[k]

Si[k] =

Si−1[ji] if k = i

Si−1[i] if k = ji
Si−1[k] otherwise

S′i[k] =

S′i−1[j
′
i] if k = i

S′i−1[i] if k = j′i
S′i−1[k] otherwise

zi = S′i[S
′
i[i]+S′i[j

′
i]]

5

KSA⋆(t) PRGA⋆

1: for i = 0 to N−1 do

2: S[i]← i

3: end for

4: j← 0

5: for i = 0 to N−1 do

6: if i≤ t then

7: j← j+S[i]+K[i mod L]
8: else

9: j← random

10: end if

11: swap(S[i],S[j])
12: end for

1: i← 0

2: j← 0

3: loop

4: i← i+1

5: j← random

6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 2. The KSA⋆(t) and the PRGA⋆ Algorithms of RC4⋆(t)

In WEP and WPA attacks, the base of the complexity measurement is the time it takes to compute the value that a

bias proposes for a key byte.

2.2 Description of WEP

WEP [21] uses a 3-byte IV concatenated to a secret key of 40 or 104 bits (5 or 13 bytes) as an RC4 key. Thus, the RC4

key size is either 64 or 128 bits. In this paper, we do not consider the 40-bit key variant. So, L = 16. We have

K = K[0]‖K[1]‖K[2]‖K[3]‖· · ·‖K[15] = IV0‖IV1‖IV2‖K[3]‖· · ·‖K[15]

where IVi represents the (i+ 1)-th byte of the IV and K[3]‖...‖K[15] represents the fixed secret part of the key. In

theory, the value of the IV should be random, but in practice it is a counter, mostly in little-endian and is incremented

by one each time a new 802.11b frame is encrypted. Sometimes, some particular values of the IV are skipped to

thwart specific attacks based on the “weak IVs”. Thus, each packet uses a slightly different key. RC4 then produces a

keystream which is XORed with the plaintext to obtain the ciphertext.

It is well known [55,68,73] that a relevant portion of the plaintext is practically constant and that some other bytes

can be predicted. They correspond to the LLC header and the SNAP header and some bytes of the TCP/IP encapsulated

frame. For example, by XORing the first byte of the ciphertext with the constant value 0xAA, we obtain the first byte

of the keystream. Thus, even if these attacks are called known plaintext attacks, they are ciphertext only in practice.

2.3 Description of WPA

WPA includes a key hashing function [19] to defend against the Fluhrer, Mantin and Shamir attack [14], a Message

Integrity Code (MIC) [13] and a key management scheme based on 802.1X [22] to avoid the key reuse and to ease the

key distribution.

The 128-bit Temporal Key (TK) is a per-session key. It is derived from the key management scheme during the

authentication and is given as an input to the phase1 key hashing function (key mixing algorithm), together with a

48-bit Transmitter Address (TA) and a 48-bit TKIP Sequence Counter (TSC) which is sometimes called the IV. We

will avoid this latter name to avoid any confusion with the first 3 bytes of the RC4 key (which indeed only depends on

the TSC, but with a shorter length).

The TK can be used to encrypt up to 248 packets. Every packet has a 48-bit index TSC which is split into IV32 and

IV16. The IV32 counter is incremented every 216 packets. The packet is encrypted using a 128-bit RC4KEY which is

derived from the TK, TSC, and some other parameters (e.g. device addresses) which can be assumed as constants and

known by the adversary for our purpose. As for WEP, the first three bytes of the RC4KEY only depend on the TSC,

6

so they are not secret. The derivation works in two phases. The first phase does not depend on IV16 and is done once

every 216 packets for efficiency reasons. It derives a 80-bit key TTAK, called TKIP-mixed Transmit Address and Key

(TTAK) in the standard (but, is denoted P1K in the reference code).

TTAK= phase1(TK,TA, IV32)

The second phase uses the TTAK, TK and the IV16 to derive a 96-bit key PPK which is then turned into the RC4KEY:

RC4KEY = phase2(TK,TTAK, IV16)

The key derivation of WPA based on a pre-shared key is depicted in Fig. 3 (without protocol parameters such as the

transmitter address TA).

PSK ✲ Authentication

WPA-PSK
✲ TK ✲

TSC
✻IV16

❄

IV32

✲
phase1 ✲TTAK

phase2 ✲ RC4KEY

802.1X WPA RC4

Fig. 3. The WPA Key Derivation based on the Pre-Shared Key Authentication Method

In what follows, we denote K[i] = RC4KEY[i mod 16] and IV = K[0]‖K[1]‖K[2] to use the same notations as in

WEP. By convention, the TTAK and the PPK are considered as vectors of 16-bit words. The TK and the RC4KEY are

considered as vectors of 8-bit words. Vectors are numbered starting from 0.

The RC4KEY is simply defined from the PPK, TK and the IV16 by

RC4KEY[0] = high8(IV16) RC4KEY[1] = (high8(IV16) or 0x20) and 0x7f

RC4KEY[2] = low8(IV16) RC4KEY[3] = low8((PPK[5]⊕ (TK[1]‖TK[0]))≫ 1)
RC4KEY[4] = low8(PPK[0]) RC4KEY[5] = high8(PPK[0])
RC4KEY[6] = low8(PPK[1]) RC4KEY[7] = high8(PPK[1])

...
...

Note that a filter avoids the use of some weak IV classes. Actually, only the weak IV class discovered by Fluhrer,

Mantin, and Shamir [14] are filtered.

2.4 Aircrack-ng

Aircrack-ng [10] is a WEP and WPA-PSK keys cracking program that can recover keys once enough data packets have

been captured. It is the most widely downloaded cracking software in the world. It implements the standard Fluhrer,

Mantin and Shamir’s (FMS) attack [14] along with some optimisations like the Korek attacks [32,33], as well as the

Physkin, Tews and Weinmann (PTW) attack [68]. In fact, it currently has the implementation of state of the art attacks

on WEP and WPA. We applied a patch on Aircrack-ng 1.1 in our implementation to improve its success probability.

7

3 Tools for Manipulation of Biases in RC4

In this section, we mathematically formulate the pool of biases in RC4 and describe the notations for manipulating

these biases which will be used later in our attacks. Each individual bias is described in Appendix A.

There exists a big list of biases for RC4. In our attacks, we use this big list to statistically vote for K̄[i]’s. For the

WEP attack, we first recover the value of K̄[15] and then we recover the values of K̄[3] to K̄[14] sequentially. We first

recover the value of K̄[15], because in RC4, we have a fundamental relation as follows:

K̄[i+16 j] = K̄[i]+ jK̄[15] (1)

for 0 ≤ i ≤ 15 and j = 0,1 and 2. This means that if the value of K̄[15] is known, the biases for K̄[i+ 16 j] can be

used to vote for K̄[i]. This helps us increase the probability of recovering K̄[i] correctly. The values of K̄[3] to K̄[14]
are recovered sequentially, because if the value of K̄[3] is known, since K[0], K[1], K[2] are also known (they make the

IV), we can update the state to S3. This will incline the success probability of recovering K̄[4]. Hence, we first recover

K̄[3] and then we update the state to S3, then we recover K̄[4] and update the state to S4, and we continue this process

until we recover K̄[14]. For WPA, we do not need to recover all key bytes to be able to discover the 8 weak temporary

key bytes of WPA. It will be shown in Section 5, that we only need to recover K̄[15], K̄[3], K̄[13] and K̄[14], but in this

case, we only use the state S2 for key recovery.

Since the intuition is already presented above, we now mathematically represent how to manipulate the pool of

biases for RC4:

Let I0 be a set of integers, which represents the indices of those key bytes which are already known. We call clue

the value for all K̄ bytes whose indices are in I0. To begin with RC4 in WEP and WPA, we have I0 = {0,1,2} and

clue= IV, since IV is the first 3 bytes of the key.

To recover K̄[i], given a set of indices I0 and an index i, we assume that we have a list rowRC4
i|I0 of di|I0 vectors

(f̄ j, ḡ j, p j,q j) for j = 1, . . . ,di|I0 with functions f̄ j (see Table 3 in Appendix for all such biases) and the corresponding

event ḡ j (see Table 3 in Appendix for all such biases conditions) such that

Pr
[

K̄[i] = f̄ j(z,clue)|ḡ j(z,clue)
]

= p j

for some probability p j 6= 1
N

and

Pr [ḡ j(z,clue)] = q j

where q j is called the density of the bias. We use the list of classes of biases from Table 3. The mysterious function

σi(t) in Table 3 can be computed using the clue. The exact definition of this function is given in Lemma 6 later.

For simplicity, we assume that for some given i, z and clue, all suggested f̄ j(z,clue) for j’s such that ḡ j(z,clue) are

pairwise distinct. We further assume that the events K̄[i] = f̄ j(z,clue) with different i’s are independent. We will also

assume that f̄ j and ḡ j are of the form f̄ j(z,clue) = f j(h(z,clue)) and ḡ j(z,clue) = g j(h(z,clue)), where µ = h(z,clue)
lies in a domain of size Nµ. In fact, h is just a function which compresses zi’s to the minimum necessary to compute f̄ j

and ḡ j. In fact, some of the zi’s are unnecessary to compute f̄ j and ḡ j.

To be able to merge the biases using Eq. (1), we define deduce(I) to be the set of all key indices such that we can

use them to compute all K̄[i]’s where i ∈ I. For instance, deduce(0,1,2,5) = {0,1,2,5} and

deduce(0,1,2,5,15) = {0,1,2,5,15,16,17,18,21,31,32,33,34,37, . . .}

Next, we transform the above rowRC4
i|I0 list by removing some rows for the key bytes which can be deduced and by

merging the rows leading to the same key byte (using Eq. (1)). Namely, we define rowi|I0 as follows: if i ∈ deduce(I0),

the row has a single “bias” f̄1(z,clue) = K̄[i] with probability p1 = 1 since K̄[i] can be computed from the clue.

Otherwise, rowi|I0 is the concatenation of all rowRC4
i′|I0 for i′ such that i′ ∈ deduce(I0∪{i}). For instance, row2|{0,1,2} has

a single bias, row5|{0,1,2} = rowRC4
5|{0,1,2}, and

row5|{0,1,2,15} = rowRC4
5|{0,1,2,15}‖rowRC4

21|{0,1,2,15}‖rowRC4
37|{0,1,2,15}

In the “concatenation” above, we only update f̄ j from the rowi′|I0’s so that it computes the K̄[i] instead of the K̄[i′].
To recover the key bytes sequentially, given two lists of byte indices I0 and I = (i1, . . . , i#I), we construct a new table

8

Π(I|I0) in which the list of rows is rowi1|I0 , rowi2|I0,i1 , ..., rowi#I |I0,i1,i2,...,i#I−1
. For instance for WEP, I0 = {0,1,2} and I

is a list of the key byte indices which are sequentially obtained using the biases.

We define a tuple ν = (K̄[i])i∈I which belongs to a set of size Nν(I) = N#I , and corresponds to the key bytes to

be recovered. For WEP, this tuple has dimension one, since we recover the key bytes sequentially. but for WPA, we

recover a vector of key bytes at the same time (the dimension of this tuple for WPA is whether 4 or 5). Given i ∈ I, we

let d
Π(I|I0)
i be the length of the row for K̄[i] in Π(I|I0), which corresponds to the number of biases which are useful for

recovering K̄[i]. Given a tuple (ji)i∈I such that 1 ≤ ji ≤ d
Π(I|I0)
i for all i ∈ I, by collecting the ji-th bias of the row i,

we obtain an agglomerated bias to compute ν from z and a clue. Note that for technical reasons, we may have to keep

elements of I0 in I. This is why we may have rows for i ∈ I0 in Π(I|I0) with a single bias with probability 1. We let

k(I|I0) = ∏
i∈I

d
Π(I|I0)
i

be the number of possible agglomerated biases. For convenience, we number the agglomerated biases with an index

ℓ from 1 to k(I|I0), where each number defines a tuple (ji)i∈I . So, the ℓ-th bias is defined by ν = fℓ(z,clue) with

probability

p
Π(I|I0)
ℓ = ∏

i∈I

p
Π(I|I0)
i, ji

where p
Π(I|I0)
i, j is the probability of the j-th bias in the row corresponding to K̄[i] in Π(I|I0).

We let Nµ(Π(I)) be N raised to the power of the number of zi bytes and I0 bytes appearing in any of the biased

equations from Π(I). For example, Nµ(Π(3,13,14|0,1,2)) = N10, since biases for K̄[3] are based on z1, z2, z3 and

z4 and biases for K̄[13] and K̄[14] are based on z1, z2, z13, z14 and z15. We further need the IV to compute the state

up to S2. So, we have 10 bytes in total: zi for i ∈ {1,2,3,4,13,14,15} and the IV. Given a keystream z, we define

µ = hΠ(I)(z,clue) as the vector of all zi and clue bytes which are useful. We define ν = f
Π(I)
ℓ (µ).

For simplicity, we write Π, k, Nν, Nµ, pℓ, h and fℓ when I and I0 are made clear from context. That is, the range of

h has size Nµ, and fℓ goes from a domain of Nµ elements to a range of Nν elements.

3.1 More Definitions and Lemmas

– We denote

ϕ(λ) =
1√
2π

∫ λ

−∞
e−

x2

2 dx =
1

2
erfc

(

− λ√
2

)

In particular, ϕ(−λ/
√

2) = 1
2
erfc(λ

2
).

– The gamma function over the field of complex numbers is an extension of the factorial function and is defined as:

Γ(x) =
∫ ∞

0
tx−1e−tdt

for Re(x)> 0.

– The beta function, also called the Euler integral of the first kind, over the field of complex numbers is defined as:

B(a,b) =
∫ 1

0
ta−1(1− t)b−1dt

for Re(a)> 0 and Re(b)> 0.

– The incomplete beta function is a generalization of the beta function and is defined as:

B(x;a,b) =
∫ x

0
ta−1(1− t)b−1dt

9

– The regularized incomplete beta function is defined in terms of the incomplete beta function and the complete beta

function as

Ix(a,b) =
B(x;a,b)

B(a,b)

– We say that X has a negative binomial distribution if it has a probability mass function:

Pr[X = x] =

(

x+ r−1

x

)

(1− p)r px

where r is a positive integer and p is real. r and p are both parameters of this distribution. Extending this definition

by letting r to be real positive, the binomial coefficient can also be rewritten using the gamma function:

Pr[X = x] =
Γ(x+ r)

x!Γ(r)
(1− p)r px

This generalized distribution is called the Pólya distribution. We also have

E(X) =
pr

(1− p)
and V (X) =

pr

(1− p)2

The cdf of this distribution can be computed using the regularized incomplete beta function. In fact, we have

FX (x) = Pr(X ≤ x) = 1− Ip(x+1,r)

Definition 1. Let A,B and C be three random variables over ZN . We say that A is biased towards B with bias p

conditioned on an event E and we represent it as A
p
=
E

B if

Pr(A−B = x|E) =

p if x = 0

1−p
N−1

otherwise

When Pr[E] = 1, it is denoted as A
p
= B.

Lemma 2. Let A,B and C be random variables in ZN such that

A
p1= B B

p2=C

We assume that A−B and B−C are independent. We have A
P
=C, where

P =
1

N
+

(

N

N−1

)(

p1−
1

N

)(

p2−
1

N

)

def
= p1⊗ p2

The operator ⊗ is commutative and associative over [0,1], where 1 is the neutral element.

Proof. For x 6= 0, we have

Pr[C−A = x] = ∑
y

Pr[B−A = y] . Pr[C−B = x− y]

= ∑
y 6=0
y 6=x

Pr[B−A = y] . Pr[C−B = x− y]+Pr[A = B] . Pr[C−B = x]+Pr[B−A = x] . Pr[B =C]

= (N−2)
(

1−p1
N−1

)(

1−p2
N−1

)

+ p1

(

1−p2
N−1

)

+ p2

(

1−p1
N−1

)

10

which does not depend on x. Then,

Pr[A =C] = 1−∑
x 6=0

Pr[C−A = x] =
1

N
+

(

N

N−1

)(

p1−
1

N

)(

p2−
1

N

)

So, A
P
=C.

The ⊗ operation is trivially commutative over [0,1] and 1 is the neutral element. Below, we show that it is also

associative over [0,1]. We simply show that (p1⊗ p2)⊗ p3 = p1⊗ (p2⊗ p3).

(p1⊗ p2)⊗ p3 = 1
N
+
(

N
N−1

)

·
[

1
N
+
(

N
N−1

)(

p1− 1
N

)(

p2− 1
N

)

− 1
N

]

·
(

p3− 1
N

)

= 1
N
+
(

N
N−1

)2 ·
(

p1− 1
N

)(

p2− 1
N

)(

p3− 1
N

)

and

p1⊗ (p2⊗ p3) =
1
N
+
(

N
N−1

)(

p1− 1
N

)

·
[

1
N
+
(

N
N−1

)(

p2− 1
N

)(

p3− 1
N

)

− 1
N

]

= 1
N
+
(

N
N−1

)2 ·
(

p1− 1
N

)(

p2− 1
N

)(

p3− 1
N

)

Hence, the ⊗ operator is associative.

⊓⊔

From the above lemma and the associativity of ⊗, we deduce the corollary below:

Corollary 3. Let A,B,C,D and E be random variables in ZN such that

A
p1= B B

p2=C C
p3= D D

p4= E

We assume that A−B, B−C, C−D and D−E are independent. We have A
P
= E, where

P = p1⊗ p2⊗ p3⊗ p4 =
1

N
+

(

N

N−1

)3

·
4

∏
i=1

(

pi−
1

N

)

For p4 = 1, we obtain

P = p1⊗ p2⊗ p3 =
1

N
+

(

N

N−1

)2

·
3

∏
i=1

(

pi−
1

N

)

We can extend the above corollary by adding new conditions. We use the lemma below in Section 4 and also in

analyzing the rest of the biases in Appendix A.

Lemma 4. Let A,B,C,D and E be random variables in ZN and Cond and Cond′ be two events such that

A
p1= B B

p2=C C
p3=

Cond′
S[D] D

p4= E

We assume that for all, α, β, γ and δ, the events A−B = α, B−C = β, (C− S[D] = γ)∧Cond′ and D−E = δ are

independent; furthermore, we assume

1. ((A = S[D])∧Cond)⇔ ((A = S[D])∧Cond′)
2. Pr[Cond] = Pr[Cond′] and Pr[D = E|Cond] = Pr[D = E|Cond′]
3. Pr[A = S[E]|A 6= S[D],D 6= E,Cond] = 1

N−1

11

We have

Pr[A = S[E]|Cond] = p1⊗ p2⊗ p3⊗ p4

Later, we make a heuristic assumption that the events 1, 2, 3 above occur.

