7,128 research outputs found

    Efficient Recognition of Partially Visible Objects Using a Logarithmic Complexity Matching Technique

    Full text link
    An important task in computer vision is the recognition of partially visible two-dimensional objects in a gray scale image. Recent works addressing this problem have attempted to match spatially local features from the image to features generated by models of the objects. However, many algo rithms are considerably less efficient than they might be, typ ically being O(IN) or worse, where I is the number offeatures in the image and N is the number of features in the model set. This is invariably due to the feature-matching portion of the algorithm. In this paper we discuss an algorithm that significantly improves the efficiency offeature matching. In addition, we show experimentally that our recognition algo rithm is accurate and robust. Our algorithm uses the local shape of contour segments near critical points, represented in slope angle-arclength space (θ-s space), as fundamental fea ture vectors. These feature vectors are further processed by projecting them onto a subspace in θ-s space that is obtained by applying the Karhunen-Loève expansion to all such fea tures in the set of models, yielding the final feature vectors. This allows the data needed to store the features to be re duced, while retaining nearly all information important for recognition. The heart of the algorithm is a technique for performing matching between the observed image features and the precomputed model features, which reduces the runtime complexity from O(IN) to O(I log I + I log N), where I and N are as above. The matching is performed using a tree data structure, called a kD tree, which enables multidi mensional searches to be performed in O(log) time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66975/2/10.1177_027836498900800608.pd

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    Illumination Processing in Face Recognition

    Get PDF

    A Robust Online Method for Face Recognition under Illumination Invariant Conditions

    Get PDF
    In case of incremental inputs to an online face recognition with illumination invariant face samples which maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions In this paper we alleviate this problem with an incremental learning algorithm to effectively adjust a boosted strong classifier with domain-partitioning weak hypotheses to online samples which adopts a novel approach to efficient estimation of training losses received from offline samples An illumination invariant face representation is obtained by extracting local binary pattern LBP features NIR images The Ada-boost procedure is used to learn a powerful face recognition engine based on the invariant representation We use Incremental linear discriminant analysis ILDA in case of sparse function for active near infrared NIR imaging system that is able to produce face images of good condition regardless of visible lights in the environment accuracy by changes in environmental illumination The experiments show convincing results of our incremental method on challenging face detection in extreme illumination

    Aggregating Local Descriptors for Epigraphs Recognition

    Get PDF
    In this paper, we consider the task of recognizing epigraphs in images such as photos taken using mobile devices. Given a set of 17,155 photos related to 14,560 epigraphs, we used a k-NearestNeighbor approach in order to perform the recognition. The contribution of this work is in evaluating state-of-the-art visual object recognition techniques in this specific context. The experimental results conducted show that Vector of Locally Aggregated Descriptors obtained aggregating SIFT descriptors is the best choice for this task.The Fourth International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage—DiPP2014 is supported by the Ministry of Education and Science and is under the patronage of UNESCO

    Quality assessment of manufactured ceramic work using digital signal processing

    Get PDF
    Tese de mestrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 199
    • …
    corecore