4 research outputs found

    頭部伝達関数の空間領域特性モデリング

    Get PDF
    Tohoku University鈴木陽一課

    Blast exposure in the military and its effects on sensory and cognitive auditory processing

    Full text link
    Blast-induced traumatic brain injury and hearing loss are two of the most common forms of the “invisible wounds of war” resulting from the United States’ Global War on Terror. Several published studies have been confirming recent reports from VA healthcare centers of blast-exposed Service Members complaining of auditory problems despite having hearing that is, for all intents and purposes, normal. Most common among these complaints is problems understanding speech in crowded and noisy situations. We hypothesized that problems with speech comprehension could either be the result of 1) damage to sensory areas in the auditory periphery or 2) blast-induced traumatic brain injury (TBI) to cortical networks associated with the processing of attention, memory, and other executive functions related to the processing of speech and linguistic information. In Chapter 1 of this thesis, we found that in a population of blast-exposed Veteran Service Members, problems with speech comprehension in noise were due to cognitive deficits likely resulting from issues related to their post-traumatic stress disorder (PTSD) diagnoses. Chapter 2 takes and expanded look at the topics of Chapter 1 with a more comprehensive battery of audiological, electrophysiological, and neuropsychological tests in active duty Service Members with and without a history of blast exposure. Unlike in veterans with PTSD, we found subclinical levels of peripheral auditory dysfunction, as well as evidence of compromised neural processing speed in the blast-exposed group. These deficits were also consistent with poorer performance on a standardized speech-in-noise test and lower self-reported ratings on an abbreviated version of the Speech, Spatial, and Qualities (SSQ) of Hearing questionnaire (Gatehouse and Noble, 2004). In Chapter 3,we modeled outcomes from the SSQ survey using objective measures of hearing function related to audibility, distortion of the neural representation of sound, attention, age, and blast status. We found for all subjects age and high frequency hearing thresholds predicted survey outcomes related to everyday listening ability. Within non-blast controls, however, measures of attention could differentiate between good and exceptional listening ability. Results from blast exposed subjects remained inconclusive. Collectively, these findings highlight the need for audiologists to take into account more than audiometric measures alone when diagnosing and treating hearing dysfunction in this unique and specialized patient population

    Efficient Interactive Sound Propagation in Dynamic Environments

    Get PDF
    The physical phenomenon of sound is ubiquitous in our everyday life and is an important component of immersion in interactive virtual reality applications. Sound propagation involves modeling how sound is emitted from a source, interacts with the environment, and is received by a listener. Previous techniques for computing interactive sound propagation in dynamic scenes are based on geometric algorithms such as ray tracing. However, the performance and quality of these algorithms is strongly dependent on the number of rays traced. In addition, it is difficult to acquire acoustic material properties. It is also challenging to efficiently compute spatial sound effects from the output of ray tracing-based sound propagation. These problems lead to increased latency and less plausible sound in dynamic interactive environments. In this dissertation, we propose three approaches with the goal of addressing these challenges. First, we present an approach that utilizes temporal coherence in the sound field to reuse computation from previous simulation time steps. Secondly, we present a framework for the automatic acquisition of acoustic material properties using visual and audio measurements of real-world environments. Finally, we propose efficient techniques for computing directional spatial sound for sound propagation with low latency using head-related transfer functions (HRTF). We have evaluated both the performance and subjective impact of these techniques on a variety of complex dynamic indoor and outdoor environments and observe an order-of-magnitude speedup over previous approaches. The accuracy of our approaches has been validated against real-world measurements and previous methods. The proposed techniques enable interactive simulation of sound propagation in complex multi-source dynamic environments.Doctor of Philosoph
    corecore