Proof. We have

Pr[A = S[D] = S[E]|Cond] =
(

1
Pr[Cond]

)

·Pr[(A = S[D])∧Cond,D = E]

=
(

1
Pr[Cond′]

)

·Pr[(A = S[D])∧Cond′,D = E]

=
(

1
Pr[Cond′]

)

∑
α,β,γ,δ

α+β+γ=0

δ=0

Pr[A−B = α,B−C = β,(C−S[D] = γ)∧Cond′,D−E = δ]

= ∑
α,β,γ,δ

α+β+γ=0

δ=0

Pr[A−B = α] ·Pr[B−C = β] ·Pr[C−S[D] = γ|Cond′] ·Pr[D−E = δ]

= (p1⊗ p2⊗ p3) · p4

We also have,

Pr[A 6= S[D],D 6= E|Cond] = 1−Pr[A = S[D]|Cond]−Pr[D = E|Cond]+Pr[A = S[D],D = E|Cond]

= 1−Pr[A = S[D]|Cond′]−Pr[D = E|Cond′]+Pr[A = S[D],D = E|Cond′]

= Pr[A 6= S[D],D 6= E|Cond′]

Moreover,

Pr[A = S[E],A 6= S[D]|Cond] = Pr[A = S[E],A 6= S[D],D 6= E|Cond]

= Pr[A = S[E]|A 6= S[D],D 6= E,Cond] ·Pr[A 6= S[D],D 6= E|Cond]

=
(

1
N−1

)

·Pr[A 6= S[D],D 6= E|Cond′]

=
(

1
(N−1)·Pr[Cond′]

)

∑
α,β,γ,δ

α+β+γ 6=0

δ 6=0

Pr[A−B = α,B−C = β,(C−S[D] = γ)∧Cond′,D−E = δ]

=
(

1
N−1

)

∑
α,β,γ,δ

α+β+γ 6=0

δ 6=0

Pr[A−B = α] ·Pr[B−C = β] ·Pr[C−S[D] = γ|Cond′] ·Pr[D−E = δ]

=
(

1
N−1

)

· (1− p1⊗ p2⊗ p3) · (1− p4)

Hence,

Pr[A = S[E]|Cond] = (p1⊗ p2⊗ p3) · p4 +
(

1
N−1

)

· (1− p1⊗ p2⊗ p3) · (1− p4)

= p1⊗ p2⊗ p3⊗ p4

⊓⊔

12

In the following, we introduce some lemmas which are very useful in the consequent sections. The next lemma

represents a relation between K̄[i] and the value of ji.

Lemma 5. In the KSA of RC4, we have

K̄[i] = ji−
i

∑
x=1

Sx−1[x]

Proof. We prove it by induction by using

ji = ji−1 +Si−1[i]+K[i]

⊓⊔

The following lemma represents the probability that some state bytes remain at their position during RC4 state

updates. Intuitively, St is the last state the attacker can recover using the recovered key bytes. For instance, for WEP

and WPA, since the IV is known, the attacker can initially compute up to state S2, therefore t = 2 in this case. Later,

when he recovers more key bytes sequentially, t will increase. Hence, from now on, anytime we talk about the index t,

we mean the index of the last state which the attacker can compute.

Lemma 6. For any 0< i<N, and any−2< t < i, the following five relations hold on RC4⋆(t) for any set (m1, . . . ,mb)
of distinct m j’s such that m j ≤ t or m j > i−1:

Pb
A(i, t)

def
= Pr

[

b∧
j=1

(Si−1[m j] = · · ·= St+1[m j] = St [m j])

]

=
(

N−b
N

)i−t−1

Si−1[m j]
P1

A= St [m j]

i

∑
x=1

Sx−1[x]
PB(i,t)
= σi(t) with PB(i, t)

def
=

i−t−1

∏
k=0

(

N− k

N

)

+
1

N

(

1−
i−t−1

∏
k=0

(

N− k

N

)

)

P0
def
= Pr[S′i−1[i] = · · ·= S′1[i] = SN−1[i] = · · ·= Si[i]] =

(

N−1
N

)N−2

S′i−1[i]
P0= Si[i]

where

σi(t) =
t

∑
j=0

S j−1[j]+
i

∑
j=t+1

St [j]

Proof. Note that Si−1[m j] = St [m j] is equivalent to Si−1[m j] = · · ·= St+1[m j] = St [m j], because if m j is moved, it can

not come back to the same place, due to the restrictions m j ≤ t or m j > i− 1. Furthermore, Pb
A(i, t) is defined as the

probability that a set of bytes corresponding to a set of indices (m1, . . . ,mb) are not swapped from St to Si−1. Since

m j ≤ t or m j > i−1, they will not be elected by the index i from St to Si−1. Hence, they can only be picked by the index

j which moves uniformly at random by the definition of RC4⋆(t). So, this is correct with probability
(

N−b
N

)i−t−1
. In

fact, we have

Si−1[m j]
P1

A= St [m j]

That is because

Pr
x 6=y

[Si−1[m j] = y|St [m j] = x] =
1

N−1

Since we know up to state St , we have to approximate ∑i
x=1 Sx−1[x] with the state bytes in St . The first term in

PB(i, t) is the probability that Sx−1[x] can be approximated as St [x] for x > t+1. The second term is the probability that

13

at least one of these approximations is wrong, but at the end the result holds with uniform probability. We can also

assume that

Pr
y 6=σi(t)

[

i

∑
x=1

Sx−1[x] = y

]

=
1

N−1

P0 is the probability that index i is not swapped from Si to S′i−1. This probability depends only on the values of

j and j′, which change uniformly at random in RC4⋆(t). There are N − 2 state updates in the way, so the overall

probability is
(

N−1
N

)N−2
. We also have

Pr
x 6=y

[S′i−1[i] = y|Si[i] = x] =
1

N−1

This leads to S′i−1[i]
P0= Si[i].

⊓⊔

4 Two Significant Biases in RC4

We classify RC4 biases into two categories: the conditional biases and the unconditional biases. We use these notions

specifically in the WPA attack in Section 5. Although all the biases are conditional, we put the SVV 10 and the Korek

biases in the conditional category and the Klein-Improved and Maitra-Paul biases in the unconditional category. This

is because the density of unconditional biases are very close to 1. This is not the case for conditional biases.

Next, we describe two significant biases in RC4 as an example of how we manipulate them, namely: the Klein-

Improved bias (an unconditional bias) and the A u15 bias (a conditional bias). The complete list of all such biases are

elaborated and proved in Appendix A. For each bias, the conditions which need to be satisfied for the bias to hold are

described. Moreover, the probabilistic assumptions for the state bytes through the KSA and the PRGA state updates

are also represented. These assumptions illustrate the path which the bias follows through the KSA and the PRGA. For

simplicity, we use the word Cond and the event g(z,clue) (described in Section 3) interchangeably in this section. As

we mentioned already, St represents the last state we can compute deploying the known key bytes. For instance, K[0],
K[1] and K[2] are initially known, therefore for WEP, the state up to S2 can be computed. we recover K̄[3] first using

S2 and then using K̄[3] we update the state to S3 and recover K̄[4]. We continue this process until we recover K̄[14].
On the other hand, for WPA, we set t = 2 all the time, and we only use S2, and recover K̄[15], K̄[3], K̄[13] and K̄[14].

4.1 The Klein-Improved Attack

Klein [29] combined Jenkins’ correlation for the PRGA and weaknesses of the KSA and derived a correlation between

the RC4 key bytes and the keystream. This bias was further improved in [73] by recovering K̄[i] instead of K[i] to

reduce the secret key bytes dependency. We use the theorem by Jenkins and explain how it can be merged with the

weaknesses of the KSA (see Fig. 4).

Lemma 7. (Jenkins’ correlation [26]). Assuming the internal state SN−1 is a random permutation, and j′i is chosen

randomly, then zi +S′i[j
′
i]

PJ= i, where PJ =
2
N

.

Proof.

Pr[S′i[j
′
i] = i− zi] = Pr[S′i[j

′
i] = i− zi|S′i[i]+S′i[j

′
i] = i] . Pr[S′i[i]+S′i[j

′
i] = i]

+Pr[S′i[j
′
i] = i− zi|S′i[i]+S′i[j

′
i] 6= i] . Pr[S′i[i]+S′i[j

′
i] 6= i]

= 1
N
+ 1

N

(

1− 1
N

)

≈ 2
N

⊓⊔

The conditions, assumptions, the key recovery relation and the success probability of this attack are described

below:

14

– Conditions: (i− zi) 6∈ {St [t +1], . . . ,St [i−1]} (Cond)
– Assumptions: (see Fig. 4)

• St [ji] = · · ·= Si−1[ji] = Si[i] = S′i−1[i] = S′i[j
′
i] = i− zi

– Key recovery relation: K̄[i] = S−1
t [i− zi]−σi(t)

– Probability of success: PKI(i, t) (see below)

Exploiting the above correlation and the relations in the KSA and the PRGA, we obtain

1. S′i[j
′
i]

PJ= i− zi (Lemma 7)

2. S′i[j
′
i] = S′i−1[i]

3. S′i−1[i]
P0= Si[i] (Lemma 6)

4. Si[i] = Si−1[ji]

5. Si−1[ji]
P1

A=
Cond′

St [ji] (where Cond′ is the event that ji ≤ t or ji > i−1.)

6. ji = K̄[i]+
i

∑
x=1

Sx−1[x] (Lemma 5)

7.
i

∑
x=1

Sx−1[x]
PB= σi (Lemma 6)

We make the same heuristic assumptions of independence as in Lemma 4 and Lemma 6. Then, we gain

PKI(i, t) = PJ⊗P0⊗P1
A(i, t)⊗PB(i, t)

conditioned to Cond. Hence, the key recovery relation becomes

K̄[i]
PKI=
Cond

S−1
t [i− zi]−σi(t)

4.2 The A u15 Attack

Korek is the nickname of a hacker who described 20 key recovery attacks on RC4 [32,33]. A u15 attack is the best

Korek attack with the highest success probability. First, we introduce the conditions for this attack to succeed, the

assumptions we make, the equation for the key recovery and the success probability. All other Korek attacks are

described in Appendix A.

– Conditions: St [i] = 0 and z2 = 0

– Assumptions: (see Fig. 5)

• St [i] = · · ·= Si−1[i]

• Si[2] = · · ·= SN−1[2] = S′1[2] = 0

• ji = 2

– Key recovery relation: K̄[i] = 2−σi

– Probability of success: P1
u (i, t) (see below)

We classify the conditions as

C1 : St [i] = 0 and C2 : z2 = 0

We also classify the assumptions and the events and the key recovery bias as

15

!"

!"

!"−!

!
′

"−!

!

!
′

"

!′"

!− "!

!− "!

!− "!

!− "!

!− "!

!"

Fig. 4. RC4 state update in the Klein-Improved attack

S1 : St [i] = · · ·= Si−1[i]
S2 : Si[2] = · · ·= SN−1[2] = S′1[2]
S3 : K̄[i] = ji−σi

E1 : ji = 2

B : K̄[i] = 2−σi

We introduce a lemma by Mantin, et al. [39] which is used later to prove the success probability of the attack.

Lemma 8. (Theorem 1 in [39]) Assume that the initial permutation S′0 = SN−1 is randomly chosen from the set of

all the possible permutations over {0, . . . ,N− 1}. Then, the probability that the second output word of RC4 is 0 is

approximately 2
N

. In fact, we have z2

2
N= 0.

Proof. First, we show that if SN−1[2] = 0 and SN−1[1] 6= 2, we obtain z2 = 0. Assume S′0[1] = α and S′0[α] = β, then

i = 1 and j′1 = S′0[1] = α, so we swap S′0[1] and S′0[α]. In the next iteration, i = 2 and j′2 = α+ S′1[2] = α, that is

because we assumed SN−1[1] 6= 2 and SN−1[2] = 0, so S′1[2] = 0. Then, we swap S′1[2] and S′1[α] and z2 is computed as

16

z2 = S′2[S
′
2[2]+S′2[α]] = S′2[α] = 0. Finally,

Pr[z2 = 0] = Pr[z2 = 0|S′0[2] = 0,S′0[1] 6= 2] . Pr[S′0[2] = 0,S′0[1] 6= 2]

+ Pr[z2 = 0|S′0[2] 6= 0∨S′0[1] = 2] . Pr[S′0[2] 6= 0∨S′0[1] = 2]

=
1

N

(

N−1

N

)

+
1

N

[(

N−1

N

)

+
1

N
− 1

N

(

N−1

N

)]

=
1

N

(

N−1

N

)(

2− 1

N

)

+
1

N2

≈ 2

N

If x 6= 0, we also have

Pr[z2 = x] =
1−Pr[z2 = 0]

N−1
=

N−2

N(N−1)

⊓⊔

Now, we compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2]. So, we

compute

Pr[B|C1,C2] = Pr[E1S3|C]+Pr[B¬S3|C]

= Pr[E1|S3C] . Pr[S3|C]+Pr[B|¬S3C] . (1−Pr[S3|C])

Now,

Pr[B|¬S3C] = Pr[B¬E1|¬S3C]

≈ Pr[B¬E1|C]

= Pr[B|¬E1C] . Pr[¬E1|C]

≈ 1
N−1

(1−Pr[E1|C])

Overall,

Pr[B|C1,C2] ≈ Pr[E1|C] . Pr[S3|C]+
(

1−Pr[E1|C]
N−1

)

. (1−Pr[S3|C])

= Pr(E1|C) .
(

NPr[S3|C]−1

N−1

)

+
(

1−Pr[S3|C]
N−1

)

We then approximate Pr[S3|C]≈ PB(i, t) and we also have

Pr[E1|C] = Pr(C1|E1C2)
(

Pr(E1|C2)
Pr(C1|C2)

)

≈ Pr(C1|E1C2)

= Pr(C1S1S2|E1C2)+Pr(C1¬(S1S2)|E1C2)

≈ Pr(C1S1S2|E1C2)+
1
N
(1−Pr(S1S2|E1C2))

≈ Pr(C1S1S2|E1C2)+
1
N

(

1−P1
A(i, t) .

(

N−1
N

)N−i
)

Pr[C1S1S2|E1C2] =

(

Pr[C1S1S2E1|C2]

Pr[E1|C2]

)

= Pr[C2|C1S1S2E1] .

(

Pr[C1S1S2E1]

Pr[C2] . Pr[E1|C2]

)

17

Deploying Lemma 8, we obtain

Pr[C1S1S2|E1C2] =
1

2
P1

A(i, t)

(

N−1

N

)N−i

Therefore, overall we have

P1
u (i, t)

def
= Pr[B|C1C2] =

(

NPB(i, t)−1

N−1

)

.

[

1

2
P1

A(i, t)

(

N−1

N

)N−i

+
1

N

(

1−P1
A(i, t)

(

N−1

N

)N−i
)]

+

(

1−PB(i, t)

N−1

)

!"

!"

!"−!

!"−!

!

!

!

!

!

!

! !
′

!

Fig. 5. RC4 state update in the A u15 attack

We manipulate all the biases in RC4 similarly, (see Appendix A) to mount optimal key recovery attacks against

WEP and WPA.

5 Attacks on the WPA Protocol

In this section, we use the two biases described in the previous section and all the biases described in Appendix A

(except the Maitra-Paul attack1) to mount a key recovery attack against WPA. We first recover 8 bits of WPA temporary

1 We do not use the Maitra-Paul attack in the WEP and WPA attacks; this is because we noticed that this bias is very much

correlated with the Klein-Improved attack. In fact, using this attack together with the Klein-Improved attack does not yield any

18

key, and then use it to mount a key recovery attack against the full key. Recovering those 8 bits is performed in two

steps: we first recover 7 of such bits (the first attack), and then the last bit (the second attack).

There are 8 bits of the TK that we call weak, because they have a simple relation with the bits of the PPK. These

bits consist of the 7 most significant bits of the TK[0] and the least significant bit of the TK[1]. We define some

statistical attacks using the following mappings:

zm, IVm h−−−−−−→ µ
fℓ−−−−−−→

if gℓ(µ)
ν

π−−−−−−→ x

Here, zm is the m-th keystream using the IVm and µ is some compressed information to compute ν. The ν is some RC4

key bytes which are useful in computing x. The x is some information about the TK which we want to recover using

statistics. We define Nx as the number of possible values for x.

5.1 The First Attack: Recovering 7 Weak Bits of the TK

We use I0 = {0,1,2} and I = (2,3,13,14). Given K̄[2], K̄[3], K̄[13] and K̄[14], the adversary can compute K[3] =
K̄[3]− K̄[2] and K[14] = K̄[14]− K̄[13]. We have

PPK[5] = K[15]‖K[14]

K[3] = low8((PPK[5]⊕ (TK[1]‖TK[0]))≫ 1)

So, given ν = (K̄[2], K̄[3], K̄[13], K̄[14]), the adversary can compute x = high7(TK[0]) by

π(ν) = low7((K̄[3]− K̄[2])⊕ ((K̄[14]− K̄[13])≫ 1))

Nν = 232 is the total number of possible ν’s and Nx = 27 is the total number of possible x’s. We have Nµ = 248, the

total number of µ = h(z, IV).
We can recover the 7 weak bits as follows: for each candidate value x (normally distributed), each packet m and

each ℓ = 1, . . . ,k (corresponding to a tuple (w2,w3,w13,w14), if agglomerated condition gℓ(h(z
m, IVm)) holds, we

define ν = fℓ(h(z
m, IVm)) to be the value of the RC4 key bytes suggested by the bias ℓ on packet m, which is correct

with probability pℓ. We let x = π(ν) be the suggested value of x computed as explained. We let Xx,m,ℓ be some magic

coefficient aℓ (to be optimized later) if π(fℓ(h(z
m, IVm))) = x and 0 otherwise. We let Yx = ∑n

m=1 ∑k
ℓ=1 Xx,m,ℓ, where n

is the total number of packets to be used. Clearly, the correct value for ν is suggested with probability pℓ and others

are obtained randomly. We assume incorrect ones are suggested with the same probability
1−pℓ
Nν−1

.

If x is not the correct value, it is not suggested for sure when ν is correct. Since π is balanced, this incorrect x has
Nν
Nx

values ν belonging to the set of Nν−1 incorrect ones. So, x is suggested with probability Nν
Nx
× 1−pℓ

Nν−1
. Consequently,

the Xx,m,ℓ for incorrect x’s are random variables with the expected values

aℓqℓNν
1− pℓ

Nx(Nν−1)

if x is not the correct value.

If x is the correct value, it is suggested with probability pℓ for the correct ν and when ν is one of the Nν−Nx
Nx

(incorrect) preimages of x by π. That is, with overall probability pℓ+
Nν−Nx

Nx
× 1−pℓ

Nν−1
. So, the Xx,m,ℓ for the correct x are

random variables with expected values

aℓqℓNν
1− pℓ

Nx(Nν−1)
+aℓqℓ

Nν pℓ−1

Nν−1

The difference between these two expected values is important. This is also the case for the difference of vari-

ances. Since every x is suggested with the probability roughly
qℓ
Nx

, we assume that the variance of a bad Xx,m,ℓ can be

significant extra success probability for our overall WEP and WPA attacks. Finding the reason for such a correlation is still an

open problem.

19

approximated by
qℓ
Nx

(

1− qℓ
Nx

)

a2
ℓ . Let ∆ be the operator making the difference between the distributions for a good x

and a bad one. We have

E(Yx bad) =
n

Nx

(

1− 1
Nν

)∑
ℓ

aℓqℓ(1− pℓ)

E(Yx good) = E(Yx bad)+∆E(Y)

∆E(Y) =
n

1− 1
Nν

∑
ℓ

aℓqℓ

(

pℓ−
1

Nν

)

V (Yx bad) ≈ n∑
ℓ

a2
ℓ

qℓ

Nx

(

1− qℓ

Nx

)

V (Yx good) = V (Yx bad)+∆V (Y)

∆V (Y) ≈ n

1− 1
Nν

∑
ℓ

a2
ℓqℓ

(

pℓ−
1

Nν

)

where E(Yx bad) and V (Yx bad) denote the expected value and the variance of a Yx variable for any bad x respectively.

Here, we remove the subscript x of Yx in ∆E(Y), since this does not depend on a specific value for x. Let λ be such

that ∆E(Y) = λ
√

V (Yx bad)+V (Yx good). The probability that the correct Yx is lower than an arbitrary wrong Yx is

ρ = ϕ(−λ). That is, the expected number of wrong x’s with larger Yx is

r = (Nx−1)ϕ(−λ) (2)

So,

n =

λ2 ∑
ℓ

a2
ℓ

[

2

(

qℓ

Nx

)(

1− qℓ

Nx

)(

1− 1

Nν

)2

+qℓ

(

pℓ−
1

Nν

)(

1− 1

Nν

)

]

(

∑
ℓ

aℓqℓ

(

pℓ−
1

Nν

)

)2

By computing the derivative of both terms of the fraction with respect to aℓ and set them as equal, we conclude that

the optimal value of n is reached for

aℓ = aopt
def
=

(

pℓ− 1
Nν

)

(

pℓ− 1
Nν

)

+ 2
Nx

(

1− 1
Nν

)(

1− qℓ
Nx

)

Hence, we obtain

n = nopt
def
=

λ2
(

1− 1
Nν

)

∑
ℓ

aℓqℓ

(

pℓ−
1

Nν

) (3)

In [62], it was assumed that ∆V (Y) = 0 and the value for nopt and aopt were different. However, experiments have

shown that this approximation was not appropriate. This is why we integrate ∆V (Y) here. The attack works as follows:

1: Set I = (2,3,13,14) and I0 = {0,1,2}.
2: Initialize the Yx counters to 0.

3: for m = 1 to n do

4: for ℓ= 1 to k do

5: if gℓ(h(z
m, IVm)) holds then

6: Compute ν = fℓ(h(z
m, IVm)), the suggested value for (K̄[2], K̄[3], K̄[13], K̄[14]).

7: Compute x = π(ν).

20

8: Increment Yx by aℓ.

9: end if

10: end for

11: end for

12: Output x = argmaxx Yx.

Clearly, the time complexity is nk. The complexity is measured in terms of the number of times the if structure is

executed. This should have a complexity which is essentially equivalent to executing the phase2 of the key derivation.

The memory complexity has the order of magnitude of Nx. Here is another variant of the algorithm:

1: Set I = (2,3,13,14) and I0 = {0,1,2}.
2: Initialize a table y

µ
x to 0.

3: for ℓ= 1 to k do

4: for all possible µ such that gℓ(µ) holds do

5: Compute x = π(fℓ(µ)).
6: Increment y

µ
x by aℓ.

7: end for

8: end for

9: Initialize the Yx counters to 0.

10: for m = 1 to n do

11: for all x do

12: Compute µ = h(zm, IVm).
13: Increment Yx by y

µ
x .

14: end for

15: end for

16: Output x = argmaxx Yx.

Now, the time complexity is Nµk+Nxn and the memory complexity is NµNx. So, the complexity is

c = min(nk,Nµk+Nxn) (4)

The two complexity curves intersect for n = Nµ
k

k−Nx
≈ Nµ when Nx≪ k.

For I = (2,3,13,14), we have Nν = 232, Nµ = 248 and Nx = 27. The complexities with and without using conditional

biases are summarized in Table 1. As we can see, when ignoring the conditional biases we need about 65% more

packets, but the complexity is much lower because k is smaller. So, the conditional biases do not seem to be useful in

this case.

5.2 The Second Attack: Recovering One Weak Bit of the TK

Let I0 = {0,1,2}, I = (15,2,3,14) and x = low1(TK[1]) be the last weak bit. Given the IV and also

ν = (K̄[2], K̄[3], K̄[14], K̄[15])

we deduce x = π(ν) by

π(ν) = high1((K̄[3]− K̄[2])⊕ (K̄[15]− K̄[14]))

So, we apply the first attack with this I and Nx = 2. Since 15∈ I, we have more biases. We have r, n and c from Eq. (2),

Eq. (3) and Eq. (4).

For I = (15,2,3,14), we have Nν = 232, Nµ = 2120 and Nx = 2. The complexities are summarized in Table 1. Again,

conditional biases are not very useful. We can also see that this choice of I leads to a much better attack than the one

from Section 5.1 in terms of n, but the complexity is slightly higher. This is due to a larger k.

21

5.3 Merging the First and the Second Attacks

In this section, we merge the first and the second attack on WPA, to recover its 8 weak bits. Given two attacks with

sets I1 (resp. I2) for recovering independent x1 (resp. x2) random variables leading to Yx1 (resp. Yx2), c1 (resp. c2), n1

(resp. n2) and λ1 (resp. λ2), one problem is to merge the sorted lists of x1 and x2. One can follow the approach by

Junod-Vaudenay [28]. We sort pairs following their likelihood ratio, which is obtained by multiplying the likelihood

ratio of both terms. We assume that all Yxi’s are independent, normally distributed with the variance either V (Yxi bad) or

V (Yxi good) =V (Yxi bad)+∆V (Yxi) and the expected value either E(Yxi bad) or E(Yxi good) = E(Yxi bad)+∆E(Yxi). Given

xi, the ratio for xi being the correct value based on the observation Yxi is

Pr[Yxi |xi good]

Pr[Yxi |xi wrong]
=

1
√

2πV
(

Y
xi good

)

e

−

(

Y
xi−E

(

Y
xi good

))2

2V

(

Y
xi good

)

1
√

2πV(Yxi bad)
e
− (

Y
xi−E(Y

xi bad))
2

2V(Y
xi bad)

=

√

V (Yxi bad)

V
(

Yxi good

)e

(Y
xi−E(Y

xi bad))
2

2V(Y
xi bad)

−

(

Y
xi−E

(

Y
xi good

))2

2V

(

Y
xi good

)

So, when multiplying some terms of this form for the pairs of values, sorting them by decreasing product is

equivalent to sorting them by decreasing value of

1
2

(

1
V1b
− 1

V1g

)

Y 2
x1 +

(

E1g

V1g
− E1b

V1b

)

Yx1 + 1
2

(

1
V2b
− 1

V2g

)

Y 2
x2 +

(

E2g

V2g
− E2b

V2b

)

Yx2

= a(Yx1 −β1)
2 +b(Yx2 −β2)

2

where

V1g = V (Yx1 good) V2g = V (Yx2 good)
V1b = V (Yx1 bad) V2b = V (Yx2 bad)
∆V1 = ∆V (Yx1) ∆V2 = ∆V (Yx2)

E1g = = E(Yx1 good) E2g = E(Yx2 good)
E1b = = E(Yx1 bad) E2b = E(Yx2 bad)

a = 1
2

(

1
V1b
− 1

V1g

)

b = 1
2

(

1
V2b
− 1

V2g

)

β1 =
(

V1gE1b−V1bE1g

∆V1

)

β2 =
(

V2gE2b−V2bE2g

∆V2

)

So we let Yx1,x2 = a(Yx1 −β1)
2 +b(Yx2 −β2)

2
. With the same assumptions as in [28], we are back in the situation

where Yx1,x2 is distributed with the Generalized-χ2 distribution [8,9]. The average number of the wrong (x1,x2) pairs

with higher score than the good one is

r = (Nx1 Nx2 −1) . Pr
(

Yx1,x2 good−Yx1,x2 bad < 0
)

Thus, we define a new random variable

∆Yx1,x2 =
2

∑
m=1

∑
j=b,g

am j

[

(Yxm j−βm)
2

Vm j

]

22

where
a1g = aV1g a1b =−aV1b Yxig = Yxi good

a2g = bV2g a2b =−bV2b Yxib = Yxi bad

∆Yx1,x2 is a quadratic form in independent normal random variables. It can be expressed as the linear combination

∆Yx1,x2 =
2

∑
m=1

∑
j=b,g

am jX
2
m j (5)

where Xm j’s are independent and normally distributed random variables with variance one. We write

t2
m j =

(E(Ym j)−βm)
2

V (Ym j)
= t ′2m j . n

The characteristic function of a quadratic form in independent normal random variables ∆Yx1,x2 is given by Davies [8]:

ϕ∆Y
x1 ,x2

(u) = E(e
iu∆Y

x1 ,x2) =
e

iu

2

∑
m=1

∑
j=b,g

am jt
2
m j

1−2iuam j

2

∏
m=1

∏
j=b,g

(1−2iuam j)
1
2

If E(|∆Yx1,x2 |) is finite, it follows from Gil-Pelaez [16] that

F∆Y
x1 ,x2

(w) = Pr(∆Yx1,x2 < w) =
1

2
−

∫ ∞

−∞
Im

(

ϕ∆Y
x1 ,x2

(u)e−iuw

2πu

)

du

Substituting what we have, one derives

F∆Y
x1 ,x2

(0) = Pr(∆Yx1,x2 < 0) =
1

2
−

∫ ∞

−∞
Im

e

iu

2

∑
m=1

∑
j=b,g

am jt
2
m j

1−2iuam j

2πu
2

∏
m=1

∏
j=b,g

(1−2iuam j)
1
2

du

Finally, setting r, the value of n can be numerically computed.

It might be of interest to evaluate n analytically. In Eq. (5), the X2
i ’s follow the non-centralized χ2 distribution.

Our experiment revealed that their non-centrality parameters are large. Let ni and t2
i be their corresponding degrees

of freedom and non-centrality parameters respectively. It was shown in [44] that when ni → ∞ or t2
i → ∞, the non-

centralized χ2 random variable can be approximated by normal distribution with the same expected value and variance.

Using this approach, the above integral can be avoided. Hence,

E(∆Yx1,x2) ≈
2

∑
m=1

∑
j=b,g

am j

(

1+ t2
m j

)

V (∆Yx1,x2) ≈
2

∑
m=1

∑
j=b,g

2a2
m j

(

1+2t2
m j

)

To find n, we need to solve the following equation.

23

−E(∆Yx1,x2)
√

V (∆Yx1,x2)

= ϕ−1

(

r

Nx1 Nx2 −1

)

Thus, we derive

n≈
[

1

µ
ϕ−1

(

r

Nx1 Nx2 −1

)]2

where

µ =

2

∑
m=1

∑
j=b,g

am jt
′
m j

√

√

√

√

2

∑
m=1

∑
j=b,g

4a2
m jt
′
m j

We can use these merging rules to merge the two previous attacks. c = c1 + c2 by using Eq. (4) for c1 and c2. We

obtain the results in Table 1.

Table 1 represents the corresponding complexities when merging the previous attacks to recover the 8 weak bits of

the TK. We also compare these attack using a merged set I directly. As we can see, merging the attacks with small I’s

(reference 3) is much better than making a new attack with a merged I (reference 4).

Table 1. The complexities of several attacks to recover log2 Nx bits of the TK. We compare them when including conditional biases

and without. We provide the number of packets n, the running time complexity c, the expected number r of the better wrong values,

as well as the parameters k, λ and Nν. Except when Nx = 2, for which it would not make any sense, we target r = 1
2 (that is, the

correct value has the higher score in half of the cases). We used I0 = {0,1,2}.

reference I n c r Nx k λ Nν Nµ cond. biases

1u (2,3,13,14) 242.10 242.10 1
2 27 1 2.66 232 N6 without

1c (2,3,13,14) 241.38 253.10 1
2 27 211.72 2.66 232 N8 with

2u (15,2,3,14) 240.38 245.38 1
4 2 25 0.67 232 N15 without

2c (15,2,3,14) 239.12 255.85 1
4 2 216.73 0.67 232 N17 with

3u merge 1u+2u 241.83 246.87 1
2 28 without

3c merge 1c+2c 241.22 257.99 1
2 28 with

4u (15,2,3,13,14) 251.72 257.72 1
2 28 26 2.88 240 N17 without

4c (15,2,3,13,14) 251.05 272.69 1
2 28 221.64 2.88 240 N19 with

5.4 Temporary Key Recovery Attack on WPA

The results from [43] lead to an “easy” attack on WPA: guess the 96-bit PPK and the 8 weak bits of the TK with an

average complexity of 2103 until it generates the correct keystream. Then, guess the 96-bit PPK of another packet in

the same segment (with the weak bits already known). Then, apply the method of [43] to recover the TK. We improve

this attack by recovering the weak bits of the TK separately: we know from Table 1 that we can recover the weak bits

of the TK by using 242 packets. After having recovered the weak bits, we note that the 96-bit PPK is now enough

to recalculate the RC4KEY. So, we can do an exhaustive search on the PPK for a given packet until we find the

correct one. This works with average complexity of 295. We do it twice to recover the PPK of two packets in the same

segment. Given these two PPK sharing the same IV32, we recover the TK by using the method of [43]. Therefore,

we can recover the temporary key TK and decrypt all packets with complexity 296. The number of packets needed to

recover the weak bits is 242.

24

5.5 Distinguishing WPA

RC4 can be distinguished using N packets [39] and since WPA’s output is already an output of RC4, it can be simply

distinguished from random using a few packets. However, the distinguisher of [39], based on the bias of z2, can not

distinguish two protocols that are both using RC4. In this section, we are using all the biases on RC4 together with

some weaknesses in the structure of WPA and mount a distinguishing attack on WPA. This distinguisher is also capable

of distinguishing WPA from other protocols using RC4. The first attack can be turned into a distinguisher as follows.

The expected value and the variance of the correct Yx are

E(Yx good) = E(Yx bad)+λ
√

V (Yx bad)+V (Yx good)
V (Yx good) =V (Yx bad)+∆V (Y)

Let extend our notations by defining

γ =

(

V (Yx good)

V (Yx bad)

)

The random variable Yx of the good counter is larger than

T = E(Yx bad)+λ′
√

V (Yx bad)+V (Yx good)

with probability ϕ
(

(λ−λ′)
√

1+ 1
γ

)

. Now, if we replace the WPA packets by a sequence generated by RC4 fed

with random keys, all the counters have the expected value E(Yx bad) and the variance approximately V (Yx bad). The

probability that a given counter exceeds T is ϕ(−λ′
√

1+ γ). The probability that any counter exceeds this is lower

than Nxϕ(−λ′
√

1+ γ). So, the condition maxx Yx > T makes a distinguisher of the same n and c as in the first attack

and with Adv ≥ β, where

β = ϕ

(

(λ−λ′)

√

1+
1

γ

)

−Nxϕ
(

−λ′
√

1+ γ
)

(6)

Finally, we find the optimal λ′ which maximizes the advantage.

λ′ =

√

(

1+ 1
γ

)2

λ2 +
(

γ− 1
γ

)[(

1+ 1
γ

)

λ2 +2ln
(

Nx
√

γ
)

]

−
(

1+ 1
γ

)

λ
(

γ− 1
γ

)

We use the same values as before and target Adv ≥ 1
2
. We use Eq. (3) for n, Eq. (4) for c and Eq. (6) for a lower

bound β of the advantage. The performances of the distinguishers are summarized in Table 2. Again, the attack based

on I = (15,2,3,14) is better in terms of the number of packets, but is not in terms of the complexity. It works using

241.23 packets and complexity of 246.23. The one based on I = (2,3,13,14) works with 50% more packets (241.83) with

no conditional biases, but with a much better complexity of 241.83.

Table 2. The complexities of several distinguishers for WPA. We compare them when including conditional biases and without.

We provide the number of packets n, the running time complexity c, the bound on the advantage β, as well as the parameters k, λ
and Nν. We target β = 1

2 . We used I0 = {0,1,2}.

I n c β Nx k λ Nν Nµ cond. biases

1u I = (2,3,13,14) 241.83 241.83 0.5 27 1 2.42 232 N6 without

1c I = (2,3,13,14) 241.11 252.83 0.5 27 211.72 2.42 232 N8 with

2u I = (15,2,3,14) 241.23 246.23 0.5 2 25 1.28 232 N15 without

2c I = (15,2,3,14) 240.97 257.70 0.5 2 216.73 1.28 232 N17 with

The above distinguisher has recently been improved by Sen Gupta et al. [57]. Their distinguisher requires 219

packets to distinguish WPA from any other protocol based on RC4.

25

6 Tornado Attack on WEP

In this section, we present an attack on WEP using the theory we already introduced. We recover K̄[15], K̄[3], . . . , K̄[14]
sequentially. We initially set t = 2 and use S2 and then update the state by recovery each key byte sequentially. When

the full key is recovered, we test it, in case it is not correct, we test more keys by re-voting (see below for more

details). We call this attack Tornado Attack, because we use a theory from tornado analysis to apply it to the WEP

attack scenario.

We apply the first attack on WPA (see Section 5.1) with x = ν: we only recover the key bytes which are the same

for all packets. This attack produces a ranking of all the possible x’s in the form of a list L by decreasing order of

likelihood. The attack works as in Fig. 6.

1: Compute the ranking L15 for I = (15) and I0 = {0,1,2}.
2: Truncate L15 to its first ρ15 terms.

3: for each k̄15 in L15 do

4: Run the recursive attack on the input k̄15.

5: end for

6: Stop: Attack failed.

Recursive attack with input (k̄15, k̄3, . . . , k̄i−1):
7: if The input is only k̄15 then

8: Set i = 3.

9: end if

10: if i≤ imax then

11: Compute the ranking Li for I = (i) and I0 = {0, . . . , i−1,15}.
12: Truncate Li to its first ρi terms.

13: for each k̄i in Li do

14: Run the recursive attack on the input (k̄15, k̄3, . . . , k̄i−1, k̄i).
15: end for

16: else

17: for each k̄imax+1, . . . , k̄14 do

18: Test the key (k̄3, . . . , k̄14, k̄15) and stop if it is correct.

19: end for

20: end if

Fig. 6. Tornado attack on WEP

In the following, we compute the values of the ρi’s, such that they yield 50% success probability for the WEP

attack and minimize the attack complexity:

Let Πi = Π(i|0, . . . , i− 1,15) for i = 3, . . . , imax and Π15 = Π(15|0,1,2) be the table of biases used by the attack

on K̄[i]. Similarly, let Nx = Nν = N, ri and ci be their parameters following Eq. (2,4). Let Ri be the rank of the correct

k̄i value in Li. Let define a random variable Ui j = 1(Y
xi good

<Y
xi bad j), where Yxi bad j is the j-th bad counter in attacking

K̄[i]. Hence, we have

Ri =
Nx−1

∑
j=1

Ui j

The expected value and the variance of this random variable can be computed as follows:

ri = E(Ri) = (Nx−1)ϕ(−λi)

and

E(R2
i) = E(Ri)+(Nx−1)(Nx−2) . E(Ui1.Ui2)

(7)

where

26

E(Ui1.Ui2) =
1

√

2πV (Yxi good)

∫ ∞

−∞
e
−

(

Y−E(Y
xi good

)

)2

2V (Y
xi good

)

1−ϕ

(

Y −E(Yxi bad)
√

V (Yxi bad)

)2

dY

This finally yields

V (Ri) = (Nx−1)ϕ(−λi)+(Nx−1)(Nx−2) . E(Ui1.Ui2)− (Nx−1)2ϕ(−λi)
2 (8)

In [62], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri)≈ (Nx−1)ϕ(−λi)(1−ϕ(λi))≈ ri

which did not match our experiments. Now, the fundamental question is: What is the distribution of Ri?

6.1 Analysis Based on Pólya Distribution

In [62], it was assumed that the distribution of Ri is normal. Running a few experiments, we noticed that in fact it is

following a distribution very close to the Poisson distribution. A revealing observation was that the variance of the

distribution was much higher than the expected value. A number of distributions have been devised for series in which

the variance is significantly larger than the mean [2,12,47], frequently on the basis of more or less complex biological

models [7]. The first of these was the negative binomial, which arose in deriving the Poisson series from the point

binomial [66,76]. We use a generalized version of the negative binomial distribution called the Pólya distribution. The

main application of the Pólya distribution is in Tornado Outbreaks [70] and Hail Frequency analysis [69].

In most climates, the probability of hail is small. If the mean hail frequency ranges on an interval f1 < f < f2 for

all climates, it is observed that for values of f near f1 the hail storms are quite scattered through each year. For this

case, the hail storms might be considered independent of each other. In this instance, the series of annual frequencies

of hail events are expected to follow the Poisson distribution of rare events. On the other hand, if the mean hail

frequency is near f2, then it seems reasonable to assume that the successive hail storms may no longer be independent,

and if one storm had hail, the next storm would be more likely to have hail as well. The introduction of dependence

between successive storms leads in a special fashion to the negative binomial distribution [69]. Similarly, tornadoes

tend to cluster within years and follow a Pólya process rather than a Poisson process in areas where frequency of the

occurrence is high [70].

This observation led us to find out that Ri is in fact following the Pólya distribution. To be more precise, if two

events occur with Poisson distribution and their expected values are very low, then it can be assumed that those events

are happening independently. On the other hand, for Poisson events with high expected values (approximated as nor-

mal), the occurrence of the former event may increase the probability of the latter. In such cases, the overall distribution

would be the Pólya distribution. Regarding the current problem, the events (Yxi good <Yxi bad j) and (Yxi good <Y
xi bad j′)

are not independent. Therefore, they tend to follow the Pólya distribution. Since E(Ri) and V (Ri) are known from

Eq. (7) and Eq. (8), the values pi and ri for attacking K̄[i] can be simply computed by

pi =

(

1− E(Ri)

V (Ri)

)

and ri =

(

E(Ri)
2

V (Ri)−E(Ri)

)

As a proof of concept, we have sketched the probability distribution of R3 for 5000 packets. The corresponding

parameters for the Pólya distribution are p = 0.9839 and r = 0.356 (see Fig. 7). As can be observed, those two

distributions are extremely close. Also,

ui
def
= Pr[Ri ≤ ρi−1] = 1− Ipi

(ρi,ri)

where I is the regularized incomplete beta function. Overall, the success probability is

u = u15

imax

∏
i=3

ui

27

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50

P
ro

ba
bi

lit
y

R3 Realization

Polya distribution with p = 0.9839 and r = 0.356
Experimental R3 distribution for 5000 packets

Fig. 7. R3 distribution using 5000 packets following the Pólya distribution

and the complexity is

c = c15 +ρ15

(

c3 +ρ3

(

c4 +ρ4

(

· · ·cimax +ρimaxN14−imax · · ·
)))

To be able to compare our results with the state of the art, we set u = 50%. To approximate the optimal choice of

ρ’s, let imax = 14. We have to deal with the following optimization problem:

Minimize c in terms of the ρi’s, with the constraint that u =
15

∏
i=3

(1− Ipi
(ρi,ri)) =

1

2
.

To solve this optimization problem, we deploy three distinct approaches:

– To obtain the probability of 50%, we let the probabilities ui’s be equal for all i ∈ {3, . . . ,15}. Hence, we set

(1− Ipi
(ρi,ri)) = 2(

−1
imax−1) = 0.9481

and we find the corresponding ρi’s. This approach does not yield the optimal solution, but at least it gives a

benchmark on what we should expect.

– Another approach is to use Lagrange multipliers to find the optimal solution. We used the fmincon function in

Maltab with Sequential Quadratic Programming [48] (SQP) algorithm as the default algorithm to compute the

local minimum. This algorithm was very fast and stable compared to the Genetic algorithm which is explained

next. Since this algorithm needs a starting point x0 for its computations, we used the GlobalSearch class which

iterates fmincon function multiple times using random vectors for x0. Simultaneously, it checks how the results

merge towards the global minimum. The drawback of any Lagrange multiplier approach is that the algorithm

should be fed with a continuous objective function. This is because it has to compute derivatives. Since we need

integer values for ρi’s in practice, we had to relax the outputs by the ceil function to round up the ρi’s found by

this approach. Therefore, it does not guarantee that the optimal solution is found, but it finds a complexity very

close to the optimal. As our experiments revealed, this algorithm most often sets ρ14 = N. So, using this approach,

imax = 13 and we do not often need to vote for K̄[14].

28

– The last approach is to find an algorithm which can handle discrete functions, i.e., it accepts integers as input. One

option is to use the Genetic algorithms. We used the ga function in Matlab for this purpose. Since these algorithms

are evolutionary, the drawback is that with the same parameters, each run outputs different results. So, we have to

run the algorithm multiple times and pick the best solution. The other drawback is that it finds a local minimum

and does not guarantee to find the global optima. As can be observed in Fig. 8, this method is not as stable as the

other approaches, plus the experiment time is much longer than the other methods. To obtain a stable result, the

parameters of the Genetic algorithm should be set carefully. This approach often yields a high value for ρ15, but it

is often less than N.

Moreover, using the empirical distribution of Ri’s and by deploying the Genetic algorithm approach, we computed

the experimental curve for the complexity. We have depicted the result of all these three approaches in Fig. 8.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5000 10000 15000 20000 25000 30000

Lo
ga

rit
hm

ic
 c

om
pl

ex
ity

 (
ba

se
 2

)

Number of packets

Benchmark approach
Global optimization technique

Genetic algorithm technique
Experimental attack using

 Genetic algorithm technique

Fig. 8. Theoretical and experimental logarithmic complexity in terms of the data complexity for breaking a WEP key with probabil-

ity at least 50% with respect to three distinct optimization approaches: the Benchmark approach, the Global optimization technique

and the Genetic algorithm technique.

We call the optimized key ranking attack on RC4, “Tornado Attack”, since Ri’s follow exactly the same distribution

as tornadoes occurrences.

Recovering K̄[15] is a crucial step in the WPA and WEP attacks. We compare the theoretical and experimental

success probability of recovering K̄[15] as the first element in the sorted list. In [62], it is assumed that Yx good−Yi is

independent for all bad i’s and was deduced that the good x had a top Yx with probability (1−ϕ(−λ))N−1. Running

some experiments, we observed different results which invalidate this model. Fig. 9 represents this success probability

with respect to the number of packets, theoretically and experimentally. Since we already know that the distribution of

the rank is the Pólya distribution, we obtain

Pr[R15 = 0] = (1− p15)
r15

The difference between these two curves are coming from the dependency between the biases. In all our analysis, we

assumed that the biases are independent, which may not be the case for some cases in practice. This difference can be

observed in Fig. 9.

29

For the attack on WEP and WPA, we used the biases up to K̄[34]. for any i > 34, the probabilities are getting very

close to the uniform distribution. It can still improve the overall success rate of the attack, but this improvement is not

significant and it further increases the computational cost of the attack. The IVs are picked pseudo-randomly using

SNOW 2.0 stream cipher [11].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of packets

Experiment
Theory

Fig. 9. The success probability of recovering K̄[15] as the top element in the voted list in theory and practice.

7 Comparison with Aircrack-ng

Fig. 10 represents a comparison between Aircrack-ng and our new attack. We used an Intel Xeon Processor W5590 at

3.33Ghz with 8M Cache for the comparison. In the previous section, we computed the success probability and drew

the curve for the case when K̄[15] is the top element in the sorted list. But for a comparison with Aircrack-ng, we let

the attack run for maximum 5 seconds. If the key is not found in that time period, we assume that the attack fails. If

we do not restrict the attack time frame, it runs for ever by going exhaustively over all elements in the sorted lists.

As can be observed, our passive attack outperforms Aircrack-ng running in active mode. This gives significant

advantage to the attacker, since for some network cards, the driver has to be patched so that the network card can inject

packets, and in some cases such patch is not available at all. Moreover, the active attacks are detectable by intrusion

detection systems. Similarly, passive attacks can be performed from a large distance. Moreover, the TCP/IPv4 packets

can be captured with much higher rate than ARP packets. As a rule of thumb, in a high traffic network, (for instance

the user is downloading a movie), if we consider TCP/IPv4 packets with maximum size around 1500 bytes, in a 20

Mbit/sec wireless network, it takes almost 10 seconds to capture 22500 packets. This amount is already enough to find

a key with our improved Aircrack-ng in less than 5 seconds.

8 Challenges and Open Problems

WEP key recovery process is harder in practice than in theory. This is because the biases in RC4 are not independent,

and several bytes of the keystream are unknown in ARP and TCP/IP packets. Therefore, the theoretical analysis is

30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Packets

Aircrack-ng-Patched Active
Aircrack-ng-Original Active

Aircrack-ng-Patched Passive

Fig. 10. Our attacks success probability (both active and passive attacks) with respect to the number of packets compared to

Aircrack-ng in active attack mode.

more complex if the dependencies are considered. Also, some bytes of the keystream have to be guessed, and the

proportion of TCP/IP packets to ARP packets is distinct for every network and attack (passive vs. active). The a priori

probability of guessing those bytes correctly can not be precisely determined, and we had to leverage some heuristics

to deal with this problem; since this proportion also depends on the traffic itself, finding the ρ which is optimized

for every network is not feasible. We leveraged some heuristics to set the ρ to obtain a high success rate in practice.

Moreover, the Aircrack-ng is not an interactive software. The interaction with the user may allow to tweak the ρ and/or

wait for more packets to capture. This trade-off should also be considered in real life applications.

The Algorithm described in Section 6 is recursive. This recursion is very expensive in practice, since with a wrong

guess on a key byte, all the subsequent key bytes with higher indices are recovered incorrectly (in theory), so we need

to recompute the vote for each of them again. In practice, we observed that a wrong guess of a key byte does not

influence the subsequent key bytes recovery significantly. For instance, even with a wrong guess on K̄[3], in many

cases, we could still recover all the subsequent bytes correctly. This is because a wrong guess for K̄[3] mandates only

16 wrong swaps out of 256 iterations of the KSA. A further improvement to our work can be to adjust our theory to

consider such cases. Hence, in our implementation, we perform a recursive attack to only find the best key candidate,

and if it turns out to be a wrong key, we then use the pre-computed voted list to perform an exhaustive search, with no

re-voting.

8.1 A Sequential Distinguisher Approach

Previously, we were always assuming that a fixed number of packets is given to the adversary and his goal was

to maximize the success probability. Changing the perspective, one can look at the problem as fixing the success

probability and searching for the minimum average number of packets to gain that probability. This idea was initially

used by Davies and Murphy [45] to decrease the complexity of their attack against DES. With this type of model in

mind, the notion of nmax-limited generic sequential non-adaptive distinguisher was defined by Junod in [27], where

nmax is an upper bound for the allowed number of packets in that context. We use the notion of sequential distinguishers

for key recovery.

Mapping the definition of an nmax-limited generic sequential non-adaptive distinguisher in [27] to our attack, the

new attack works as follows: The attacker eavesdrops a small number of packets from the channel and then runs an

31

attack similar to the one described in the previous section. If it fails, then he waits for more packets to come and

runs the attack again. This procedure is iterated again and again. The attacker stops in case he finds the correct key

or the threshold nmax number of packets is reached. If the former occurs, it outputs 1 (success), otherwise it outputs 0

(failure). This attack mode was already used in Aircrack-ng and also in [4]. It is referred to as the “interactive mode”.

This approach turns out to be more efficient in terms of the average number of packets compared to the other types of

distinguishers. In fact, Siegmund [63] has proved the following theorem (see [27] for details).

Theorem 9. For a simple hypothesis testing against a simple alternative with independent, identically distributed

observations, a sequential probability ratio test is optimal in the sense of minimizing the expected number of samples

among all tests having no larger error probabilities.

Using this technique, we can decrease the average number of packets to reach the success probability of 50%. For

instance, we can drop the data complexity of our fastest attack (i.e., with all ρi = 1) in Fig. 8 from 27500 to 22500

packets in average using this approach to gain the success probability of 50%. We also give another example next to

illustrate how the number of packets can be dropped using this technique.

As an example, using 23000 packets and the attack from the previous section, we computed the almost optimized

ρi’s derived from the Genetic algorithm approach in practice to gain the success probability of 50%. We set

ρ3 = 2 ρ4 = 1 ρ5 = 1 ρ6 = 2 ρ7 = 2

ρ8 = 1 ρ9 = 2 ρ10 = 1 ρ11 = 1 ρ12 = 4

ρ13 = 2 ρ14 = 86 ρ15 = 1

Next, we run the attack in the interactive mode with the above ρi’s for a lot of WEP keys and find the minimal value

of nmax which yields 50% success rate. Our experiments showed that nmax = 22000. Consequently, We run the same

attack in the interactive mode with nmax = 22000 for recovering different WEP keys Ki leading to some ni to succeed.

Then, we compute the statistical average of the number of packets ni when it succeeds and nmax for the attacks which

fail. The average number of packets we obtained in practice was 19800 packets, which is much less than the case when

we were fixing the number of packets and maximizing the success probability.

An open problem is to analyze the theoretical complexity of the sequential distinguisher approach described above

and compare it with the experimental results. We leave this to future work.

9 Conclusion

We deployed a framework to handle pools of biases for RC4 which can be used to break the WPA protocol. In the case

of the 8 weak bits of the TK, we have shown a simple distinguisher and a partial key recovery attack working with 242

packets and a practical complexity. This can be used to improve the attack by Moen-Raddum-Hole [43] to mount a

full temporary key recovery attack of complexity 296 using 242 packets. So far, this is the best temporal key recovery

attack against WPA. In a future work, we plan to study further key recovery attacks to recover more pieces of the TK

with a complexity lower than 296.

We have shown that conditional biases are not very helpful for breaking WPA, but they really are against WEP.

For WEP, we recover the secret key with the success rate of 50% by using 19800 packets in less than a minute using

a sequential distinguishing approach. The attack is still feasible with less number of packets, but it runs for a longer

period.

References

1. T. AlFardan, D.J. Bernstein, K.G. Paterson, B. Poettering, and J.C.N. Schuldt. On the Security of RC4 in TLS. In USENIX

Security Symposium. USENIX Association, 2013.

2. F.J. Anscombe. Sampling theory of the negative binomial and logarithmic series distributions. Biometrika, 37(3-4):358–382,

1950.

3. M. Beck. Enhanced TKIP Michael Attacks, 2010. http://download.aircrack-ng.org/wiki-files/doc/enhanced tkip michael.pdf.

32

4. M. Beck and E. Tews. Practical Attacks Against WEP and WPA. In WISEC, pages 79–86. ACM, 2009.

5. E. Biham and Y. Carmeli. Efficient Reconstruction of RC4 Keys from Internal States. In FSE, volume 5086, pages 270–288.

Springer, 2008.

6. A. Bittau. Additional Weak IV Classes for the FMS Attack, 2003.

http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036.

7. C.I. Bliss and R.A. Fisher. Fitting the Negative Binomial Distribution to Biological Data. Biometrika, 9:176–200, 1953.

8. R.B. Davies. Numerical inversion of a characteristic function. Biometrika, 60(2):415–417, 1973.

9. R.B. Davies. The distribution of a linear combination of chi-squared random variables. Applied Statistics, 29:323–333, 1980.

10. C. Devine and T. Otreppe. Aircrack-ng, accessed October 22, 2011. http://www.aircrack-ng.org/.

11. P. Ekdahl and T. Johansson. A New Version of the Stream cipher SNOW. In SAC, volume 2595, pages 47–61. Springer, 2002.

12. W. Feller. On a general class of “contagious” distributions. Ann. Math. Stat., 14:389–400, 1943.

13. N. Ferguson. fel: an Improved MIC for 802.11 WEP. IEEE doc. 802.11-2/020r0, 2002.

14. S.R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algorithm of RC4. In SAC, volume 2259, pages

1–24. Springer, 2001.

15. S.R. Fluhrer and D.A. McGrew. Statistical Analysis of the Alleged RC4 Keystream Generator. In FSE, volume 1978, pages

19–30. Springer, 2001.

16. J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38(3/4):481–482, 1951.

17. J.Dj. Golic. Linear Statistical Weakness of Alleged RC4 Keystream Generator. In EUROCRYPT, volume 1233, pages 226–238.

Springer, 1997.

18. J.Dj. Golic. Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator. In ACISP, volume 1841, pages 220–223.

Springer, 2000.

19. R. Housley, D. Whiting, and N. Ferguson. Alternate Temporal Key Hash. IEEE doc. 802.11-02/282r2, 2002.

20. D. Hulton. Practical Exploitation of RC4 Weaknesses in WEP Environments, 2001.

http://www.dartmouth.edu/ madory/RC4/wepexp.txt.

21. IEEE. IEEE Std 802.11, Standards for Local and Metropolitan Area Networks: Wireless Lan Medium Access Control (MAC)

and Physical Layer (PHY) Specifications, 1999.

22. IEEE. 802.1x: Standards for Local and Metropolitan Area Networks: Port-Based Access Control, 2001. Draft 3.

23. IEEE. ANSI/IEEE standard 802.11i, Amendment 6 Wireless LAN Medium Access Control (MAC) and Physical Layer (phy)

Specifications, 2003. Draft 3.

24. IEEE. IEEE 802.11i-2004: Amendment 6: Medium Access Control (MAC) Security Enhancements, 2004.

25. T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii. Full Plaintext Recovery Attack on Broadcast RC4. In FSE. Springer, 2013.

26. R. Jenkins. ISAAC and RC4, 1996. http://burtleburtle.net/bob/rand/isaac.html.

27. P. Junod. On the Optimality of Linear, Differential, and Sequential Distinguishers. In EUROCRYPT, volume 2656, pages

255–271. Springer, 2003.

28. P. Junod and S. Vaudenay. Optimal Key Ranking Procedures in a Statistical Cryptanalysis. In FSE, volume 2656, pages

235–246. Springer, 2003.

29. A. Klein. Attacks on the RC4 Stream Cipher. Design, Codes, and Cryptography, 48:269–286, 2008.

30. L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analysis Methods for (Alleged) RC4. In ASIACRYPT,

volume 1514, pages 327–341. Springer, 1998.

31. Korek. chopchop (experimental WEP attacks). http: //www.netstumbler.org/showthread.php?t=12489.

32. Korek. Need Security Pointers, 2004. http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036.

33. Korek. Next Generation of WEP Attacks?, 2004. http://www.netstumbler.org/showpost.php?p=93942&postcount=%35.

34. S. Maitra and G. Paul. New Form of Permutation Bias and Secret Key Leakage in Keystream Bytes of RC4. In FSE, volume

5086, pages 253–269. Springer, 2008.

35. S. Maitra, G. Paul, S. Sarkar, M. Lehmann, and W. Meier. New Results on Generalization of Roos-Type Biases and Related

Keystreams of RC4. In AFRICACRYPT, volume 7918. Springer, 2013.

36. S. Maitra, G. Paul, and S. Sen Gupta. Attack on Broadcast RC4 Revisited. In FSE, volume 6733, pages 199–217. Springer,

2011.

37. I. Mantin. Analysis of the Stream Cipher RC4. Master’s thesis, Weizmann Institute of Science, 2001.

38. I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator. In EUROCRYPT, volume 3494, pages 491–

506. Springer, 2005.

39. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In FSE, volume 2355, pages 152–164. Springer, 2001.

40. A. Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness. In FSE, volume 3557, pages 342–358.

Springer, 2005.

41. A. Maximov and D. Khovratovich. New State Recovery Attack on RC4. In CRYPTO, volume 5157, pages 297–316. Springer,

2008.

42. I. Mironov. Not So Random Shuffles of RC4. In CRYPTO, volume 2442, pages 304–319. Springer, 2002.

33

43. V. Moen, H. Raddum, and K.J. Hole. Weaknesses in the Temporal Key Hash of WPA. Mobile Computing and Communications

Review, 8:76–83, 2004.

44. R. Muirhead. Aspects of Multivariate Statistical Theory. Wiley, 2005.

45. S. Murphy and D. Davies. Pairs and triples of DES S-boxes. Journal of Cryptology, 8:1–25, 1995.

46. AirTight Networks. WPA2 Hole196 Vulnerability: Exploits and Remediation Strategies, 2012.

http://www.airtightnetworks.com/fileadmin/pdf/whitepaper/WPA2-Hole196-Vulnerability.pdf.

47. J. Neyman. On a new class of “contagious” distributions, applicable in entomology and bacteriology. Ann. Math. Stat.,

10:35–57, 1939.

48. J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer Verlag, second edition,

2006.

49. P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In CRYPTO, volume 2729, pages 617–630. Springer,

2003.

50. T. Ohigashi, T. Isobe, Y. Watanabe, and M. Morii. How to Recover Any Byte of Plaintext on RC4. In SAC. Springer, 2013.

51. T. Ohigashi and M. Morii. A practical message falsification attack on WPA. In JWIS, pages 5A–4. CDROM, 2009.

52. G. Paul and S. Maitra. Permutation After RC4 Key Scheduling Reveals the Secret. In SAC, volume 4876, pages 360–377.

Springer, 2007.

53. G. Paul, S. Rathi, and S. Maitra. On Non-Negligible Bias of the First Output Byte of RC4 towards the First Three Bytes of the

Secret Key. Design, Codes, and Cryptography, 49:123–134, 2008.

54. S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator and an Approach. In FSE, volume 3017, pages

245–259. Springer, 2004.

55. J. Postel and J. Reynolds. A Standard for the Transmission of IP Datagrams over IEEE 802 Networks, 1988.

http://www.cs.berkeley.edu/∼daw/my-posts/my-rc4-weak-keys.

56. A. Roos. A Class of Weak Keys in RC4 Stream Cipher (sci.crypt), 1995. http://marcel.wanda.ch/Archive/WeakKeys.

57. S. Sen Gupta, S. Maitra, and W. Meier. Distinguishing WPA. In Cryptology ePrint Archive, 2013.

http://eprint.iacr.org/2013/476.pdf.

58. S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. Proof of Empirical RC4 Biases and New Key Correlations. In SAC, volume

7118, pages 151–168. Springer, 2011.

59. S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non-)Random Sequences from (Non-)Random Permutations - Analysis of

RC4 stream cipher. Journal of Cryptology, 2013.

60. P. Sepehrdad, P. Sušil, S. Vaudenay, and M. Vuagnoux. Smashing WEP in a Passive Attack. In FSE. Springer, 2013.

61. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Discovery and Exploitation of New Biases in RC4. In SAC, volume 6544, pages

74–91. Springer, 2010.

62. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical Attack on RC4: Distinguishing WPA. In EUROCRYPT, volume

6632, pages 343–363. Springer, 2011.

63. D. Siegmund. Sequential analysis - tests and confidence intervals. Springer, 1985.

64. A. Stubblefield, J. Ioannidis, and A.D. Rubin. Using the Fluhrer, Mantin, and Shamir Attack to Break WEP. Network and

Distributed System Security Symposium (NDSS), 2002.

65. A. Stubblefield, J. Ioannidis, and A.D. Rubin. A key recovery attack on the 802.11b wired equivalent privacy protocol (WEP).

ACM Transactions on Information and System Security (TISSEC), 7(2), 2004.

66. Student. On the error of counting with a haemocytometer. Biometrika, 5:351–360, 1907.

67. E. Tews. Attacks on the WEP Protocol. In Cryptology ePrint Archive, 2007. http://eprint.iacr.org/2007/471.pdf.

68. E. Tews, R. Weinmann, and A. Pyshkin. Breaking 104 Bit WEP in Less Than 60 Seconds. In WISA, volume 4867, pages

188–202. Springer, 2007.

69. H.C.S. Thom. The Frequency of Hail Occurrence. Theoretical and Applied Climatology, 8:185–194, 1957.

70. H.C.S. Thom. Tornado Probabilities. American Meteorological Society, pages 730–736, 1963.

71. Y. Todo, Y. Ozawa, T. Ohigashi, and M. Morii. Falsification Attacks against WPA-TKIP in a Realistic Environment. IEICE

Transactions, 95-D(2):588–595, 2012.

72. V. Tomasevic, S. Bojanic, and O. Nieto-Taladriz. Finding an Internal State of RC4 Stream Cipher. Information Sciences: an

International Journal, 177:1715–1727, 2007.

73. S. Vaudenay and M. Vuagnoux. Passive-only Key Recovery Attacks on RC4. In SAC, volume 4876, pages 344–359. Springer,

2007.

74. S. Viehböck. Brute forcing Wi-Fi Protected Setup: When poor design meets poor implementation, 2011.

http://sviehb.files.wordpress.com/2011/12/viehboeck wps.pdf.

75. D. Wagner. Weak Keys in Rc4 (sci.crypt), 1995. http://www.cs.berkeley.edu/∼daw/my-posts/my-rc4-weak-keys.

76. L. Whitaker. On the Poisson law of small numbers. Biometrika, 10:36–71, 1914.

34

A Classification of Biases

In this section, we classify the biases in RC4. We only report those which are exploitable against WEP and WPA.

Most of the biases reported against RC4 in [61] are not exploitable, because they do not bind the secret key with the

keystream. They often require extra bytes, which are unknown to the attacker. We elaborate each bias individually and

extract the probability that it holds in our model. The list includes the improved version of the Klein attack in [73]

(elaborated in Section 4.1) and the improved version of the Maitra-Paul attack in [34]. Furthermore, it includes an

improved version of 19 biases by Korek [33,32] (A u15 was elaborated in Section 4.2) and the SVV 10, the improved

bias of Sepehrdad, Vaudenay and Vuagnoux in [61]. All the probabilities are new. The path for each bias is described.

Due to the similarity of several paths and for simplicity, in several cases we do not repeat the same formulas again and

again. The reader should refer to Appendix B for the formulas to compute the success probability of each attack.

Korek is the nickname of a hacker who discovered 20 key recovery attacks similar to the FMS attack [14]. Korek

classified them into three categories. The first group of attacks uses only z1 and the state of the array Si−1 (i.e.,

K[0],K[1] . . . ,K[i− 1]) of the KSA to recover the secret key K[i] (typically the FMS attack). The second class of

attacks uses the second byte of the keystream z2. Ultimately, the last one highlights the improbable secret key bytes.

They are called negative attacks or impossible attacks. We only mention 19 such correlations, since the conditions

of the attack A u5 4 are rarely satisfied in practice except for i = 6 when t = 2, in which its corresponding success

probability is very close to 1/256.

A.1 The Maitra-Paul-Improved Attack

Maitra and Paul illustrated in [34] that the Pr[zi+1 = ji] is not uniformly distributed. We can use this bias to perform a

key recovery attack on RC4 using Lemma 5. There was initially no condition on this bias, except that it does not hold

for i = 1. Maitra and Paul observed this abnormality for i = 1 experimentally. We introduce some extra conditions

which improve the success probability of this attack. In the following, we specify the assumptions in this attack and

extract its success probability and prove that the bias does not hold for i = 1. Their bias is directly exploitable for t = 2.

We generalize it to any t.

– Conditions: i 6= 1, zi+1 ≥ i and (∀0≤ i′ ≤ t : ji′ 6= zi+1)

– Assumptions: (see Fig. 11)

• (∃m > i | jm = i)

• ji = S−1[ji] = · · ·= Si−1[ji] = Si[i] = · · ·= Sm−1[i] = Sm[m] = · · ·= S′i+1[m]

• m = S−1[m] = · · ·= Sm−1[m] = Sm[i] = · · ·= S′i−1[i] = S′i[j
′
i] = S′i+1[i+1]

• S′i[i+1] = S′i+1[j
′
i+1] = 0

– Key recovery relation: K̄[i] = zi+1−σi

– Probability of success: PMPI(i, t) (see Appendix B)

Later, for the attack to work, an m should exist such that jm = i. Due to the assumptions, we also assume S−1[m]
and S−1[ji] are maintained until Si−1. Hence, we compute

Pr[S−1[ji] = · · ·= Si−1[ji],S−1[m] = · · ·= Si−1[m]] = P2
A(i,0)

Furthermore, ji ≥ i and m ≥ i, otherwise they would both be swapped in the i-th initial KSA state updates. Right

now, we fix m and then we sum over it. Thus, we compute

Pr[ji ≥ i] =
(

N−i
N

)

and Pr[jm = i] =
(

1
N

)

At the i-th stage of the KSA update, Si−1[ji] is moved to Si[i]. Due to the assumptions, Si−1[m] is maintained until

the next state update. So, we obtain Si[m] = m. This holds with probability

Pr[Si−1[m] = Si[m]] = P1
A(i+1, i−1)

35

At the next stage, due to the assumptions, Si[i] and Si[m] are maintained until Sm−1, so at Sm−1 we have Sm−1[m] =m

and Sm−1[i] = ji. Thus, we compute

Pr[Si[i] = · · ·= Sm−1[i],Si[m] = · · ·= Sm−1[m]] = P2
A(m, i)

Since jm = i, at the next update, we gain Sm[m] = ji and Sm[i] = m. Due to the assumptions, these two bytes are

maintained until S′i−1. So, we compute

Pr[Sm[i] = · · ·= S′i−1[i],Sm[m] = · · ·= S′i−1[m]] = P2
A(N + i−1,m)

At the i-th step of the PRGA update, S′i−1[i] is moved to S′i[j
′
i] and due to the assumptions, we assume that the value

of S′i−1[m] is maintained until the next step. At this stage, we have S′i[m] = ji and S′i[j
′
i] = m. We also have S′i[i+1] = 0

due to the assumptions. Thus, we compute

Pr[S′i−1[m] = S′i[m]] = PA(N + i,N + i−2) and Pr[S′i[i+1] = 0] =
(

1
N

)

Finally, at the (i+ 1)-th PRGA update, S′i[i+ 1] is moved to S′i+1[j
′
i] and S′i[j

′
i] is moved to S′i+1[i+ 1]. Due to the

assumptions, the value of S′i[m] is maintained until S′i+1. Ultimately, we compute

Pr[S′i[m] = S′i+1[m]] = P1
A(N + i+1,N + i−1)

We also know that

1. zi+1 = S′i+1[S
′
i[i+1]+S′i[j

′
i+1]]

2. j′i+1 = j′i +S′i[i+1] = j′i
3. S′i[j

′
i+1] = S′i[j

′
i] = S′i−1[i] = Sm[i] = Sm[jm] = Sm−1[m] = m

Hence,

zi+1 = S′i+1[m] = Sm[m] = Sm−1[jm] = Sm−1[i] = Si[i] = Si−1[ji] = ji

So overall using Lemma 2 and Corollary 3, we obtain

PMPI(i, t) = Pr[K̄[i] = zi+1−σi] = PB⊗PD = PD(i)PB(i, t)+
1

N−1
(1−PD(i))(1−PB(i, t))

where

PD(i) = Pr[zi+1 = ji] =
N−1

∑
m=i+1

(

1

N

)2(
N− i

N

)

. P2
A(i,0) . P1

A(i+1, i−1) . P2
A(m, i) .

P2
A(N + i−1,m) . P1

A(N + i,N + i−2) . P1
A(N + i+1,N + i−1)

=
(N− i−1)(N− i)

N3

(

N−2

N

)N−3+i(
N−1

N

)3

We introduced some extra conditions for this attack to work. Clearly, Si−1[ji] = ji implies that ji ≥ i and ∀i′ < i :

j′i 6= ji. So, we can have a better probability with conditions zi+1 ≥ i and ∀i′ ≤ t : ji′ 6= zi+1.

This bias does not hold when i = 1. This is because, at the first iteration of the PRGA, we have i = 1 and j′1 =
SN−1[1] = m. Then, we swap SN−1[1] and SN−1[m]. Thus, we have S′1[1] = ji and S′1[m] = m. At the next iteration, i = 2

and j′2 = m+ S′1[2] = m, so we swap S′1[2] and S′1[m]. Finally, z2 is computed as z2 = S′2[S
′
2[2]+ S′2[m]] = S′2[m] = 0.

As a result, z2 6= ji. The value S[m] should be maintained during all steps of the KSA and the PRGA, while if i = 1, it

would be swapped in the first stage.

36

!"−!

!
−!

!!

!"

!

!

!

!

!

!

!"

!"

!"

!"

!"

!"

!"

!"

!"−!

!�

!
′

"−!

!
′

"

!
′

"+!

!

!"

!"

!

!

!′"

! !

!+ !

! !

!" = #

Fig. 11. RC4 state update in the Maitra-Paul-Improved attack

37

A.2 The A s5 1 Attack

– Conditions: St [1]< t +1, St [1]+St [St [1]] = i, z1 6= {St [1],St [St [1]]} and (S−1
t [z1]< t +1 or S−1

t [z1]> i−1)

– Assumptions: (see Fig. 12)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = α

• St [α] = · · ·= Si−1[α] = Si[α] = · · ·= SN−1[α] = β

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

– Key recovery relation: K̄[i] = S−1
t [z1]−σi

– Probability of success: Kor32(i, t) (see Appendix B)

This attack in the generalization of the FMS attack. The attack works as follows: Assume St [1] = α, St [α] = β
and also assume α+ β = i by the conditions. Then, assume these two values are maintained at the same position

until the state Si−1 and then until the state SN−1. Another assumption we make is that Si[i] is maintained until the

state SN−1. At the first iteration of the PRGA, i = 1 and j′1 = SN−1[1] = α. Then, a swap is made between SN−1[1]
and SN−1[α]. Finally, we have z1 = S′1[S

′
1[1]+ S′1[α]] = S′1[α+β] = S′1[i] = Si[i] = Si−1[ji] = St [ji]. Hence, we obtain

z1 = St [ji] and so ji = S−1
t [z1]. Since we also have K̄[i] = ji−σi(t), we conclude from the previous equation that K̄[i] =

S−1
t [z1]−σi. The last condition on z1 in the list of conditions are for filtering out some incorrect events leading to the

same results. This makes the success probability and the key recovery more precise. The condition {St [1],S
−1
t [z1]}<

t + 1 is to make {α, ji} < t + 1, therefore it is not trivially swapped during the KSA iterations. We also should make

sure that z1 6= {α,β}, so we end up with 3 elements in the state that have not moved. Thus, we need the condition

z1 6= {St [1],St [St [1]]}.

!"−!

!"

!"−!

!"

!

α

α

α

α

α

β

β

β

β

!!

!!

!

!"

!!

!!

Fig. 12. RC4 state update in the A s5 1 attack

A.3 The A s13 Attack

– Conditions: St [1] = i, (S−1
t [0]< t +1 or S−1

t [0]> i−1) and z1 = i

38

– Assumptions: (see Fig. 13)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = i

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i] = 0

– Key recovery relation: K̄[i] = S−1
t [0]−σi

– Probability of success: Kor21(i, t) (see Appendix B)

In this attack, a nice event happens in the PRGA which automatically makes S′1[1] = 0. Assume that SN−1[i] = γ,

then we explain that γ = 0. An the first step of the PRGA, i = 1 and j′1 = SN−1[1] = i, so we swap SN−1[1] and

SN−1[i]. To compute z1, we have z1 = S′1[S
′
1[1]+ S′1[i]] = S′1[γ+ i] = i, since from the conditions we have z1 = i. This

makes us conclude that γ = 0. We already know from the relations in the KSA that Si−1[ji] = Si[i] and we assume that

Si−1[ji] = St [ji] and also Si−1[ji] = 0. Thus, St [ji] = 0. Then, we obtain ji = S−1
t [0]. Using the similar formulas as the

previous attacks, we get K̄[i] = S−1
t [0]−σi.

!"

!"−!

!"

!"−!

!

!

!

!

!

!"

!

!

!

!

!

Fig. 13. RC4 state update in the A s13 attack

A.4 The A u13 1 Attack

– Conditions: St [1] = i, (S−1
t [1− i]< t +1 or S−1

t [1− i]> i−1) and z1 = 1− i

– Assumptions: (see Fig. 14)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = i

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i] = 1− i

– Key recovery relation: K̄[i] = S−1
t [z1]−σi

– Probability of success: Kor21(i, t) (see Appendix B)

At the first step of the PRGA, i = 1 and j′1 = SN−1[1] = i, so we swap SN−1[1] and SN−1[i]. To compute z1, we

have z1 = S′1[S
′
1[1]+S′1[i]] = S′1[1] = 1− i. We already know from the relations in the KSA that Si−1[ji] = Si[i] and we

assume that Si−1[ji] = St [ji] and also Si−1[ji] = 1− i. Thus, St [ji] = 1− i. Then, we obtain ji = S−1
t [1− i]. Using the

similar formulas as the previous attacks, we get K̄[i] = S−1
t [z1]−σi.

39

!"−!

!"

!"−!

!"

!

!

!

!

!

!"

!− !

!− !

!− !

!− !

!

Fig. 14. RC4 state update in the A u13 1 attack

A.5 The A u5 1 Attack

– Conditions: St [1] = i, S−1
t [z1]< t +1, S−1

t [S−1
t [z1]− i] 6= 1, (S−1

t [S−1
t [z1]− i]< t +1 or S−1

t [S−1
t [z1]− i]> i−1),

z1 6= {i,1− i,S−1
t [z1]− i} and S−1

t [z1] 6= 2i

– Assumptions: (see Fig. 15)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = i

• Assuming S−1
t [z1] = α, we should have St [α] = · · ·= Si−1[α] = Si[α] = · · ·= SN−1[α] = z1.

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i] = S−1
t [z1]− i

– Key recovery relation: K̄[i] = S−1
t [S−1

t [z1]− i]−σi

– Probability of success: Kor32(i, t) (see Appendix B)

At the first stage of the PRGA, we have i = 1 and j′1 = SN−1[1] = i. So we swap SN−1[1] and SN−1[i]. We know that

Si[i] = Si−1[ji] = S−1
t [z1]− i and also ji = S−1

t [S−1
t [z1]− i]. The output z1 would be z1 = S′1[S

′
1[1]+S′1[i]] = S′1[S

−1
t [z1]−

i+ i] = S′1[S
−1
1 [z1]] = z1. Therefore, we have K̄[i] = S−1

t [S−1
t [z1]− i]−σi. The condition z1 6= {i,1− i} is to filter out

the attacks A u13 1 and A s13. S−1
t [z1] < t + 1, because otherwise z1 would be swapped in the next iterations of the

KSA. If S−1
t [S−1

t [z1]− i] = 1, then ji = 1 and so a swap will be made between Si−1[1] and Si−1[i], in the i-th step of the

KSA.

A.6 The A u5 2 Attack

– Conditions: St [i] = 1 and z1 = St [2]

– Assumptions: (see Fig. 16)

• St [i] = · · ·= Si−1[i] = Si[1] = · · ·= SN−1[1] = 1

• St [2] = · · ·= SN−1[2] = z1

• ji = 1

40

!"−!

!"

!"−!

!"!

!

!

!

!

! !
−!

" [#!]

!!

!!

!!

!!

!
−!

� [�!]− $

!
−!

� [�!]− $

!
−!

� [�!]− $

!
−!

� [�!]− $

!"

Fig. 15. RC4 state update in the A u5 1 attack

– Key recovery relation: K̄[i] = 1−σi

– Probability of success: P2
u (i, t) (see Appendix B)

This is one of the attacks which we assume ji = 1. In the PRGA, i = 1 initially and j′1 = SN−1[1] = 1. In the

swap step, no swap is made since we have to swap SN−1[1] and SN−1[1]. Hence, z1 = S′1[S
′
1[1]+S′1[1]] = S′1[2] = St [2].

Finally, the key recovery formula becomes K̄[i] = 1−σi.

We classify the conditions as

C1 : St [i] = 1 and C2 : z1 = St [2]

We also classify the assumptions and the events and the key recovery bias as

S1 : St [i] = · · ·= Si−1[i]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [2] = · · ·= SN−1[2]
S4 : K̄[i] = ji−σi

E1 : ji = 1

B : K̄[i] = 1−σi

Now, we compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2]. Deploying

a similar approach to the one of the attack A u15, we end up with

Pr[B|C1,C2] = Pr(E1|C) .
(

NPB(i, t)−1

N−1

)

+

(

1−PB(i, t)

N−1

)

where

Pr[E1|C]≈ Pr(C1S1S2S3|E1C2)+
1

N

(

1−P2
A(i, t) .

(

N−2

N

)N−i−1
)

41

Pr[C1S1S2S3|E1C2] =

(

Pr[C1S1S2S3E1|C2]

Pr[E1|C2]

)

= Pr[C2|C1S1S2S3E1] .

(

Pr[C1S1S2S3E1]

Pr[C2] . Pr[E1|C2]

)

Since Pr[C2] is not uniformly distributed, we use the following lemma to compute its value. Then, we approximate

Pr[C2]≈
(

N−1
N

)t−2
. Pr[z1 = K̄[2]+3].

Lemma 10. (Theorem 3 in [53]) For any arbitrary secret key, the correlation between the key bytes and the first byte

of the keystream output is given by

Pr[z1 = K̄[2]+3] = ξ =
1

N

[

(

N−1

N

)N(

1− 1

N
+

1

N2

)

+
1

N2
+1

]

Deploying the above lemma, we obtain

Pr[C1S1S2S3|E1C2] =

(

N

N−1

)t−2

.
N

ξ

(

1

N
.

1

N

(

N−2

N

)N−1−i

. P2
A(i, t)

)

=
1

Nξ
P2

A(i, t)

(

N

N−1

)t−2(
N−2

N

)N−1−i

Therefore, overall we have

Pr[B|C1C2] =
1

N

(

NPB(i, t)−1

N−1

)

.

[

1

ξ
P2

A(i, t)

(

N

N−1

)t−2(
N−2

N

)N−1−i

+

(

1−P2
A(i, t)

(

N−2

N

)N−i−1
)]

+

(

1−PB(i, t)

N−1

)

A.7 The A u13 2 Attack

– Conditions: St [i] = i, St [1] = 0 and z1 = i

– Assumptions: (see Fig. 17)

• St [1] = · · ·= Si−1[1] = Si[i] = · · ·= SN−1[i] = 0

• St [i] = · · ·= Si−1[i] = Si[1] = · · ·= SN−1[1] = i

• ji = 1

– Key recovery relation: K̄[i] = 1−σi

– Probability of success: P3
u (i, t) (see Appendix B)

This attack is very similar to the previous attack. Again, we assume ji = 1. In the KSA, we know that Si−1[1] = 0

and Si−1[i] = i. At the i-th stage, due to the swap we have Si[1] = i and Si[i] = 0. We assume these two values are

maintained until the end of the KSA. In the PRGA, initially i = 1 and j′1 = SN−1[1] = i. So, we swap SN−1[1] and

SN−1[i]. Then, z1 = S′1[S
′
1[1]+S′1[i]] = i. Hence, the key recovery formula would be K̄[i] = 1−σi.

We classify the conditions as

C1 : St [i] = i and C2 : St [1] = 0 and C3 : z1 = i

42

!"

!"−!

!"

!"−!

!!

!

!

!

!

!

!

!

!

!

Fig. 16. RC4 state update in the A u5 2 attack

We also classify the assumptions and the events and the key recovery bias as

S1 : St [i] = · · ·= Si−1[i]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [1] = · · ·= Si−1[1]
S4 : Si[i] = · · ·= SN−1[i]
S5 : K̄[i] = ji−σi

E1 : ji = 1

B : K̄[i] = 1−σi

Now, we compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2,C3]. De-

ploying a similar approach to the one of the attack A u15, we end up with

Pr[B|C1,C2,C3] = Pr(E1|C) .
(

NPB(i, t)−1

N−1

)

+

(

1−PB(i, t)

N−1

)

where

Pr[E1|C]≈ Pr(C1C2S1S2S3S4|E1C3)+
1

N

(

1−P2
A(i, t) .

(

N−2

N

)N−i−1
)

Pr[C1C2S1S2S3S4|E1C3] =

(

Pr[C1C2S1S2S3S4E1|C3]

Pr[E1|C3]

)

= Pr[C3|C1C2S1S2S3S4E1] .

(

Pr[C1C2S1S2S3S4E1]

Pr[C3] . Pr[E1|C3]

)

=

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)

43

Pr[C3] is uniformly distributed in this case and we also have

Pr[St [i] = i] =

(

N−1

N

)t+1

Therefore, overall we have

Pr[B|C1C2C3] =

(

NPB(i, t)−1

N−1

)

.

[

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)+

1

N

(

1−P2
A(i, t)

(

N−2

N

)N−i−1
)]

+

(

1−PB(i, t)

N−1

)

!"

!"−!

!"

!"−!

!

!

!

!

!

!

!

!

!

!

Fig. 17. RC4 state update in the A u13 2 attack

A.8 The A u13 3 Attack

– Conditions: St [i] = i, St [1] = 1− i and z1 = 1− i

– Assumptions: (see Fig. 18)

• St [1] = · · ·= Si−1[1] = Si[i] = · · ·= SN−1[i] = 1− i

• St [i] = · · ·= Si−1[i] = Si[1] = · · ·= SN−1[1] = i

• ji = 1

– Key recovery relation: K̄[i] = 1−σi

– Probability of success: P3
u (i, t) (see Appendix B)

44

This attack is going through exactly the same approach as the previous attack, but with different values. Again,

we assume ji = 1. In the KSA, we know that Si−1[1] = 1− i and Si−1[i] = i. At the i-th stage, due to swap we have

Si[1] = i and Si[i] = 1− i. We assume these two values are maintained until the end of the KSA. In the PRGA, i = 1

and j′1 = SN−1[1] = i. So, we swap SN−1[1] and SN−1[i]. Then, z1 = S′1[S
′
1[1]+ S′1[i]] = S′1[1] = 1− i. Hence, the key

recovery formula would be K̄[i] = 1−σi.

We classify the conditions as

C1 : St [i] = i and C2 : St [1] = 1− i and C3 : z1 = 1− i

We also classify the assumptions and the events and the key recovery bias as

S1 : St [i] = · · ·= Si−1[i]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [1] = · · ·= Si−1[1]
S4 : Si[i] = · · ·= SN−1[i]
S5 : K̄[i] = ji−σi

E1 : ji = 1

B : K̄[i] = 1−σi

Now, we compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2,C3]. De-

ploying a similar approach to the one of the attack A u15, we end up with

Pr[B|C1,C2,C3] = Pr(E1|C) .
(

NPB(i, t)−1

N−1

)

+

(

1−PB(i, t)

N−1

)

where

Pr[E1|C]≈ Pr(C1C2S1S2S3S4|E1C3)+
1

N

(

1−P2
A(i, t) .

(

N−2

N

)N−i−1
)

Pr[C1C2S1S2S3S4|E1C3] =

(

Pr[C1C2S1S2S3S4E1|C3]

Pr[E1|C3]

)

= Pr[C3|C1C2S1S2S3S4E1] .

(

Pr[C1C2S1S2S3S4E1]

Pr[C3] . Pr[E1|C3]

)

=

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)

Pr[C3] is uniformly distributed in this case and we also have

Pr[St [i] = i] =

(

N−1

N

)t+1

Therefore, overall we have

Pr[B|C1C2C3] =

(

NPB(i, t)−1

N−1

)

.

[

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)+

1

N

(

1−P2
A(i, t)

(

N−2

N

)N−i−1
)]

+

(

1−PB(i, t)

N−1

)

45

!"−!

!"−!

!"

!"

!

!

!

!

!

!− !

!− !

!− !

!− !

!

Fig. 18. RC4 state update in the A u13 3 attack

A.9 The A u5 3 Attack

– Conditions: St [i] = i, S−1
t [z1] 6= 1, S−1

t [z1]< t +1 and z1 = St [St [1]+ i]

– Assumptions: (see Fig.19)

• St [1] = · · ·= Si−1[1] = Si[i] = · · ·= SN−1[i] = S−1
t [z1]− i

• St [i] = · · ·= Si−1[i] = Si[1] = · · ·= SN−1[1] = i

• S−1
t [z1] = · · ·= S−1

i−1[z1] = S−1
i [z1] = · · ·= S−1

N−1[z1]

• ji = 1

– Key recovery relation: K̄[i] = 1−σi

– Probability of success: P5
u (i, t) (see Appendix B)

This attack is the extension of the A u13 2 and the A u13 3 attacks. Again, we assume ji = 1. In the KSA, we

know that Si−1[1] = S−1
t [z1]− i and Si−1[i] = i. At the i-th stage, due to the swap we have Si[1] = i and Si[i] = S−1

t [z1]− i.

We assume these two values and S−1
t [z1] are maintained until the end of the KSA. Now in the PRGA, initially i = 1

and j′1 = SN−1[1] = i. So, we swap SN−1[1] and SN−1[i]. Then, z1 = S′1[S
′
1[1]+S′1[i]] = S′1[S

−1
t [z1]− i+ i] = z1. Hence,

the key recovery formula would be K̄[i] = 1−σi. The condition S−1
t [z1] 6= 1 is to filter the attack A u13 3.

We classify the conditions as

C1 : St [i] = i and C2 : S−1
t [z1] 6= 1,S−1

t [z1]< t +1 and C3 : z1 = St [St [1]+ i]

We also classify the assumptions and the events and the key recovery bias as

46

S1 : St [i] = · · ·= Si−1[i]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [1] = · · ·= Si−1[1]
S4 : Si[i] = · · ·= SN−1[i]

S5 : S−1
t [z1] = · · ·= S−1

N−1[z1]
S6 : K̄[i] = ji−σi

E1 : ji = 1

B : K̄[i] = 1−σi

Now, we compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2,C3]. So, we

compute

Pr[B|C1,C2,C3] = Pr[E1S6|C]+Pr[B¬S3|C]
= Pr[E1|S6C] . Pr[S6|C]+Pr[B|¬S6C] . (1−Pr[S6|C])
≈ Pr[E1|S6C] . Pr[S6|C]+

(

1−Pr[E1|S6C]
N−1

)

. (1−Pr[S6|C])
= Pr(E1|S6C) .

(

NPr[S6|C]−1

N−1

)

+
(

1−PB(i,t)
N−1

)

We then approximate Pr[S6|C]≈ PB(i, t) and we also have

Pr[E1|S6C] ≈ Pr(E1|C)
= Pr(C1C2|E1C3)

(

Pr(E1|C3)
Pr(C1C2|C3)

)

≈ Pr(C1C2|E1C3)
= Pr(C1C2S1S2S3S4S5|E1C3)+Pr(C1C2¬(S1S2S3S4S5)|E1C3)
≈ Pr(C1C2S1S2S3S4S5|E1C3)+

1
N
(1−Pr(S1S2S3S4S5|E1C3))

≈ Pr(C1C2S1S2S3S4S5|E1C3)+
1
N

(

1−P1
A(i, t) .

(

N−1
N

)N−i
)

Pr[C1C2S1S2S3S4S5|E1C3] =

(

Pr[C1C2S1S2S3S4S5E1|C3]

Pr[E1|C3]

)

= Pr[C3|C1C2S1S2S3S4S5E1] .

(

Pr[C1C2S1S2S3S4S5E1]

Pr[C3] . Pr[E1|C3]

)

Pr[B|C1,C2,C3] = Pr(E1|S6C) .
(

NPB(i, t)−1

N−1

)

+

(

1−PB(i, t)

N−1

)

where

Pr[E1|S6C]≈ Pr(C1C2S1S2S3S4S5|E1C3)+
1

N

(

1−P3
A(i, t) .

(

N−3

N

)N−i−1
)

Pr[C1C2S1S2S3S4S5|E1C3] =

(

Pr[C1C2S1S2S3S4S5E1|C3]

Pr[E1|C3]

)

= Pr[C3|C1C2S1S2S3S4S5E1] .

(

Pr[C1C2S1S2S3S4S5E1]

Pr[C3] . Pr[E1|C3]

)

Pr[C3] is uniformly distributed in this case and we also have

Pr[St [i] = i] =

(

N−1

N

)t+1

47

Finally,

Pr[E1|C3] = Pr[C3|E1]

(

Pr[E1]

Pr[C3]

)

= Pr[C3|E1]

= Pr[C3|E1C1C2] . Pr[C1C2|E1]+Pr[C3|E1C1C2] . Pr[C1C2|E1]

= Pr[C1C2|E1]+
1

N
(1−Pr[C1C2|E1])

=

(

1− 1

N

)

Pr[C1C2|E1]+
1

N

This leads to

Pr[C1C2S1S2S3S4S5|E1C3] =

(

N−1
N

)t+1 (t
N

)(

N−3
N

)N−1−i
P3

A(i, t)
(

1− 1
N

)(

N−1
N

)t+1 (t
N

)

+ 1
N

Therefore, overall we have

Pr[B|C1C2C3] =

(

NPB(i, t)−1

N−1

)

.

[

(

N−1
N

)t+1 (t
N

)(

N−3
N

)N−1−i

(

1− 1
N

)(

N−1
N

)t+1 (t
N

)

+ 1
N

. P3
A(i, t)+

1

N

(

1−P3
A(i, t)

(

N−3

N

)N−i−1
)]

+

(

1−PB(i, t)

N−1

)

!"−!

!"

!"−!

!"

!

!

!

!

!

!!

!!

!!

!!

!
−!

� [�!]− $

!
−!

� [�!]− $

!
−!

� [�!]− $

!
−!

� [�!]− $

! !
−!

" [�!]

Fig. 19. RC4 state update in the A u5 3 attack

48

A.10 The A s3 Attack

– Conditions: St [1] 6= 2, St [2] 6= 0, St [2] + St [1] < t + 1, St [2] + St [St [2] + St [1]] = i, S−1
t [z2] 6= {1,2,St [1] + St [2]},

St [1]+St [2] 6= {1,2} and (S−1
t [z2]< t +1 or S−1

t [z2]> i−1)

– Assumptions: (see Fig. 20)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1]

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2]

• St [St [1]+St [2]] = · · ·= Si−1[Si−1[1]+Si−1[2]] = Si[Si[1]+Si[2]] = · · ·= SN−1[SN−1[1]+SN−1[2]]

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i] = z2

– Key recovery relation: K̄[i] = S−1
t [z2]−σi

– Probability of success: Kor43(i, t) (see Appendix B)

In the PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = α, then we swap SN−1[1] and SN−1[α]. Assume that

S′1[2] = β. At the next stage, i = 2 and j′2 = S′1[2] + α = α + β. Then, swap S′1[2] = β and S′1[α + β]. By one of

the conditions, we have St [2] + St [St [2] + St [1]] = i. Therefore, we can write β+ S[β+α] = i. So, S[α+ β] = i− β.

By the KSA, we have Si[i] = Si−1[ji] and ji = S−1
t [z2], so Si[i] = z2. If we look at how z2 is generated, we have

z2 = S′2[S
′
2[i] + S′2[j

′
2]] = S′2[S

′
2[2] + S′2[α+ β]] = S′2[i− β+ β] = S′2[i] = Si[i] = z2. Using the same formulas as the

previous attacks we get K̄[i] = S−1
t [z2]−σi. The condition St [1] 6= 2 prevents the value of St [2] to be swapped in the

first iteration of the PRGA. The condition St [2] 6= 0 prevents z2 to be something except S′2[i], otherwise z2 = i− β.

The condition St [1] + St [2] < t + 1 makes its value not to be swapped in the next iterations of the KSA. We do not

want the index of z2 to be 1,2 nor St [1] + St [2], because then these values would modified. So, we need to have

S−1
t [z2] 6= {1,2,St [1]+St [2]}.

!"

!"

!"−!

!"−!

! !

α

α

α

α

β

β

β

β

!"[!] + !"[�]

!"[!"[!] + !"[�]]

!"[!"[!] + !"[�]]

!"[!"[!] + !"[�]]

!"[!"[!] + !"[�]]

!!

!!

!!

!!

!"

!

Fig. 20. RC4 state update in the A s3 attack

49

A.11 The A s5 2 Attack

– Conditions: St [2]+ St [1] = i, S−1
t [St [1]− St [2]] 6= {1,2}, (S−1

t [St [1]− St [2]] < t + 1 or S−1
t [St [1]− St [2]] > i− 1)

and z2 = St [1]

– Assumptions: (see Fig. 21)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1]

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2]

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

– Key recovery relation: ¯K[i] = S−1
t [St [1]−St [2]]−σi

– Probability of success: Kor32(i, t) (see Appendix B)

In the PRGA, at the first stage i = 1 and j′1 = SN−1[1] = α. Then, we swap SN−1[1] and SN−1[α]. At the next

iteration, i = 2 and j′2 = S′1[2] +α = α+ β = i, where β is S′1[2] and from the conditions, we know that α+ β = i.

Then, a swap is made between S′1[2] and S′1[i]. Finally, z2 = S′1[S
′
1[2]+S′1[i]]. By the key recovery formula, we assume

that ji = S−1
t [St [1]−St [2]]. Also, we know that Si[i] = Si−1[ji] = St [1]−St [2] = α−β. Therefore, z2 = S′1[α−β+β] =

S′1[α] = α = St [1]. Hence, the key recovery formula is ¯K[i] = S−1
t [St [1]−St [2]]−σi. The condition S−1

t [St [1]−St [2]] 6=
{1,2} prevents ji to be 1 or 2, so it prevents the swap of Si−1[1] and Si−1[2] in the i-th step of the KSA.

!"

!"−!

!"

!"−!

! !

α

α

α

α

β

β

β

β

!"

!"[!]− !"[�]

!"[!]− !"[�]

!"[!]− !"[�]

!"[!]− !"[�]

!

Fig. 21. RC4 state update in the A s5 2 attack

A.12 The A s5 3 Attack

– Conditions: St [2]+St [1] = i, S−1
t [z2] 6= {1,2}, (S−1

t [2−St [2]]< t +1 or S−1
t [2−St [2]]> i−1) and z2 = 2−St [2]

– Assumptions: (see Fig.22)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1]

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2]

50

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

– Key recovery relation: ¯K[i] = S−1
t [2−St [2]]−σi

– Probability of success: Kor32(i, t) (see Appendix B)

In the PRGA, at the first stage i = 1 and j′1 = SN−1[1] = α. Then, we swap SN−1[1] and SN−1[α]. At the next

iteration, i = 2 and j′2 = S′1[2]+α = α+β = i, where β is S′1[2] and from the conditions, we know that α+β = i. Then,

a swap is made between S′1[2] and S′1[i]. Finally, z2 = S′1[S
′
1[2]+ S′1[i]]. By the key recovery formula, we assume that

ji = S−1
t [2− St [2]]. Also, we know that Si[i] = Si−1[ji] = 2− St [2] = 2−β. Therefore, z2 = S′1[2−β+β] = S′1[2] =

2−St [2]. Hence, the key recovery formula becomes ¯K[i] = S−1
t [2−St [2]]−σi. The condition S−1

t [z2] 6= {1,2} prevents

ji to be 1 or 2, so it prevents the swap of Si−1[1] and Si−1[2] in the i-th step of the KSA.

!"

!"−!

!"

!"−!

! !

α

α

α

α

β

β

β

β

!"

!− !"[!]

!− !"[!]

!− !"[!]

!− !"[!]

!

Fig. 22. RC4 state update in the A s5 3 attack

A.13 The A 4 s13 Attack

– Conditions: St [1] = 2, St [4] 6= 0, (S−1
t [0]< t +1 or S−1

t [0]> i−1) and z2 = 0

– Assumptions: (see Fig. 23)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 2

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

• j4 = S−1
t [0]

• i = 4

– Key recovery relation: K̄[i] = S−1
t [0]−σ4

– Probability of success: P4
fixed− j(i, t) (see Appendix B)

This attack only works when i = 4. We also assume that j4 = S−1
t [0]. This assumption sets zero into S4[4]. In the

PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = 2. Then, we swap SN−1[1] and SN−1[2]. At the next iteration, i = 2

51

and j′2 = S′1[2]+2 = 4. Then, we swap S′1[2] and S′1[4]. Finally, z2 = S′2[S
′
2[2]+S′2[4]] = S′2[2] = 0. Hence, the formula

for the key recovery becomes S−1
t [0]−σ4. We set the condition St [4] 6= 0 to differentiate this attack from the A u15

attack.

We classify the conditions as

C1 : St [1] = 2 and C2 : St [4] 6= 0

C3 : (S−1
t [0]< t +1 or S−1

t [0]> i−1) and C4 : z2 = 0

We also classify the assumptions, the events and the key recovery bias as

S1 : St [j4] = · · ·= S3[j4]
S2 : S4[4] = · · ·= SN−1[4]
S3 : St [1] = · · ·= SN−1[1]
S4 : K̄[i] = ji−σi

E1 : ji = S−1
t [0]

B : K̄[i] = S−1
t [0]−σi

We compute the theoretical success probability of the attack. The goal is to estimate Pr[B|C1,C2,C3,C4]. Deploy-

ing a similar approach to the one of the attack A u15, we end up with

Pr[B|C1C2C3C4] = Pr(E1|C) .
(

NPB(i, t)−1

N−1

)

+

(

1−PB(i, t)

N−1

)

where

Pr[E1|C]≈ Pr(C1C2C3S1S2S3|E1C4)+
1

N

(

1−P2
A(i, t) .

(

N−2

N

)N−i−1
)

Pr[C1C2C3S1S2S3|E1C4] =

(

Pr[C1C2C3S1S2S3E1|C4]

Pr[E1|C4]

)

= Pr[C4|C1C2C3S1S2S3E1] .

(

Pr[C1C2C3S1S2S3E1]

Pr[C4] . Pr[E1|C4]

)

=
1

2

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)

We know from Lemma 8 that Pr[C4] =
2
N

and we also have

Pr[St [i] = i] =

(

N−1

N

)t+1

Therefore, overall we have

Pr[B|C1C2C3] =

(

NPB(i, t)−1

N−1

)

.

[

1

2

(

N−1

N

)t+1(
N−2

N

)N−1−i

. P2
A(i, t)+

1

N

(

1−P2
A(i, t)

(

N−2

N

)N−i−1
)]

+

(

1−PB(i, t)

N−1

)

52

!"

!!

!!

!"−!

!

!

!

!

!

!
!

!

!

!

!

!

Fig. 23. RC4 state update in the A 4 s13 attack

A.14 The A 4 u5 1 Attack

– Conditions: St [1] = 2, z2 6= 0, z2 6= N−2, (S−1
t [N−2]< t +1 or S−1

t [N−2]> 3) and z2 = St [0]

– Assumptions: (see Fig. 24)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 2

• St [0] = · · ·= Si−1[0] = Si[0] = · · ·= SN−1[0] = z2

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

• i = 4

– Key recovery relation: K̄[i] = S−1
t [N−2]−σ4

– Probability of success: Kor32(i, t) (see Appendix B)

This attack only works when i = 4. We also know that ji = S−1
t [N−2]. So, Si[i] = Si−1[ji] = N−2. In the PRGA,

at the first iteration i = 1 and j′1 = SN−1[1] = 2. Then, we swap SN−1[1] and SN−1[2]. At the next iteration, i = 2 and

j′2 = S′1[2]+2 = 4. Then, we swap S′1[2] and S′1[4]. Finally, z2 = S′2[S
′
2[2]+S′2[4]] = S′2[N−2+2] = S′2[0]. Hence, the

formula for the key recovery becomes S−1
t [N−2]−σ4. We set the condition z2 6= 0 to differentiate this attack from the

A 4 s13 attack.

A.15 The A 4 u5 2 Attack

– Conditions: St [1] = 2, z2 6= 0, (S−1
t [N−1]< t +1 or S−1

t [N−1]> 3) and z2 = St [2]

– Assumptions: (see Fig. 25)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 2

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2] = z2

• St [ji] = · · ·= Si−1[ji] = Si[i] = · · ·= SN−1[i]

• i = 4

53

!"

!!

!!

!"−!

! !

!!

!!

!!

!!

!

!

!

!

!
!

!− !

!− !

!− !

!− !

!

Fig. 24. RC4 state update in the A 4 u5 1 attack

– Key recovery relation: K̄[i] = S−1
t [N−1]−σ4

– Probability of success: Kor32(i, t) (see Appendix B)

This attack only works when i = 4. We also know that ji = S−1
t [N−1]. So, Si[i] = Si−1[ji] = N−1. In the PRGA,

at the first iteration i = 1 and j′1 = SN−1[1] = 2. Then, we swap SN−1[1] and SN−1[2]. At the next iteration, i = 2 and

j′2 = S′1[2]+2 = 4. Then, we swap S′1[2] and S′1[4]. Finally, z2 = S′2[S
′
2[2]+S′2[4]] = S′2[N−1+2] = S′2[1] = SN−1[2] =

St [2]. Hence, the formula for the key recovery becomes S−1
t [N−1]−σ4 . We set the condition z2 6= 0 to differentiate

this attack from the A 4 s13 attack.

A.16 The A neg 1 Attack

– Conditions: St [2] = 0, St [1] = 2 and z1 = 2

– Assumptions: (see Fig. 26)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 2

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2] = 0

– Key recovery relation: ¯K[i] = (1−σi) or ¯K[i] = (2−σi)

– Probability of success: Pneg(i, t) (see Appendix B)

In the PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = 2. Then, we swap SN−1[1] and SN−1[2]. Finally, z1 is

computed as z1 = S′1[S
′
1[1]+ S′1[2]] = 2. This means that ji /∈ {1,2}, otherwise it moves Si−1[1] or Si−1[2] from their

positions and so z1 = 2 would not hold. Thus, we get ¯K[i] 6= 1−σi and ¯K[i] 6= 2−σi.

At this stage, we compute the probability of these two negative biases. We define the following events and condi-

tions.

54

!"

!!

!!

!"−!

! ! !
!

!

!− !

!− !

!− !

!− !

!

!

!

!

!!

!!

!!

!!

Fig. 25. RC4 state update in the A 4 u5 2 attack

E1 : ji = 1 or ji = 2 B : K̄[i] = 1−σi or K̄[i] = 2−σi

C :

C1 : St [2] = 0

C2 : St [1] = 2

C3 : z1 = 2

S :

S1 : St [1] = · · ·= Si−1[1]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [2] = · · ·= Si−1[2]
S4 : Si[2] = · · ·= SN−1[2]
S5 : K̄[i] = ji−σi

What we need is to compute Pr[B|C]. It is computed as follows.

Pr[B|C] = Pr[E1S5|C]+Pr[B¬S5|C]
= Pr[E1|S5C]Pr[S5|C]+Pr[B¬S5|C]
= Pr[E1|S5C]Pr[S5|C]+Pr[B|¬S5C] (1−Pr[S5|C])
≈ Pr[E1|S5C]Pr[S5|C]+

(

1−Pr[E1|S5C]
N−1

)

(1−Pr[S5|C])
= Pr(E1|S5C)

(

NPr[S5|C]−1

N−1

)

+
(

1
N−1

)

(1−Pr[S5|C])

We know that Pr[S5|C]≈ PB(i, t), so we just need to compute Pr[E1|S5C]. Our approach is as follows.

Pr[E1|S5C]≈ Pr[E1|C] = Pr[C3|E1C1C2] .

(

Pr[E1|C1C2]

Pr[C3|C1C2]

)

≈ 0

So, overall, we have

Pr[B|C] =
(

1−PB(i, t)

N−1

)

55

!"−!

!"

!"−!

!"

! !

!

!

!

!

!

!

!

!

Fig. 26. RC4 state update in the A neg 1 attack

A.17 The A neg 2 Attack

– Conditions: St [2] = 0, St [1] 6= 2 and z2 = 0

– Assumptions: (see Fig. 27)

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2] = 0

– Key recovery relation: ¯K[i] = (2−σi)

– Probability of success: Pneg(i, t) (see Appendix B)

In the PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = α. Then, we swap SN−1[1] and SN−1[α]. In the next

iteration, i= 2 and j′2 = S′1[2]+α=α. Then, we swap S′1[2] and S′1[α]. Consequently, z2 = S′2[S
′
2[2]+S′2[α]] = S′2[α] = 0.

Similar to the previous negative attacks, if ji = 2, then Si−1[2] would be moved at the i-th step of the PRGA. To

differentiate between this attack and the previous one, we set St [1] 6= 2. Finally, the filtering formula for the key would

be ¯K[i] = (2−σi).

We define the following events and conditions.

E1 : ji = 2 B : K̄[i] = 2−σi

C :

C1 : St [2] = 0

C2 = St [1] 6= 2

C3 : z2 = 0

S :

S1 : St [2] = · · ·= Si−1[2]
S2 : Si[2] = · · ·= SN−1[2]
S3 : K̄[i] = ji−σi

What we need is to compute Pr[B|C]. It is computed as follows.

Pr[B|C]≈ Pr(E1|S3C)
(

NPr[S3|C]−1

N−1

)

+

(

1

N−1

)

(1−Pr[S3|C])

We know that Pr[S3|C]≈ PB(i, t), so we just need to compute Pr[E1|S3C]. Our approach is as follows.

56

Pr[E1|S3C]≈ Pr[E1|C] = Pr[C3|E1C1C2] .

(

Pr[E1|C1C2]

Pr[C3|C1C2]

)

≈ 0

So, overall, we have

Pr[B|C] =
(

1−PB(i, t)

N−1

)

!"−!

!"

!"−!

!"

!

!

!

!

!

Fig. 27. RC4 state update in the A neg 2 attack

A.18 The A neg 3 Attack

– Conditions: St [1] = 1 and z1 = St [2]

– Assumptions: (see Fig. 28)

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 1

• St [2] = · · ·= Si−1[2] = Si[2] = · · ·= SN−1[2] = z1

– Key recovery relation: ¯K[i] = (1−σi) or ¯K[i] = (2−σi)

– Probability of success: Pneg(i, t) (see Appendix B)

In the PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = 1. After the swap, no element would be modified.

Consequently, z1 = S′1[S
′
1[1]+S′1[1]] = S′1[2]. Similar to the previous negative attacks, if ji = 1 or ji = 2, then Si−1[1] or

Si−1[2] would be moved at the i-th step of the PRGA. Finally, the filtering formula for the key would be ¯K[i] = (1−σi)
or ¯K[i] = (2−σi) with a very low probability.

At this stage, we compute the probability of these two negative biases. We define the following events and condi-

tions.

57

E1 : ji = 1 or ji = 2 B : K̄[i] = 1−σi or K̄[i] = 1−σi

C :

{

C1 : St [1] = 1

C2 : z1 = St [2]
S :

S1 : St [1] = · · ·= Si−1[1]
S2 : Si[1] = · · ·= SN−1[1]
S3 : St [2] = · · ·= Si−1[2]
S4 : Si[2] = · · ·= SN−1[2]
S5 : K̄[i] = ji−σi

What we need is to compute Pr[B|C]. It is computed as follows.

Pr[B|C]≈ Pr(E1|S5C)
(

NPr[S5|C]−1

N−1

)

+

(

1

N−1

)

(1−Pr[S5|C])

We know that Pr[S5|C]≈ PB(i, t), so we just need to compute Pr[E1|S5C]. Our approach is as follows.

Pr[E1|S5C]≈ Pr[E1|C] = Pr[C2|E1C1] .

(

Pr[E1|C1]

Pr[C2|C1]

)

≈ 0

So, overall, we have

Pr[B|C] =
(

1−PB(i, t)

N−1

)

!"−!

!"

!"−!

!"

!

!

!

!

!

!!

!!

!!

!!

!

Fig. 28. RC4 state update in the A neg 3 attack

A.19 The A neg 4 Attack

– Conditions: St [1] = 0, St [0] = 1 and z1 = 1

– Assumptions: (see Fig. 29)

58

• St [0] = · · ·= Si−1[0] = Si[0] = · · ·= SN−1[0] = 1

• St [1] = · · ·= Si−1[1] = Si[1] = · · ·= SN−1[1] = 0

– Key recovery relation: ¯K[i] = (−σi) or ¯K[i] = (1−σi)

– Probability of success: Pneg(i, t) (see Appendix B)

In the PRGA, at the first iteration i = 1 and j′1 = SN−1[1] = 0. Then, SN−1[1] and SN−1[0] are swapped. Conse-

quently, z1 = S′1[S
′
1[1]+S′1[0]] = 1. Similar to the previous negative attacks, if ji = 0 or ji = 1, then Si−1[0] or Si−1[1]

would be moved at the i-th step of the PRGA. Finally, the filtering formula for the key would be ¯K[i] = (−σi) or
¯K[i] = (1−σi) which occurs with a low probability.

We compute the probability of these two negative biases. We define the following events and conditions.

E1 : ji = 0 or ji = 1 B : K̄[i] =−σi or K̄[i] = 1−σi

C :

C1 : St [0] = 1

C2 : St [1] = 0

C3 : z1 = 1

S :

S1 : St [0] = · · ·= Si−1[0]
S2 : Si[0] = · · ·= SN−1[0]
S3 : St [1] = · · ·= Si−1[1]
S4 : Si[1] = · · ·= SN−1[1]
S5 : K̄[i] = ji−σi

What we need is to compute Pr[B|C]. It is computed as follows.

Pr[B|C]≈ Pr(E1|S5C)
(

NPr[S5|C]−1

N−1

)

+

(

1

N−1

)

(1−Pr[S5|C])

We know that Pr[S5|C]≈ PB(i, t), so we just need to compute Pr[E1|S5C]. Our approach is as follows.

Pr[E1|S3C]≈ Pr[E1|C] = Pr[C3|E1C1C2] .

(

Pr[E1|C1C2]

Pr[C3|C1C2]

)

≈ 0

So, overall, we have

Pr[B|C] =
(

1−PB(i, t)

N−1

)

A.20 The Sepehrdad-Vaudenay-Vuagnoux Bias

– Conditions: S−1
t [0]< t +1 or S−1

t [0]> 15, z16 =−16 and j2 /∈ {t +1, . . . ,15} (Cond)
– Assumptions: (see Fig. 31)

• St [j16] = · · ·= S15[j16] = S16[16] = 0

• i = 16

– Key recovery relation: ¯K[16] = (S−1
t [0]−σ16)

– Probability of success: PSVV10(t) (see Appendix B)

Sepehrdad, Vaudenay and Vuagnoux showed in [61] that Pr[S′16[j
′
16] = 0|z16 = −16] is not uniformly distributed

and it holds with probability Pdb = 0.038488. This probability was derived empirically. This bias was further analyzed

in [58,59] and was proved in [59]. It was deployed to perform a key length discovery attack on RC4. We revisit this

proof for completeness and we modify it slightly to derive a more precise proof with our notations (see Fig. 30 for

the bias path). We first find the probability Pr[z16 =−16,S′16[j
′
16] = 0] and then using Pr[z16 =−16], we compute the

probability above.

In the first round of the KSA, when i = 0 and j0 = K[0], the value 0 is swapped into S0[K[0]]. The index j0 =
K[0] /∈ {16,−16,x}, so that the values 16, −16 and x at these indices respectively are not swapped out in the first

round of the KSA, where 16 < x < N and x 6= 240. The role of x will be clear later. We also require that K[0] /∈

59

!"−!

!"

!"−!

!"

!

!

!

!

!

!

!

!

!

!

Fig. 29. RC4 state update in the A neg 4 attack

{1, . . . ,15}, so that the value 0 at index K[0] is not touched by the values of i during S1 to S15 state updates. Thus,

K[0] /∈ {1,2, . . . ,15,16,−16,x}. This happens with probability
(

1− 18
N

)

.

From rounds S0 to S14 of the KSA, none of the indices j1, . . . , j14 touches the three indices 16,−16,K[0],x. This

happens with probability
(

1− 4
N

)14
. When i = 15, the value of j15 = −16 with probability

(

1
N

)

. This moves −16 to

index 15 in S15. When i = 16, we have

j16 = j15 +S15[16]+K[16] =−16+16+K[0] = K[0]

where S15[K[0]] = 0. Hence, after the swap, we have S16[16] = 0. Since K[0] 6= 15, we have S16[15] =−16.

From S16 to Sx−1, the index ji does not touch the indices 15, 16 and x with probability
(

1− 3
N

)x−17
. When i = x,

the value of jx = 15 with probability
(

1
N

)

. Due to the swap, the value x moves to Sx[15] and the value −16 moves

to Sx[x] = Sx[Sx[15]]. For the remaining N− x− 1 rounds of the KSA and for the first 14 rounds of the PRGA, none

of the ji or j′i values should touch the indices 15,16,x. This happens with a probability of
(

1− 3
N

)N−x+13
. In the

next state update, i.e., S′15, the value x is moved to S′15[j
′
15]. We need to have j′15 /∈ {16,x}, otherwise 0 and −16 are

moved. This happens with probability
(

1− 2
N

)

. We need to end up in S′16[j
′
16] = 0. This is exactly the case, because

S′16[j
′
16] = S′15[16] and S′15[16] is set to zero. Since j′16 = j′15 + S′15[16], we have j′16 = j′15. Hence, in the next state

update, i.e., S′16, the value x is moved to index 16 and zero is moved to index j′16. The last probability we need

to consider is the probability that −16 is not moved at S′16 state update, meaning j′16 6= −16. This is correct with

probability
(

1− 1
N

)

. Finally,

Z16 = S′16[S
′
16[16]+S′16[j

′
16]] = S′16[S

′
16[16]] = S′16[x] =−16

This is the exactly the path we were searching for.

Considering another case where both events S′16[j
′
16] = 0 and z16 = −16 are happening with complete random

association, the overall probability is computed as:

Pr[S′16[j
′
16] = 0,z16 =−16] =

1

N2
+

(

1− 1

N2

)

γ

60

!!!

!
−!

!!

!!	

!

!

!

!

!

−!

−!

−!

!!�

!�−!

!
′

!

!
′

!�

!�

−!

−!

!
′

!�

!�

−!
!�

!�

!�

!�

!�

! !

−!
 ! !

! −!
!

! −!
!

! −!

−!
!

![!]

!′!�

!

!′!�

!

!� = !�

!′!� = !
′

!�

!!� = −!�
!�

!

!�

!�

!!� = "[�]

!

!

!

!

!

!

!� < ! < " #$% ! != −!"

Fig. 30. RC4 state update in the SVV 10 bias alone

61

where γ is the probability that the bias path is correct and is computed as:

γ =
(

1− 18
N

)(

1− 4
N

)14
(

1
N2

)

(

1− 2
N

)(

1− 1
N

)

N−1

∑
x=17

x 6=240

(

1− 3

N

)x−17+N−x+13

=
(

N−18
N2

)

(

1− 4
N

)14 (
1− 3

N

)N−4 (
1− 18

N

)(

1− 2
N

)(

1− 1
N

)

To compute Pr[S′16[j
′
16] = 0|z16 =−16], we need to find Pr[z16 =−16]. Recalling the different steps of computing

this probability is pretty involved in [59], therefore we refer the interested reader to [59] for the proof of Pr[z16 =
−16] = 1.0355/N. Consequently, the overall probability is:

Pr[S′16[j
′
16] = 0|z16 =−16] =

1

1.0355

[

1

N
+

(

N− 1

N

)

γ

]

Using the SVV 10 bias, the overall probability of the bias between the keystream bytes and the key bytes are not

easily computable. Therefore, we refined this bias and derived a new one Pr[S16[16] = 0|Cond1] = Pdb2 = 0.03689,

where Cond1 denotes z16 =−16. In the following, we also recall the proof of this bias from [59]:

Pr[S16[15] =−16] = Pr[S16[15] =−16,S16[16] = 0]+Pr[S16[15] =−16,S16[16] 6= 0]

= 1
N2 +

(

1− 1
N2

)

α16 +Pr[S16[16] 6= 0] ·Pr[S16[15] =−16|S16[16] 6= 0]

≈ 1
N2 +

(

1− 1
N2

)

α16 +
(

1− 1
N

)

1
N

= 1
N
+
(

1− 1
N2

)

α16

Now, we compute the main probability Pr[z16 =−16,S16[16] = 0] as follows:

Pr[z16 =−16,S16[16] = 0] = Pr[z16 =−16,S16[16] = 0,S16[15] =−16]+Pr[z16 =−16,S16[16] = 0,S16[15] 6=−16]
= Pr[S16[16] = 0,S16[15] =−16] ·Pr[z16 =−16|S16[16] = 0,S16[15] =−16]
+Pr[S16[15] 6=−16] ·Pr[z16 =−16,S16[16] = 0|S16[15] 6=−16]

Hence, merging this bias with the weaknesses of the KSA, we obtain

0
Pdb2=
Cond1

S16[16] = S15[j16]
P1

A(16,t)
=

Cond′
St [j16] and j16

PB(16,t)
= K̄[16]+σ16

where j16 /∈ {t + 1, . . . ,15} (Cond′) due to Lemma 4. We should set S−1
t [0] < t + 1 or S−1

t [0] > 15 (Cond2) to make

sure that the index of zero is not trivially picked at the next iterations. Using Lemma 4, we obtain

K̄[16]
PSVV10(t)

=
Cond

S−1
t [0]−σ16

which holds with overall probability of

PSVV10(t) = Pdb2⊗P1
A(16, t)⊗PB(16, t)

We found out that by adding j2 /∈ {t +1, . . . ,15} condition to the attack, we can derive a much better success rate

in practice. Currently, we do not have any justification for this new condition.

62

Table 3. The biases for RC4, exploitable against WEP and WPA

row reference f̄ ḡ p

i Klein− Improved S−1
t [−zi + i]−σi(t) (i− zi) 6∈ {St [t +1], . . . ,St [i−1]} PKI(i, t)

i 6= 1 MP− Improved zi+1−σi(t) i 6= 1, zi+1 ≥ i, ∀0≤ i′ ≤ t : ji′ 6= zi+1 PMPI(i, t)

i A u15 2−σi(t) St [i] = 0, z2 = 0 P1
u (i, t)

i A s13 S−1
t [0]−σi(t) St [1] = i, (S−1

t [0]< t+1 or S−1
t [0]> i−1),

z1 = i

Kor21(i, t)

i A u13 1 S−1
t [z1]−σi(t) St [1] = i, (S−1

t [z1] < t + 1 or S−1
t [z1] > i−

1), z1 = 1− i

Kor21(i, t)

i A u13 2 1−σi(t) St [i] = i, St [1] = 0, z1 = i P3
u (i, t)

i A u13 3 1−σi(t) St [i] = i, St [1] = 1− i, z1 = 1− i P3
u (i, t)

i A s5 1 S−1
t [z1]−σi(t) St [1] < t + 1, St [1] + St [St [1]] = i,

z1 6= {St [1],St [St [1]]}, (S−1
t [z1] <

t +1 or S−1
t [z1]> i−1)

Kor32(i, t)

i A s5 2 S−1
t [St [1]−St [2]]−σi(t) St [2]+St [1] = i, S−1

t [St [1]−St [2]] 6= {1,2},
(S−1

t [St [1] − St [2]] < t + 1 or S−1
t [St [1] −

St [2]]> i−1), z2 = St [1]

Kor32(i, t)

i A s5 3 S−1
t [z2]−σi(t) St [2] + St [1] = i, S−1

t [z2] 6= {1,2},
(S−1

t [z2] < t + 1 or S−1
t [z2] > i − 1),

z2 = 2−St [2]

Kor32(i, t)

i A u5 1 S−1
t [S−1

t [z1]− i]−σi(t) St [1] = i, S−1
t [z1] < t + 1,

S−1
t [S−1

t [z1]− i] 6= 1, (S−1
t [S−1

t [z1]− i] <
t + 1 or S−1

t [S−1
t [z1] − i] > i − 1),

z1 6= {i,1− i,S−1
t [z1]− i}, S−1

t [z1] 6= 2i

Kor32(i, t)

i A u5 2 1−σi(t) St [i] = 1, z1 = St [2] P2
u (i, t)

i A u5 3 1−σi(t) St [i] = i, S−1
t [z1] 6= 1, S−1

t [z1] < t + 1, z1 =
St [St [1]+ i]

P5
u (i, t)

i A s3 S−1
t [z2]−σi(t) St [1] 6= 2, St [2] 6= 0, St [2] + St [1] < t +

1, St [2] + St [St [2] + St [1]] = i, S−1
t [z2] 6=

{1,2,St [1] + St [2]}, St [1] + St [2] 6= {1,2},
(S−1

t [z2]< t +1 or S−1
t [z2]> i−1)

Kor43(i, t)

4 A 4 s13 S−1
t [0]−σ4(t) St [1] = 2, St [4] 6= 0, (S−1

t [0] <
t +1 or S−1

t [0]> i−1), z2 = 0

P4
u (i, t)

4 A 4 u5 1 S−1
t [N−2]−σ4(t) St [1] = 2, z2 6= 0, z2 = St [0], z2 6= N − 2,

(S−1
t [N−2]< t +1 or S−1

t [N−2]> 3)
Kor32(i, t)

4 A 4 u5 2 S−1
t [N−1]−σ4(t) St [1] = 2, z2 6= 0, (S−1

t [N − 1] < t +
1 or S−1

t [N−1]> 3), z2 = St [2]
Kor32(i, t)

i A neg 1 1−σi(t) or 2−σi(t) St [2] = 0, St [1] = 2, z1 = 2 Pneg(i, t)

i A neg 2 2−σi(t) St [2] = 0, St [1] 6= 2, z2 = 0 Pneg(i, t)

i A neg 3 1−σi(t) or 2−σi(t) St [1] = 1, z1 = St [2] Pneg(i, t)

i A neg 4 −σi(t) or 1−σi(t) St [1] = 0, St [0] = 1, z1 = 1 Pneg(i, t)

16 SVV 10 S−1
t [0]−σ16(t) S−1

t [0] < t + 1 or S−1
t [0] > 15, z16 = −16,

j2 /∈ {t +1, . . . ,15}
PSVV10(t)

63

!!"

!"

!!"

!"

!

!

!

!
!"

Fig. 31. RC4 state update in the SVV 10 full attack

B Computation of Biases

Biases were computed using the following formulas:

PKI(i, t) = PJ⊗P0⊗P1
A(i, t)⊗PB(i, t)

PMPI(i, t) = PD(i)⊗PB(i, t)

P8I(i, t) = P8⊗P0⊗P1
A(i, t)⊗PB(i, t)

P9I(i, t) = P9⊗P0⊗P1
A(i, t)⊗PB(i, t)

Korbc(i, t) = Rb
c(i, t)⊗PB(i, t)

Pneg(i, t) =
(

1−PB(i,t)
N−1

)

PSVV10(t) = Pdb2⊗P1
A(16, t)⊗PB(16, t)

P1
u (i, t) =

(

NPB(i,t)−1

N−1

)

.
[

1
2
P1

A(i, t)
(

N−1
N

)N−i
+ 1

N

(

1−P1
A(i, t)

(

N−1
N

)N−i
)]

+
(

1−PB(i,t)
N−1

)

P2
u (i, t) = 1

N

(

NPB(i,t)−1

N−1

)

.
[

1
ξ
P2

A(i, t)
(

N
N−1

)t−2 (N−2
N

)N−1−i
+
(

1−P2
A(i, t)

(

N−2
N

)N−i−1
)]

+
(

1−PB(i,t)
N−1

)

P3
u (i, t) =

(

NPB(i,t)−1

N−1

)

.
[

(

N−1
N

)t+1 (N−2
N

)N−1−i
. P2

A(i, t)+
1
N

(

1−P2
A(i, t)

(

N−2
N

)N−i−1
)]

+
(

1−PB(i,t)
N−1

)

P4
u (i, t) =

(

NPB(i,t)−1

N−1

)

.
[

1
2

(

N−1
N

)t+1 (N−2
N

)N−1−i
. P2

A(i, t)+
1
N

(

1−P2
A(i, t)

(

N−2
N

)N−i−1
)]

+
(

1−PB(i,t)
N−1

)

P5
u (i, t) =

(

NPB(i,t)−1

N−1

)

.

[

(N−1
N)

t+1
(t

N)(
N−3

N)
N−1−i

(1− 1
N)(

N−1
N)

t+1
(t

N)+
1
N

. P3
A(i, t)+

1
N

(

1−P3
A(i, t)

(

N−3
N

)N−i−1
)

]

+
(

1−PB(i,t)
N−1

)

64

where PJ =
2
N

, P0 =
(

N−1
N

)N−2
, P8 =

1.05
N

, P9 =
1.0338

N
, Pdb2 =

9.444
N

and ξ = 1
N

[

(

N−1
N

)N
(

1− 1
N
+ 1

N2

)

+ 1
N2 +1

]

.

Pb
A(i, t) =

(

N−b
N

)i−t−1

PB(i, t) = ∏i−t−1
k=0

(

N−k
N

)

+ 1
N

(

1−∏i−t−1
k=0

(

N−k
N

))

PD(i) = (N−i−1)(N−i)
N3

(

N−2
N

)N−3+i (N−1
N

)3

Rb
c(i, t) = rc(i)P

b
A(i, t)+

1
N
(1− rc(i)P

b
A(i, t))

r1(i) =
(

N−2
N

)N−i−1

r2(i) =
(

N−3
N

)N−i−1

r3(i) =
(

N−4
N

)N−i−1

These formulas are new. Biases were originally provided with probabilities for t =−1.

65

